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Disorder and decision cost in spatial networks
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We introduce the concept of decision cost of a spatial graph, which measures the disorder of a given
network taking into account not only the connections between nodes but their position in a two-
dimensional map. The influence of the network size is evaluated and we show that normalization of
the decision cost allows us to compare the degree of disorder of networks of different sizes. Under
this framework, we measure the disorder of the connections between airports of two different
countries and obtain some conclusions about which of them is more disordered. The introduced
concepts (decision cost and disorder of spatial networks) can easily be extended to Euclidean
networks of higher dimensions, and also to networks whose nodes have a certain fitness property
(i.e., one-dimensional). © 2008 American Institute of Physics. [DOI: 10.1063/1.2901916]

When analyzing structures tailored by men, complex net-
works theory has been a useful instrument in order to
study their complexity. In many works related to this
field, the projected network is obtained by detecting con-
nections between their fundamental units (i.e., nodes),
disregarding any information about their spatial distri-
bution. In this paper, we study the importance of the Eu-
clidean position of nodes for a key property of the net-
work: the decision cost, that is, the difficulty for a blind
agent to make its way from a starting node to a target
node. We demonstrate how this parameter is a good in-
dicator of the disorder of a spatial net, and we apply this
measure to two different airport networks.

INTRODUCTION

The experiment of Milgraml exploring communication
through a social network has been one of the most influential
works concerning complex networks, specifically social
complex networks. Milgram tried to reveal the complex
properties of the acquaintance network between individuals,
and asked several people in Nebraska to reach a stranger
target in Massachusetts. The rule was that each individual
should send a letter to an acquaintance whom he/she would
estimate to be closer to the target person. Surprisingly, some
of the letters arrived at the selected person after a short num-
ber of steps. This experiment revealed the small-world nature
of certain networks, in this case a network of acquaintances,
which can be traveled from one corner to the other through a
short number of connections. It was more than 30 years later
that Watts and Strogatz® (1998) defined the particular prop-
erties of small-world networks, reactivating the study of
complex networks, a field that has profusely grown during
recent years.’

After the seminal work of Watts and Strogatz, studies
focused on the structural properties of these kinds of

1054-1500/2008/18(2)/023103/6/$23.00

18, 023103-1

networks, which lie between regular and random structures,
and gradually shifted to analyze the influence of the topology
on the dynamics and the evolution of the networks. The de-
gree distribution, the clustering coefficient, or the assortativ-
ity have become usual parameters to evaluate the structural
properties of a network, which, in addition, reveal some in-
formation about navigation, structural resilience, or modular-
ity within the graph.4 Specifically, navigation through a com-
plex network is an interesting topic due to its importance on
the design of freight transport networks, Internet-based rec-
ommender systems, or even the streets distribution of a city.
As an example, it has been shown that two-dimensional
small-world networks reduce their delivery time between any
two nodes when a critical value of the clustering is fulfilled.’

In the current work, we are concerned with the structure
and navigation through spatial networks, i.e., networks that
have a representation in Euclidean space. Several works have
dealt with the structural properties of different spatial net-
works, such as railway or subway networks,®’ the network
of streets within a city,g’10 or the network of connections
between airports.“ In most of these works, however, the pro-
jected network consisted of a set of nodes (stations, airports,
or streets) connected by links, where the spatial position of
the nodes was disregarded. In this way, two airports have a
distance of one if a direct flight exists between them, no
matter if they are 100 or 1000 kilometers apart. In the fol-
lowing, we will introduce a fundamental distinction when
considering a spatial network: we will take into account not
only connections between nodes but the position of them in
Euclidean space. In this way, we are able to define a struc-
tural parameter that will help us to decide about the way of
navigating through the network: the decision cost (DC). As
we will explain in detail, the decision cost also quantifies the
disorder of the network taking into account not only the het-
erogeneity of the degree distribution but the amount of ran-
domness of the spatial distribution. Therefore, it is a param-

© 2008 American Institute of Physics

Downloaded 17 Apr 2008 to 193.147.60.253. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp


http://dx.doi.org/10.1063/1.2901916
http://dx.doi.org/10.1063/1.2901916

023103-2 Zanin et al.
eter to be considered in the design of spatial networks, since
it gives hints about navigability strategies within the graph.

DECISION COST IN SPATIAL NETWORKS

Approaches to calculate the disorder of a complex net-
work have focused on the analysis of degree
heterogeneity.lz_14 This is a good indicator of the disorder of
the network, which has also been used to evaluate the resil-
ience of a network to random failures." Nevertheless, the
position of nodes has often been disregarded, in general due
to the fact that a node cannot be associated with a position in
the Euclidean space (e.g., in social networks). However, in
spatial networks the position of nodes can be crucial when
evaluating the disorder of the network. If we take a regular
two-dimensional lattice with all nodes connected with its
closest neighbors and we move nodes randomly while keep-
ing their connections, it is clear that the disorder of the net-
work will increase. Therefore, it is necessary to include the
position of the nodes when evaluating the disorder of spatial
networks.

Rosvall'* evaluated the navigation properties of a net-
work in terms of calculating the information required to
move from a node to another through the shortest path; for
each step, the agent must choose the right exit link, then the
information is defined by the Shannon entropy like log, k,,,
where k,, is the degree of the nth node. Although this mea-
sure gives some hints about how complex is moving through
the net, there is no way to extract how difficult is to find the
shortest path between two points, once the position of the
target point is known. Furthermore, the distances between
nodes are not considered in the model. Another recently pro-
posed measure’ consists of counting the number of bits of
information needed to transmit a message to any given node
of the network, or conversely, to evaluate the departing node
when a message is received.

Suppose that we have an agent that knows where it is at
a certain time, where it should go (the destination node), and,
furthermore, it has information about the position of the
nodes connected with itself. Such an agent, however, has no
information about the overall structure of the network, and
therefore it must decide a navigation strategy according to a
limited (local) information. The strategy through which the
agent moves is the following: at every node of the path, it
will move to the node closest to the destination. It is clear
that this strategy can lead to the incorrect solution when the
network is not regular, and generally will not result in the
shortest path.

We can now define the shortest-path decision cost
(DCyp) as the information needed to define the shortest path
between two nodes, modifying the trivial solution given by
our agent:

>, log, (1/#¢)

n-—1

DC,,=- , (1)
where n is the number of nodes of the path, and #c is the
logical order of the outgoing link (1 the closest to the objec-

tive, 2 the second closest, etc.).
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The classical way to evaluate the quantity of information
requested to successfully reach a target node consists in sim-
ply counting the number of questions that an agent should
ask to find the correct path (i.e., for each link, the agent asks
if that link is the correct one in the shortest path to reach the
target). Although it is a more straightforward way, it lacks an
important feature: the normalization of the decision cost, and
therefore, the ability of comparing networks of different
sizes. _

For the whole network, the DC, will be

) SV DC (i)

o= @

where N* is the set of shortest path, with three or more
nodes. Since we must calculate the shortest path between
each pair of nodes, the computational cost of the DCg, is, in
the worst case, of O(N?), N being the total number of nodes.

Let us look at an example of the decision cost of a net-
work. In Fig. 1, the second and third nets were created from
the first one by moving nodes E and C; moreover, nodes B
and D have been brought closer to keep the characteristic
path length of the network. If we consider that the degree
distribution and the clustering coefficient are the same, the
three nets have the same statistical properties. From the point
of view of path decision cost, on the contrary, our three nets
are very different.

On the first net, any shortest path we choose can be
covered by going to the neighbor node that is closer to the
objective. As a result, the decision cost DCy,=0. In the sec-
ond one, when going from A to D, the most logical step
would be move to B, because it is the node closer to D.
Nevertheless, this option will not lead to the shortest path.
The same occurs from C to B, leading to a decision cost
DC,, greater than zero. In the third network, we have four
problematic paths: A—D, C—B, B—C, D—A. At each of
these paths, we must avoid the most logical link and follow
the second option, so from Eq. (1), DCq,, is always 1/2.

Despite the fact that the definition of decision cost is
focused in spatial networks, it also applies to any network
with a certain fitness value associated with its nodes. In this
case, the fitness parameter is the parameter evaluated by the
agent to move through the network, i.e., on its way to reach-
ing a target node with a certain fitness, the agent moves to
the connected nodes which have the closest fitness to the
target node.

FROM ORDER TO DISORDER

In the following, we evaluate the disorder of spatial net-
works of different sizes by computing their decision costs.
We depart from a regular two-dimensional (2D) network of
N XN components coupled through a nearest-neighbor
mechanism. In this way, each node has four links, specifi-
cally one with the upper node, one with the lower node, and
one with each lateral node (with the exception of the bound-
ary nodes). This particular network has a decision cost of
DC,,=0 since all nodes are placed regularly and the move-
ment toward the target node will always lead to the shortest
path. From this starting point, we put the network out of
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FIG. 1. (Color online) An example of path-searching complexity: a simple
net (a) and two evolutions [(b) and (c)]. Depending on the spatial distribu-
tion of nodes, the ease of finding the shortest path may change considerably.

(©

order by introducing a rewiring probability p at each link.
Figure 2(a) shows the evolution of the decision cost as a
function of the rewiring probability p for different sizes of an
N XN network (where N=3,...,12). We can see how the
decision cost (disorder) of the network increases as the ran-
dom links are introduced, as could be expected, with the
highest cost (disorder) corresponding to p=1. On the other
hand, decision cost increases with the size of the network,
i.e., the bigger the network, the more information we need to
travel inside it.

When the decision cost is normalized by the value of the
randomly connected network DC,,,, i.e., p=1, we obtain Fig.
2(b). We observe how the normalized decision cost DC, o
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FIG. 2. (Color online) Decision cost DCg, (a) and normalized decision cost
DC, o (b) of NX N spatial networks as a function of the rewiring probabil-
ity p. The number of nodes ranges from 9 (3 X3) to 144 (12X 12). Each
point corresponds to the mean value of 20 simulations, with its correspond-
ing error bars.

shows the same trend in all cases, no matter the size of the
network. This fact indicates that the normalized decision cost
is a suitable parameter in order to compare the disorder of
spatial networks of different sizes.

At this point, we would like to mention some aspects
about the decision cost of a network:

(1) It measures the degree of disorder of a spatial network,
specifically the disorder of its connections.

(2) Itis a good indicator to decide a strategy to navigate in
the network (when the graph has low values of the de-
cision cost, the most recommended option is to move in
the direction of the target node, while other strategies
are more suitable for navigating graphs with high values
of the decision cost).

(3) One can define a normalized decision cost DC,gms
which could be used to compare the degree of disorder
of different networks.

(4) The decision cost is of special interest for small to me-
dium networks, where indicators such as the mean short-
est path or the clustering coefficient are very sensitive to
the initial conditions.

(5) Note that a random network does not have the highest
decision cost. Despite the fact that we use the random
network to normalize, we can find networks with DC, .,
higher than the unity.

Concerning the latter point, it is interesting to identify
the parameters that modify the decision cost of a spatial net-
work. As we have shown in Fig. 2, the rewiring probability
and the number of nodes increase the decision cost of a regu-
lar spatial network (i.e., a network with nodes equally dis-
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FIG. 3. Decision cost DCg, of a 5X35 spatial network as a function of the
number of links. At each step, we increase the number of links and recalcu-
late the decision cost. The initial network has all links randomly distributed @)
(p=1). Each point corresponds to the mean value of 50 simulations.

tributed). However, up to now we have kept a constant num-
ber of links, but what happens if we increase it? The answer
to this question can be inferred by analyzing Fig. 3, where
we increase the number of links of a 5 X5 regular network
with its initial links randomly distributed. We can see that
decision cost (i.e., the disorder) does not have a monotonic
evolution. When few links are added, the decision cost of the
network increases since we introduce them randomly. Nev-
ertheless, there exists a critical value, related to the size of J
the network, at which the decision cost begins to decrease. |
This behavior is due to the fact that when too many links are |
included, the mean distance between nodes decreases drasti- !
cally, arriving at the lowest value when all nodes are mutu-
ally connected.
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DECISION COST IN REAL NETWORKS

We have analyzed the decision cost of two networks ’
obtained from Italian and Spanish domestic flights, i.e., the
direct connections between their main national airports. Fig-

” Sea
Mediterranean Sea

ure 4 shows both networks plotted over their corresponding | Iltaly” el
country maps, while in Fig. 5 we plot two typical distribu- B e 0.
tions when analyzing the structure of a complex network: the ] fed

cumulative degree distribution P.(k) [(a) and (d)] and the B

clustering coefficient distribution C(k) [(b) and (e)]. We can T (N )

observe that, in both cases, long tails are observed at P(k) ()

desp ite fluctuations app earing due to the low number of FIG. 4. (Color online) Graphical representation of the Spanish and Italian
nodes (NSpain:35 and Nna]y=34). The decay inC (k) indicates national airport network. Connections are obtained from domestic flights
the absence of degree correlations. We also include the node between airports.

betweenness B,.4.(k) as a function of the node degree [(c)

and (f)], which measures the number of shortest paths that go

through a certain airport of degree k. Details of other statis- tion requested to move optimally through the network. The
tical values are given in Table I. fact that DC, # 0 indicates that moving to the closest airport

But let us focus on the main topic of the paper, namely is not the best strategy to arrive at a desired place. This is a
the decision cost as a way to evaluate the disorder of a net- common feature in both airport networks, since worldwide

work. We compute the decision cost for both the Italian and airport connections are constructed around “central” airports
Spanish networks obtaining DC?p“lyz 1.46 and DCfgamz 1.21,  that act as hubs, in what is called “Hub and Spoke”

respectively. It is worth discussing the meaning of both val- strategy.15 Therefore, traveling through a hub reduces the
ues. As explained above, the decision cost measures the dis- covered distance, despite the fact that the hub may not be the
order of the network by evaluating the quantity of informa- closest airport to the target place.
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FIG. 5. Cumulative degree distribution P(k), clustering coefficient C(k),
and node betweenness B,,4.(k) for the Italian (upper plots) and Spanish
(lower plots) airport network.

When looking at both values, a question arises: Is the
Italian network more disordered than the Spanish one (since
DCi‘;‘ly > DCflfam)? In other words, what is the significance of
the value of the decision cost? It is clear that networks with
different numbers of nodes and links will have different de-
cision costs, and a direct comparison between both networks
is inadvisable.

In order to compare networks of different size, or to
measure the percentage of disorder of a certain network, we
must normalize the value of the decision cost. In the preced-
ing section, we saw that, in regularly distributed networks,
normalization through the randomly connected network
leads to a normalized decision cost with a common shape, no
matter the number of nodes considered in the network. How-
ever, in real networks, nodes are not regularly distributed and
the reference network must be defined in a different way.

With this aim, we have defined a randomly connected
airport network departing from an unconnected network
where nodes occupy the real position of the airports. Next,
we connect nodes randomly, all of them with at least one
link, until we arrive at a total number of links equal to that of
the real network. In this way, we obtain a network with ex-

TABLE I. Summary of several network parameters: Number of nodes n,
number of links m, mean geodesic path d, diameter d,,, of the network,
global clustering coefficient C, decision cost DCg,, and decision cost of the
randomly connected DC,,, network.

sp?

National airport networks

Ttaly Spain
n 33 35
m 105 123
d (d,,) 1.92 (3) 1.84 (3)
c 0.418 0.738
DC,, 1.46 1.21
DC,,, 1.366 1.035
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actly the same spatial distribution and the same number of
connections but with the links randomly distributed. We cal-
culate the decision cost of the random network DC,,, and we
use it to normalize the decision cost of the real network
(DCporm=DC4,/DCyyy), obtaining DCpa =1.07 and DCyPa"
=1.17. Note the difference between both networks: despite
the Italian network having higher decision cost, its normal-
ized value is lower than the Spanish network. This fact indi-
cates that the higher decision cost of the Italian network is
due to a more disordered distribution of nodes, i.e., the loca-
tion of the airports. However, by normalization, we skip the
influence of the node distribution and account for the disor-
der introduced by the network connections. For this particu-
lar comparison, we can see how, in the Italian network, con-
nections between airports have been created more efficiently
than in the Spanish network.

CONCLUSIONS

In spatial networks, the position of the nodes in the Eu-
clidean space is intrinsically related with the decision cost of
traveling through the network. In this paper, we have intro-
duced the concept of decision cost DCSP, which measures the
disorder of a given network taking into account not only the
connections between nodes but their position in a two-
dimensional map. Departing from a regular 2D network, we
introduce a rewiring probability and evaluate its influence in
the decision cost. The influence of the network size is also
evaluated and we show that normalization of the decision
cost allows us to compare the degree of disorder of networks
of different sizes. We evaluate the decision cost of the con-
nections between airports of two different countries and we
obtain some conclusions about which of them is more disor-
dered. We believe that the concept of decision cost can be
applied not only to networks of higher dimensions but also to
networks where nodes have a certain fitness property. By
projecting the fitness in a one-dimensional map, it is possible
to define a distance between nodes and, therefore, to evaluate
the decision cost of the network.
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