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Quantifying stochasticity in the dynamics
of delay-coupled semiconductor lasers

via forbidden patterns
BY JORDI TIANA-ALSINA1, JAVIER M. BULDÚ2, M. C. TORRENT1

AND JORDI GARCÍA-OJALVO1,*
1Departament de Física i Enginyeria Nuclear, Universitat Politècnica

de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain
2Complex Systems Group, Department of Signal Theory and Communications,

Universidad Rey Juan Carlos, Camino del Molino s/n,
28943 Fuenlabrada, Madrid, Spain

We quantify the level of stochasticity in the dynamics of two mutually coupled
semiconductor lasers. Specifically, we concentrate on a regime in which the lasers
synchronize their dynamics with a non-zero lag time, and the leader and laggard roles
alternate irregularly between the lasers. We analyse this switching dynamics in terms of
the number of forbidden patterns of the alternate time series. The results reveal that the
system operates in a stochastic regime, with the level of stochasticity decreasing as the
lasers are pumped further away from their lasing threshold. This behaviour is similar to
that exhibited by a single semiconductor laser subject to external optical feedback, as its
dynamics shifts from the regime of low-frequency fluctuations to coherence collapse.

Keywords: delay-coupled oscillators; forbidden patterns; noise; semiconductor laser dynamics;
low-frequency fluctuations

1. Introduction

When dynamical systems interact, they do so via signals that travel at finite
speeds, thus leading to coupling delays (Herrero et al. 2000; Takamatsu et al.
2000). If these delay times are of the order of, or larger than, the characteristic
time scales of individual oscillators, simultaneous synchronization between the
interacting systems usually cannot occur (Uchida et al. 2005). In the simplest
situation of a pair of oscillators coupled unidirectionally, the emitter advances
the receiver by a time equal to the coupling delay time. When coupling is
bidirectional, the situation is not so clear. Symmetry considerations would lead
one to expect that the oscillators should synchronize with zero lag, but that
simultaneous state is frequently unstable, leading to a spontaneous symmetry
breaking of the collective dynamics.

Such symmetry breaking was first reported experimentally by Heil et al. (2001)
in a system of two semiconductor lasers coupled to each other by the mutual
injection of their emitted light. In that case, coupling destabilizes the laser
*Author for correspondence (jordi.g.ojalvo@upc.edu).
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emission, leading (for distances between the lasers of centimetres and higher)
to sudden and short-lived power dropouts at irregular times. When the lasers
have sufficiently different frequencies (more than 1 GHz apart), the temporal
organization of the synchronized state is well defined: the laser with the largest
frequency always drops out in power first. For zero-frequency detuning, however,
the leader and laggard roles alternate irregularly in time between the two lasers.
The question then arises, of whether this irregular dynamics is chaotic or is
dominated by noise. A similar issue exists in the case of a semiconductor laser
with optical feedback (Ohtsubo 2002), which for moderate feedback levels exhibits
a dynamic behaviour similar to the one described above, consisting of sudden
dropouts in the emitted light intensity occurring at irregular times and called
low-frequency fluctuations (LFFs), since their time scale (approx. microseconds)
is much longer than the intrinsic time scale of the device (approx. picoseconds).

Two different explanations were initially proposed for the LFF phenomenon.
In the first, the dropouts were stochastic events caused by spontaneous emission
fluctuations (Henry & Kazarinov 1986). In the second, the LFFs were considered
to be an instance of chaotic dynamics (Mork et al. 1992) and intermittent
behaviour (Sacher et al. 1989). The second view was substantiated soon
afterwards by Sano (1994), through an analysis of the LFF trajectories in phase
space and their interaction with the many (unstable) fixed points of the delay–
differential equation model that represents the dynamics of the system. A more
detailed experimental and numerical investigation of the system (Hohl et al. 1995;
Lam et al. 2003) revealed that both deterministic and stochastic mechanisms are
necessary to explain the existence of LFFs, with noise being more important
close to the lasing threshold and chaos prevailing far from threshold, on
the way to the fully developed chaotic regime known as coherence collapse
(Ohtsubo 2002).

In this paper, we address the issue of how stochastic the dynamics of
two mutually coupled semiconductor lasers is, in the leader–laggard dynamical
regime described above, which is analogous to the LFF regime exhibited by a
single semiconductor laser with optical feedback. We use an approach recently
introduced by Amigó et al. (2006), consisting in analysing the set of all order
patterns of a time series (defined as order sequences of subsets of elements of
the time series). A random series of infinite length contains all possible order
patterns with probability one, whereas in a chaotic time series certain order
sequences will never occur owing to the structure of the phase space in which
they evolve. Identifying the existence of such forbidden patterns in our time
series should tell us whether they have an underlying deterministic behaviour.
This technique has been used to characterize the level (or lack) of stochasticity in
logistic maps (Amigó et al. 2006), shift systems (Amigó et al. 2008), and financial
time series (Zanin 2008; Zunino et al. 2009). Here we report on what is, as far as
we know, the first application of this method to experimentally generated time
series. In our case, as shown below, the leader–laggard dynamics provides us with
a natural way of generating a symbolic time series and thus no order patterns
must be extracted from the experimental measurements. Furthermore, owing
to the high dimensionality of the dynamics of semiconductor lasers subject to
delayed optical injection (Ahlers et al. 1998), the number of forbidden sequences
eventually drops to zero for sufficiently long time series, and hence we quantify the
level of stochasticity in terms of how fast the number of forbidden patterns decays
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Figure 1. Experimental setup. Two semiconductor lasers (LD1 and LD2) inject their emitted light
into each other via an optical fibre. PD1 and PD2 are photodetectors.

with length. Our results show that, similar to the case of a single semiconductor
laser subject to optical feedback, the dynamics is more stochastic the closer
the lasers are to their emission threshold. We organize the paper as follows.
The next section contains a description of the experimental setup. Section 3
details the experimental results obtained, and §4 presents numerical results that
contextualize the experimental observations presented earlier.

2. Experimental setup

Figure 1 shows a schematic diagram of the setup used in the experiments reported
below. Two semiconductor lasers (Mitsubishi ML925B45F) at a distance of 6 m
from each other are bidirectionally coupled via an optical fibre. Coupling is
achieved by means of an optical coupler with a 50/50 coupling ratio (10202A-
50-FC). The lasers operate at a nominal wavelength λn = 1550 nm and a nominal
power of 6 mW. The temperature and pump current of the lasers are controlled
with an accuracy of 0.01◦C and 0.01 mA, respectively, and are adjusted such that
their optical frequencies when isolated are as similar as possible to each other. For
temperatures TLD1 = 10.97◦C and TLD2 = 20.75◦C, the threshold currents of the
solitary lasers are, respectively, I th

LD1 = 11.10 mA and I th
LD2 = 11.63 mA. The laser

intensities are captured by high-speed fibre photodetectors with 2 GHz bandwidth
(DET01CFC). The received signals are amplified, using a 2 GHz femto high-speed
amplifier, and sent to a 1 GHz oscilloscope (Agilent DS06104A). Note that owing
to the limited bandwidth of the detectors, we are only able to monitor the slow
dynamics of the system, which is enough for our study.

This setup allows us to control the leader–laggard dynamics of the system. In
particular, the relative wavelengths of the lasers in isolation determine which laser
leads the dynamics. The wavelengths can be tuned by adjusting the lasers’ pump
current. As mentioned above, the laser detuned to higher frequencies always takes
the leader role. We now show that, for a large range of parameters, the detuning
can be made small enough so that no clear leader exists.

3. Experimental results

For the experimental conditions given above, the two otherwise stable
semiconductor lasers start pulsing in the form of synchronized power dropouts.
The dropouts do not occur simultaneously, but are separated by a time of
approximately 30 ns, corresponding to the time taken by light to travel between
the two lasers. When the pump currents of the lasers are adequately fine-tuned,
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Figure 2. Experimental output intensities of the two coupled lasers. Laser LD1 is shown in the top
trace and laser LD2 in the bottom trace. The pump current of LD1 is 13.38 mA and that of LD2
is 12.25 mA. The time trace of LD1 has been shifted upwards for clarity. The symbols indicate
the times at which the dropouts occur. Vertical lines are added at the dropout locations to allow
comparison between the dropout times of the two lasers. The numbers at the bottom of the vertical
lines indicate the binary value associated with the ordering of the dropouts between the two lasers.

the frequency detuning between them is approximately zero and the leading role
of the dynamics alternated between the two lasers, as explained above and shown
in figure 2. The plot portrays a sample pair of simultaneously measured time
traces, with the dropouts of each laser identified by the time instant at which
the intensity drops below a certain threshold, chosen in order to optimize the
detection of the dropouts, while being consistent between the two lasers. In the
particular sample shown in the figure, laser LD1 (top trace) leads the dynamics
in the first and fourth dropouts, while laser LD2 (bottom trace) is the leader for
the second and third dropouts. A statistical analysis of the data indicates that
the leader and laggard roles switch irregularly in time, and that the ordering of
each leader–laggard event is independent of all other previous events.

In order to quantify how the leader and laggard roles are distributed between
the two lasers, we measured the time interval between each pair of synchronized
dropouts. Figure 3 shows histograms of the inter-dropout intervals for different
values of the pump currents of laser LD1, having fixed the value of LD2’s
pump current. The figure shows that, as laser LD1 is pumped at smaller current
levels, the leader role shifts from LD2 (a) to LD1 (b). These situations correspond
to the corresponding leading laser having a larger frequency. For an intermediate
value of LD1’s pump current (c), the frequencies of the two lasers can be made to
coincide. In that case, the leader role is equally distributed among the two lasers.

Our goal is to determine the level of stochasticity of the irregular leader–laggard
alternating dynamics shown in figures 2 and 3c. To that end, we use a recently
introduced technique based on forbidden patterns (Amigó et al. 2006). In its
original implementation, this technique used ordinal patterns in order to convert
a continuous into a discrete time series (Zunino et al. 2009). In our case, however,
there is a natural way of converting the analogue character of the laser intensities
into a discrete time series. The method is illustrated in figure 2. Simply put,
we assign one of the two binary values to each pair of synchronized dropouts,
depending on which laser drops in intensity first. If the dropout of LD1 occurs
earlier than that of LD2, we assign a ‘1’, and in the opposite case we assign a ‘0’.
In this way, we convert the two analogue time series corresponding to the laser
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Figure 3. Histograms of time interval between dropouts for two coupled lasers for varying pumping
of laser LD1: (a) ILD1 = 13.84 mA, (b) ILD1 = 12.38 mA and (c) ILD1 = 13.38 mA. The pump current
for LD2 is ILD2 = 12.25 mA in all three cases.

outputs to a single binary time series for which we can characterize the statistics
of patterns of a certain bit length. By way of example, and additionally as a way
of quantifying the leader–laggard transition partially shown in figure 3, we show
in figure 4 the number of forbidden patterns of length equal to 8 bits versus the
pump current of LD1, keeping LD2’s pump current constant. The calculation is
made by scanning the binarized time series with an 8 bit long box, and moving
1 bit at every step. Once all occurring patterns are identified, we compare the list
of those patterns with the list of all possible patterns, which equals 256 for a box
of length 8. Those patterns out of the 256 that do not appear a single time are
labelled as forbidden. For a long enough bit sequence, the existence of forbidden
patterns should indicate the deterministic character of the underlying continuous
dynamics. Figure 4 shows the expected result that, when one of the lasers leads
the dynamics, most of the time series consists of either ‘0’s or ‘1’s, and thus a
large number of 8 bit forbidden patterns exists, the number being close to 256.
On the other hand, in the situation of a perfect leader/laggard alternance, the
number of forbidden patterns decreases rather sharply to zero, even when the
length of the time series is finite. Incidentally, the range of pump current values
for which the time series is stochastic is rather large, of the order of several tenths
of a milliampere.
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Figure 4. Number of forbidden patterns of length equal to 8 bits for increasing pump current of
laser LD1. The pump current of LD2 is fixed to ILD2 = 12.25 mA.

In the remainder of the paper, we concentrate on the situation in which the
leader and laggard roles are equally distributed among the two lasers (figure 3c).
The fact that the number of forbidden patterns is zero in that case, as shown in
the preceding figure, does not necessarily mean that the time series is stochastic,
since semiconductor lasers with delay are known to be highly dimensional
chaotic systems (Ahlers et al. 1998). Chaotic systems should exhibit a non-zero
number of forbidden patterns (Amigó et al. 2006), but if the chaotic attractor is
highly dimensional and the pattern length is too small, they would not appear
distinguishable from a stochastic time series. Increasing the pattern length is
usually unfeasible, since it would require the length of the measured time series
to be increased unrealistically (Amigó et al. 2007).

It is known, for instance, that, in diode lasers with optical feedback,
stochasticity is important near threshold (Hohl et al. 1995; Lam et al. 2003),
while deterministic (i.e. chaotic) mechanisms play a relevant role further away
from threshold (Fischer et al. 1996). Given the similarities between the dynamics
of a semiconductor laser with optical feedback and two mutually coupled
semiconductor lasers, we can expect a similar trend to occur in the latter system.
In order to see whether systematic differences between the levels of stochasticity
exist in our system as we approach the lasing threshold, we plot in figure 5 the
number of forbidden patterns versus the total series length for three different
values of the pump current of LD1, while fixing the pump current of LD2 to
a value such that the leader/laggard alternance is split 50/50 among the two
lasers in each case. The first feature shown in this figure is that, as the length
of the time series being analysed increases, the number of forbidden patterns
decreases in all cases, since it becomes easier to detect rare patterns (Amigó
et al. 2007). The rate at which the number of forbidden patterns decreases to zero
is, however, different for different pump strengths: for smaller pump currents,
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Figure 5. Number of forbidden patterns for increasing length of the time series, and for three
different values of the pump current of LD1: 12.00 mA (black), 12.25 mA (light grey) and 12.85 mA
(dark grey). The pump current of LD2 is for each case: 12.62 (black), 13.38 (light grey) and
12.76 mA (dark grey).

i.e. closer to threshold (black line in figure 5), the decay to zero is very fast,
indicating that the process is strongly stochastic. As the pump current increases,
the decay becomes clearly slower, which indicates that the level of stochasticity
in the dynamics monotonically decreases as LD1 is pumped further away from
its threshold. Thus, these experimental results confirm the expectation that in
mutually coupled semiconductor lasers, similar to the case of single semiconductor
lasers with optical feedback, the dynamics is more stochastic closer to threshold,
while further away from threshold noise plays a lesser role.

4. Numerical simulations

In the previous experimental study, the pump current of laser LD2 had to be
tuned for each value of the pump current of LD1 so that 50/50 leader/laggard
alternance was maintained as LD1 was pumped increasingly further away from
its threshold. It could then be argued that the joint lasing threshold of the system
was not being increased monotonically in figure 5. In order to confirm that indeed
the stochasticity of the dynamics increases gradually as we approach threshold,
we now perform numerical simulations of an ideal version of the system studied
experimentally above. To that end, we use a generalized version of the Lang–
Kobayashi model that reads (González et al. 2007):

dE1

dt
= 1 + iα

2
(G1 − γ1)E1(t) + κ21ei(�ωt−ω2τ21)E2(t − τ21) + √

2βN1 ξ1(t), (4.1)

dE2

dt
= 1 + iα

2
(G2 − γ2)E2(t) + κ12ei(�ωt−ω1τ12)E1(t − τ12) + √

2βN2 ξ2(t) (4.2)
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Table 1. Laser parameters of the numerical model in the LFF regime.

symbol parameter value

I p
1,2 pump current of LD1,2 (1.02 to 1.07) × Ith

τ12 coupling time path 1 → 2 3.4 ns
τ21 coupling time path 2 → 1 3.4 ns
κ12 coupling strength path 1 → 2 30 ns−1

κ21 coupling strength path 2 → 1 30 ns−1

γe inverse carrier lifetime 6.89 × 10−4 ns−1

γ inverse photon lifetime 0.480 ps−1

N0 carrier number at transparency 1.25 × 108

Nth carrier number at threshold 1.634 × 108

g gain parameter 1.25 × 10−8 ps−1

α linewidth enhancement factor 3.5
β noise intensity 10−15 to 10−11 ps−2

and
dN1,2

dt
= Cb − γeNth − G1,2I1,2(t). (4.3)

Here E1,2(t) are the electric fields and N1,2 the carrier numbers of lasers LD1
and LD2, respectively. The lasers’ intensities are denoted by I1,2(t) = |E1,2(t)|2,
while ω1,2 represents the free-running optical frequencies of the two lasers.
The detuning between the lasers is �ω = ω1 − ω2, which we have assumed for
simplicity to be zero. The first term on the right-hand side of equations (4.1) and
(4.2) corresponds to stimulated emission. The linewidth enhancement factor α is
assumed to be the same for both lasers, γ1,2 is the inverse photon lifetime and
G1,2 = g1,2(N1,2 − N 0

1,2) is the gain (assumed linear), where N 0
1,2 denotes the carrier

number at transparency and g1,2 the differential gain (gain saturation is neglected
because the lasers operate close to threshold). The second term in equations (4.1)
and (4.2) is the coupling term, characterized by τij (injection delay time) and κij
(injection coupling strength). Finally, the last term in those equations corresponds
to the spontaneous emission noise, represented by a Gaussian white noise of zero
mean, with a spontaneous emission rate β.

The carrier density equation, equation (4.3), contains three terms. The first
term is the bias current (defined as Cb = γeNth(I

p
i /Ith), where Nth = γi/g + N0)

corresponding to the pump current of each laser. The second and third
terms are related to spontaneous and stimulated electron–hole recombinations,
respectively. Table 1 lists the parameter values used in the numerical simulations
described below. For these parameters, the coupled-laser system operates in the
LFF regime.

We performed extensive numerical simulations of the model described above,
in the case where the two lasers exhibit synchronous power dropouts. Since
the model assumes no frequency detuning, the simulations produce naturally
complete alternance between the leader and laggard roles for the two lasers. Under
those conditions, we studied how the number of forbidden patterns varies as the
pump currents of both lasers increase further away from threshold. The results
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Figure 6. Number of forbidden sequences of the numerically simulated coupled time series for
increasing length of the series and for different values of the pump currents (assumed equal for the
two lasers).

are summarized in figure 6. As in the experimental results reported above, here
the number of forbidden sequences decays to zero slower the further away the
system is from threshold, indicating that the level of stochasticity is larger close
to threshold and smaller away from it.

In order to quantify the trend exhibited in figure 6, we show in figure 7 how
the area under the curves shown in the former figure depends on the injection
current, for three different values of noise intensity, which can be controlled at
will in the numerical model. As we have shown in figure 6, when the injection
current increases, the area under the curve increases, reflecting the monotonic
decrease in the stochasticity of the coupled-laser system. Interestingly, while
increasing the noise intensity, the area under the curve decreases, in general,
as could be expected; the decrease is more important far from threshold. This
indicates that close to threshold the dynamics is mostly dominated by noise and
not by deterministic effects, and thus an increase in the noise level does not
influence strongly the statistics of the forbidden patterns.

5. Conclusions

Coupling delays are a natural consequence of the finite speed with which signals
travel between interacting dynamical systems. It is important to determine
whether the resulting dynamics of this type of system is deterministic or
stochastic. Here we have used a recently proposed method to quantify the level
of stochasticity of a time series, based on computing the number of forbidden
patterns exhibited by the time series, to address this issue in mutually coupled
semiconductor lasers. Both the experimental and numerical results presented here
show that the leader–laggard dynamics exhibited by this system is stochastic
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Figure 7. Area under the curves of figure 6 for increasing values of the pump currents (assumed
equal for the two lasers). The black line corresponds to a noise intensity of 10−15 ps−2, the light
grey line to a noise intensity of 10−13 ps−2 and the dark grey line to a noise intensity of 10−11 ps−2.

close to the laser threshold, while the stochasticity is reduced monotonically as
the system is pumped further away from threshold. No forbidden patterns are
observed for large enough time series in any case, indicating that the deterministic
components of the dynamics far from threshold have a high dimensionality.

Financial support has been provided by the Ministerio de Ciencia e Innovación of Spain
(project FIS2009-13360 and I3 program) and by the European Commission (GABA project, EC
contract 043309).
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