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A Jorge, o lume que mantén a miña chama prendida, vai dedicado este traballo.

Ninguén como el soubo dar sentido a estes anos de investigación e evitar que a
chama se apagase.
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—¿Cómo lo quieres?.
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Resumo

Contexto do traballo

As fluctuacións espaciais e temporais permiten que os sistemas exploren
novas rexións de estabilidade, presentes ou non no escenario determinista
correspondiente. Son inherentes a calquera situación real e é natural que os
seus efectos sobre a propagación e formación de estructuras fose tratada en
multitude de artigos cient́ıficos nos últimos anos (consultar [1] and [2]).

Áreas de investigación completamente diferentes incluiron o ruido
nos seus traballos analizando a influencia non trivial sobre sistemas
espacialmente extendidos como os procesos bioqúımicos na célula [3],
transmisión de sinais en conxuntos de células [4], redes neuronais [5, 6],
cadeas de circuitos electrónicos [7, 8], a meteorolox́ıa [9], reaccións qúımicas
[10, 11]. Entre os fenómenos observados atópanse a rectificación na
propagación inducida por ruido (recuperación de fallos de propagación),
resonancia estocástica espacial, e dinámica de interfases e formación de
estructuras inducidas por ruido.

No momento actual, o comportamento dinámico de sistemas excitables
inhomoxéneos está a despertar moito interese. Redes neuronais ou o
músculo card́ıaco están entre os exemplos máis interesantes nas ciencias
da vida. Resultados recentes [12] demostran que a estructura do miocardio
está producindo constantemente inhomoxeneidades na concentración da
carga eléctrica a nivel microscópico facendo estocástica a propagación no
corazón. Isto implica que os eventos de excitación están continuamente
cambiando e de forma desordenada durante a propagación eléctrica.
A implicación máis importante disto é a posibilidade de formación de
fluctuacións de maior intensidade e que se extendan a máis dunha célula.
Cando isto sucede, a propagación das ondas eléctricas no corazón pode verse
deteriorada pola presencia destas irregularidades e dar lugar a procesos de
fibrilación e outras patolox́ıas do corazón. Por outra banda, tamén se cre
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que o ruido xoga un papel fundamental no inicio e propagación das ondas no
tecido neuronal [4, 5], onde a actividade de fondo aleatoria da rede depende
da concentración dos neurotransmisores.

Un sistema experimental paradigmático dentro dos sistemas inertes que
está sendo utilizado para estudiar o efecto de modulacións espaciotemporais
na dinámica de estructuras é a ben coñecida reacción de Belousov-
Zhabotinsky (BZ) co rutenio como catalizador [13]. Esta reacción é sensible
á luz polo que a súa cinética pode ser controlada localmente proxectando
distribucións espećıficas de luz. Neste contexto, estudios recentes utilizaron
esta versión fotosensible da reacción de BZ para investigar a propagación
de frentes de onda e a súa xeración en medios subexcitable desordenados
espacialmente [11, 10]. Dentro deste marco de traballo, pódese esperar
fenómenos interesantes na dinámica de propagación e formación de
estructuras na presencia de ruido espaciotemporal.

Escenarios estocásticos diferentes son creados por fontes de ruido
diferentes que están forzando un sistema espacialmente extendido. Para
modelizar estas situacións, un ten que analizar as propiedades estad́ısticas
das fluctuacións que actúan sobre o sistema e ver que tipo de fluctuación
domina. Cando a aleatoriedade é controlada dende o exterior un pode
introducir diferentes clases de fluctuacións e estudiar os seus efectos. Frentes
propagándose en medios desordenados, liñas de lume en gases turbulentos
e procesos de crecemento por medio da deposición aleatoria de part́ıculas
nun substrato son modelizados mediante ruidos tipo “quenched” (tamén
chamados estáticos ou conxelados), porque a frente de onda pasa sobre
as fluctuacións máis rapidamente que o tempo caracteŕıstico de evolución
das fluctuacións [14, 15]. Esta situación estúdiase nesta tese utilizando
frentes ch́ımicos na reacción de BZ. A través dunha distribución espacial
aleatoria da excitabilidade, a velocidade dunha frente inicialmente plana
ven caracterizada por unha lei de potencias na amplitude do ruido de
2
3 . Outro comportamento cŕıtico como son os fenómenos de percolación,
pódense dar en frentes qúımicos utilizando a mesma configuración espacial
desordenada pero permitindo que vaŕıe a proporción p de sitios excitables
ao longo da rede e asignando un valor non excitable ao resto dos sitios non
ocupados.

Situacións nas cales o ruido vaŕıa tanto espacial como temporalmente
tamén foron consideradas. Con respecto á dependencia espacial, as
fluctuacións foron de tipo estructurado, é dicir, de tipo triangular e
sen correlación espacial. A dependencia temporal foi escollida tanto de
correlación blanca (descorrelacionada) e coloreada de frecuencia finita.
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Figura 1: Random numbers used to perturb the tendencies due to parameterised physical
processes. The top panel shows the case of no spatial scale, in other words when different
random numbers are used at each grid-point. The bottom panel shows the case when
the same random number was used for grid-points inside 5-degree boxes. The colors
indicate random numbers distributed in three different intervals. Results indicated that
even perturbations without any spatial structure had a major impact on 10-day model
integrations. From [9].

A utilización de ruidos espacialmente estructurados e temporalmente
correlacionados está xustificada cando o sistema posúe escalas espaciais
e temporais caracteŕısticas. Unha aplicación sorprendente é o uso recente
de fluctuacións espaciotemporais na predicción do tempo por conxuntos
introducindo un simple esquema estocástico para simular os erros aleatorios
no modelo de predicción debido ás parametrizacións dos procesos f́ısicos
[9]. A contribución ás ecuacións do modelo meteorolóxico dos procesos
f́ısicos que son parametrizados, pertúrbase engadindo números aleatorios
uniformes proporcionalmente á contribución parametrizada. Despois de
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moitos ensaios, atoparon que a lonxitude de correlación óptima era de 10
graos e o tempo de correlación óptimo de 6 horas, mellorando a predicción
meteorolóxica a moitos d́ıas.

Polo tanto, ruidos correlacionados con correlación temporal e/ou
espacial, poden chegar a ser relevantes en sistemas que presentan escalas
de tempo e espacio caracteŕısticas. Nesta tese investigouse o efecto da
correlación espacial e temporal tanto en trens de onda nun medio non
excitable como en ondas espirais en condicións excitables. Cada unha destas
estructuras posúe unha escala de tempo propia, a saber, o periodo do tren
e a frecuencia de rotación respectivamente. Con respecto á correlación
espacial do ruido, atopouse que é cŕıtica cando é maior ou da orde do
ancho da frente de onda ou do tamaño do centro da espiral. Para valores
máis pequenos que estas lonxitudes t́ıpicas, non teñen lugar fenómenos
interesantes probablemente debido a un promedio espacial do ruido que fai
que o medio apareza efectivamente homoxéneo. Os resultados de forzar o
sistema con este tipo de fluctuacións son unha mellora na propagación do
tren no sentido de que avanza máis lonxe cando as correlacións espacial
e temporal son próximas ás escalas espacial e temporal do tren, e un
movemento tipo Browniano da espiral caracterizado por un coeficiente de
difusión que depende non linealmente do tempo de correlación.

O caso oposto ao anterior, é ruido totalmente descorrelacionado, tanto
espacial como temporalmente, normalmente identificado con fluctuacións
térmicas. Especificamente, consideramos o papel deste tipo de fluctuacións
na dinámica de formación de estructuras. Varios sistemas que presentan
estructuras son susceptibles de sufrir transicións a un estado ordenado
cando son sometidos a fluctuacións espaciotemporais como o caso da
convección de Rayleigh-Bénard. O ruido pode inducir un desplazamento
na transición dende un estado de conducción (sen estructuras) a un estado
convectivo no que apareceŕıan as t́ıpicas estructuras de convección que
non existiŕıan sen a presencia desas fluctuacións. O noso obxectivo foi
estudiar este mesmo escenario na reacción de BZ. Cando a luz fluctúa
temporal e espacialmente ao redor dun valor medio próximo á transición
excitable/oscilante na reacción de BZ, ondas circulares inducidas polo ruido
son mantidas periodicamente nun medio efectivo excitable. A pesar de
que o sistema en promedio localmente está por debaixo do umbral de
formación autónoma de estructuras, as fluctuacións excitan a periodicidade
subxacente no sistema. Ademáis, este resultado experimental de creación
de ondas circulares por ruido comparte un marco teórico común con outro
experimento recente de ondas que se propagan nun medio subexcitable



Resumo xxiii

mantidas polo ruido.
E indo cara escenarios determińısticos, sistemas extensos forzados

periodicamente tamén presentan un grande número de fenómenos de
estructuras [16, 17], relacionados con resonancias de sistemas oscilantes
a est́ımulos periódicos. Nesta tese ad́ıcase un caṕıtulo ao estudio
de forzamentos periódicos homoxéneos espacialmente, pois deron lugar
a comportamentos interesantes como cuasiperiodicidade e propagación
mantida en medios subexcitables. As modulacións son introducidas a través
de fronteiras sinusoidalmente onduladas no primeiro caso, e mediante
variacións periódicas na intensidade da luz en torno a un estado de
referencia subexcitable no outro.

Esta tese pretende contribuir a aumentar o coñecemento actual
sobre propagación de ondas, formación de estructuras e dinámica de
ondas espirais en medios excitables extensos sometidos a fluctuacións
espaciotemporais usando como ferramenta experimental a reacción
fotosensible de BZ na maior parte dos casos estudiados. Simulacións
numéricas foron realizadas en paralelo co modelo Oregonator e sempre que
foi posible f́ıxose unha interpretación anaĺıtica do proceso.

Resumo da memoria

No Caṕıtulo 1 dáse unha breve introducción ao mundo dos medios activos
extensos en termos da ampla clase de sistemas de reacción-difusión. Os
diferentes réximes de estabilidade e procesos de formación de estructuras
expĺıcanse nunha e dúas dimensións ao longo deste caṕıtulo.

No Caṕıtulo 2 preséntase a montaxe experimental, coa reacción
de Belousov-Zhabotinsky fotosensible como parte principal, e o modelo
Oregonator derivado das ecuacións de balance propostas ata o momento, o
cal foi utilizado para realizar a simulación numérica dos experimentos. A
construcción e caracterización dos diferentes patróns de iluminación usados
para perturbar a reacción son explicados neste caṕıtulo, aśı como o esquema
de integración numérico do modelo Oregonator e os algoritmos utilizados
para simular os procesos estocásticos.

A parte determińıstica desta tese é o Caṕıtulo 3 onde os efectos de
simples modulacións periódicas espacialmente homoxéneas son investigados
en dous escenarios diferentes. No primeiro, desenvolvido na Sección 3.2, as
modulacións periódicas son introducidas a través das fronteiras no modelo
numérico. Un tren de ondas é forzado a propagarse ao longo dun canal de
paredes sinusoidais. A variación da frecuencia espacial aśı como a amplitude
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da fronteira modulada produce configuracións espaciais cuasiperiódicas,
inconmesurables coas fronteiras pero periódicas no tempo e sincronizadas co
est́ımulo. Estas estructuras foron descritas en termos de mapas de retorno
espaciais que son moi similares ao mapa do ćırculo onde, neste caso, a
iteración do mapa describe a dinámica temporal de osciladores forzados. Por
outra banda, a segunda situación de forzamento mostrada na Sección 3.3
considera modulacións periódicas da excitabilidade nun medio subexcitable,
isto é, un medio incapaz de manter a propagación de frentes acotados.
Dentro do espacio de fases dos parámetros de forzamento, hai unha rexión
onde o carácter subexcitable é invertido e a propagación é posible. Esta
parte f́ıxose tanto experimental como numericamente.

No Caṕıtulo 4 elix́ıronse distribucións dicotómicas estáticas da
intensidade de luz para forzar aleatoriamente a reacción de BZ de forma
simple. Resultaron velocidades de propagación máis pequenas ou máis
grandes que a correspondente a unha situación homoxénea dependendo
da dimensionalidade do medio. Estudios anaĺıticos e experimentos deron
lugar a leis de potencia entre a velocidade relativa da frente no medio
inhomoxéneo e a amplitude do ruido. Para distribucións dicotómicas
especiais onde o número de sitios excitables era variable co resto de sitios
vaćıos, observáronse fenómenos de percolación que estaban caracterizados
por umbrais cŕıticos percolativos dunha rede cadrada bidimensional.
Na derradeira sección deste caṕıtulo, tamén se considera o efecto de
fluctuacións na propagación de frentes pero esta vez variando no tempo.
Estudiamos a propagación dun tren de frentes de onda unidimensional
nun medio non excitable con ruido espaciotemporal correlacionado
temporalmente. As tasas de propagación en número de frentes que acadan
unha posición de control, dependeron tanto do periodo do tren de ondas
como dos parámetros do ruido. Estudios previos a este mostraban que
exist́ıa un tipo de resonancia estocástica relacionada coa intensidade do
ruido que favorećıa a propagación nun medio subexcitable. Aqúı, obtivemos
dende un punto de vista numérico, unha mellora global da propagación non
só para unha intensidade óptima do ruido senón que tamén para un tempo
e lonxitude de correlacións próximas ao tempo e lonxitude caracteŕısticos
da estructura periódica.

No Caṕıtulo 5 considéranse os efectos dun ruido espacialmente
estructurado e correlacionado temporalmente no movemento dunha espiral
na reacción de BZ e no modelo Oregonator. O principal efecto nos
dous sistemas é inducir un movemento Browniano na punta da espiral
caracterizado por un coeficiente de difusión que presenta unha dependencia
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complexa nas escalas temporal e espacial do ruido respecto ás da espiral.
En particular, un efecto tipo resonancia aparece co tempo de correlación
mantendo fixa a intensidade de ruido. Un modelo cinemático foi proposto
para interpretar este movemento obténdose un acordo bastante bo entre
teoŕıa, experimentos e cálculo numérico.

No Caṕıtulo 6, un marcapasos que emite regularmente ondas, surxe
do ruido cando a reacción de BZ en réxime excitable, que estrictamente
é incapaz de crear ondas de forma autónoma, é forzada cun campo de luz
aleatorio descorrelacionado espacial e temporalmente. Estas observacións
experimentais foron tamén reproducidas numéricamente, e interpretado
analiticamente en termos de efectos de acoplamento xenuinos que saen
das fluctuacións paramétricas. Dentro deste mesmo marco anaĺıtico tamén
se poden explicar outras transicións como a propagación nun medio
subexcitable cando é forzado con fluctuacións espaciotemporais blancas.

E finalmente, as principais conclusións desta tese están recollidas no
Caṕıtulo 7.





Summary

Context of the work

Spatiotemporal fluctuations allow systems to explore new regions around
those present in the deterministic scenario. Noise is ubiquitous in any
realistic situation and it is natural that its effects on wave front propagation
had been addressed in many papers during the last years (see [1] and [2]).

Completely different research areas have included noise in their
investigations analyzing the nontrivial influence of external fluctuations
in spatially distributed systems such as biochemical processes in the cell
[3], signaling in cellular assemblies [4], neuronal networks [5, 6], arrays of
electronic circuits [7, 8], weather forecasts [9], chemical reactions [10, 11],
etc. Among the observed phenomena are noise-induced rectified motion
(remedy propagation failure), spatial stochastic resonance, noise induced
interface dynamics, and noise-induced patterns.

At present, the dynamical behavior of inhomogeneous excitable media
has aroused so much interest. Neuronal networks or cardiac muscle are
among the most interesting examples in life sciences. Recent results
[12] show that the myocardial structure is creating inhomogeneities of
electrical load at the microscopic level that makes cardiac propagation to
be stochastic. This means that excitation events are constantly changing
and in a disordered manner during electrical propagation. The major
implication of this is the possibility of formation of larger fluctuations of
load extending to more than one cell. When this occurs, electrical waves
may be disrupted by these irregularities giving rise to the onset of cardiac
fibrillation and other pathological diseases. On the other hand, noise is
thought to play a fundamental role in initiation and propagation of waves
in neural tissue [4, 5], where background random activity of the network is
controlled by the neurotransmitter concentrations.

A paradigmatic experimental non living system that has been used
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to study the effect of spatiotemporal modulations on pattern dynamics is
the well-known ruthenium-catalyzed Belousov- Zhabotinsky (BZ) reaction
[13]. This reaction is light-sensitive and thus projection of patterns of
illumination can be used to locally control its kinetics. In this context,
recent studies have used the light-sensitive BZ reaction to investigate wave
front propagation and generation in spatially disordered subexcitable media
[11, 10]. Within this framework it may be expected interesting phenomena
in the motion of wave fronts and pattern formation under the presence of
spatiotemporal noise.

Different stochastic scenarios are created by completely different sources
of noise which can be considered to drive a spatially extended system. In
modeling such situations, one has to analyze the statistical properties of
the fluctuations acting in the system and see which kind of fluctuation
dominates. When the randomness is controlled from outside one can
introduce different sort of fluctuations and study their effects on the
system. Propagating fronts in disordered media, flames propagating
through turbulent gases, and growth phenomena by means of the random
deposition of particles on a substrate are modeled with quenched noises
(frozen, or static noises), because the front sweeps through fluctuations
faster than the characteristic time for the fluctuations to evolve [14, 15].
This situation is investigated in this thesis using chemical fronts in the BZ
reaction. Through a static disordered spatial distribution of the excitability
properties of the reaction, the velocity of an initially planar wave front
is characterized as a 2

3 power law of the disorder amplitude. Other
critical behaviors such as percolation phenomena can arise using the same
disordered spatial configuration but allowing to vary the proportion p of
excitable sites through the lattice and assigning a nonexcitable value to the
proportion 1− p.

Situations where noise varies both in time and space are also considered.
With respect to the spatial dependence, fluctuations are of the structured
type, that is, of the triangularlike form and decorrelated. Time dependence
is taking to be both white of zero correlation time and colored of a finite
frequency. The use of spatially structured and temporally correlated
noise is justified when the system has some intrinsic space and time
scales. A surprising application is the recent use of spatiotemporal
noise in ensemble weather forecasting by introducing a simple stochastic
scheme for simulating random model errors due to parameterized physical
processes [9]. The contribution to the model equations of the weather
of the parameterized physical processes are perturbed by adding uniform
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random numbers proportionally to the parameterized contribution. After
experimentation, they found an optimal correlation length of 10 degrees box
size and an optimal correlation time of 6 hours time interval of consecutive
updates, which improved large-range weather forecasts (see Fig. 1).

Thus correlated noises with temporal and/or spatial correlation, can
be expected to be of relevance in systems exhibiting characteristic space
and time scales. We have investigated the effect of spatial and time
correlation both on a train of wave fronts in an unexcitable medium and
on a spiral wave in excitable conditions. Each of these structures have a
characteristic time scale, namely, the period of the train and the frequency
of rotation respectively. Concerning the spatial correlation of the noise,
it has been found to be critical when it is larger or of the order of the
front width and of the core of the spiral wave. For shorter values than
the typical lengths of these structures, no interesting phenomena occur
probably due to a spatial average of the noise which makes the medium
appears effectively homogeneous. The results of applying this type of
spatiotemporal fluctuations are some kind of enhanced propagation when
the spatial and temporal correlations meet the characteristic spatial/time
scales of the wave train and a Brownian-like motion of the spiral wave
characterized by a diffusion coefficient which depends nonlinearly of the
correlation time.

The opposite case to the previous one, are noise totally uncorrelated,
both in time and space, usually considered as thermal fluctuations.
Specifically, we consider the role of spatiotemporal fluctuations on the
dynamics of pattern formation. Several pattern-forming systems are
susceptible to undergo a transition to an ordered state when subjected to
spatiotemporal fluctuations as in the Rayleigh-Bénard convection. Noise
may induce a shift in the transition from a conducting state (no pattern)
to a convective state emerging the typical convective patterns which would
no exist in the absence of noise. Our purpose was to study such scenario in
the BZ reaction. When light fluctuates in time and space around an average
value close to the transition from excitable to oscillatory behavior in the BZ
dynamics, noise-induced targets are periodically sustained in the effective
excitable medium. Even below the threshold for the autonomous onset
of patterns, fluctuations excite the underlying periodicity of the system.
Moreover, this experimental finding of created targets out of noise shares
a common theoretical framework with another recent experiment of noise-
supported waves in subexcitable media.

Going to deterministic scenarios, periodically forced extended systems
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have also been investigated exhibiting a number of interesting pattern
phenomena [16, 17] related to entrainment of oscillating systems to external
periodic stimuli. In this thesis, a chapter is devoted to the study of spatially
homogeneous periodical forcings, as they give rise to some interesting
phenomena such as quasiperiodicity and sustained- propagation in
subexcitable media. The modulations are introduced through sinusoidally
varying boundaries in one situation, and by periodically varying in time
the light intensity around a reference state of subexcitability in the other.

This thesis intends to contribute to the increase of the present
knowledge on wave propagation, pattern formation and spiral wave
dynamics in excitable extended media subjected to spatiotemporal
fluctuations using as an experimental tool the photosensitive BZ reaction
in most of the cases. Numerical simulations have been performed in
parallel with the Oregonator model and whenever was possible an analytical
interpretation was provided.

Summary of the thesis

In Chapter 1 a brief introduction to the world of extended active media is
given in terms of the large class of reaction-diffusion systems. The different
regimes of stability and the process of pattern formation in one and two
dimensions are explained through out this chapter.

Chapter 2 is devoted to present our experimental setup, with the
photosensitive Belousov-Zhabotinsky reaction as the leading part, and
the Oregonator model derived from the known balance equations, which
has been used to perform the numerical simulations. The construction
and characterization of the different spatiotemporal random patterns
of illumination used to perturb the reaction are explained, as well as
the numerical scheme of integration of the Oregonator model and the
algorithms to simulate stochastic processes.

The deterministic part of this thesis is treated in Chapter 3 where
the effects of simple spatially homogeneous periodic modulations are
investigated in two very different scenarios. In the first one, developed
through Section 3.2, periodic modulations are introduced through the
boundaries in the numerical model. A wave train is forced to propagate
along a narrow excitable channel with its walls sinusoidally varying. The
variation of the spatial frequency as well as the amplitude of the modulated
boundary produce quasiperiodic spatial configurations, incommensurate
with the boundaries but periodic in time and synchronized with the stimuli.
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These structures were described in terms of spatial return maps that are
very similar to the circle maps whose iteration describe the temporal
dynamics of forced oscillators. This similarity allows one to speculate about
the existence of even more complex configurations representing the spatial
realizations of the chaotic regimes of these maps. On the other hand,
the second situation shown in Section 3.3 deals with temporal periodical
modulations of the excitability in a subexcitable medium, that is, a medium
unable to sustain propagation of bounded fronts. In the forcing parameter
phase space there is a region where the subexcitable character is inverted
and propagation sustained. This was achieved both experimentally and
numerically.

Quenched dichotomic distributions of the light intensity have been
chosen for simplicity to randomly force the BZ reaction in Chapter 4.
Larger or smaller speeds compared to the one corresponding to the
equivalent homogeneous situation have been obtained depending on the
dimensionality of the medium. Analytical studies and experiments give
rise to power laws relations between the relative velocity of the front in the
inhomogeneous medium and the noise amplitude. For special dichotomic
distributions where the number of excitable sites was allowed to vary in
the lattice with the rest of the sites representing empty sites, percolating
phenomena was observed and characterized with the percolation thresholds
of a two-dimensional square lattice. The last section of this chapter,
also considers the effect of fluctuations in wave propagation but this time
allowing them to vary in time. We study the propagation of a one
dimensional train of wave fronts in the unexcitable regime under a time
correlated spatiotemporal noise. Different rates of supported transmission
dependent on the period of the wave train and on the parameters of the
noise are found. Previous studies have found stochastic resonance related
to the intensity of the noise giving rise to an improvement of the wave
front propagation through a subexcitable medium. Here, we obtain from a
numerical point of view, an overall enhancement of wave propagation not
only for an optimal intensity of the noise but also for a correlation time
that matches the characteristic time of the periodic structure.

Chapter 5 considers the effects of a spatially structured and time
correlated noise on the motion of a spiral wave for the photosensitive BZ
reaction and for the Oregonator model. The major effect is to induce a
Brownian motion of the spiral tip characterized by a coefficient diffusion
which shows a rather complex dependence on the time and length scales
of the noise relative to those of the spiral. In particular, a resonant-like



xxxii Summary

effect was observed with the time correlation and the noise dispersion
fixed. A kinematically based model was proposed to interpret the spiral
motion whose results are in good qualitative agreement with experiments
and numerics.

In Chapter 6 a pacemaker, regularly emitting chemical waves, is
created out of noise when the excitable photosensitive BZ reaction, strictly
unable to autonomously initiate autowaves, is forced with a spatiotemporal
patterned random illumination. These experimental observations are also
reproduced numerically, and further analytically interpreted in terms of
genuine coupling effects arising from parametric fluctuations. Within the
same framework we also address situations of noise sustained propagation
in subexcitable media.

And finally, the main conclusions of this thesis are gathered together in
Chapter 7.



Chapter 1

Active Media and Pattern
Formation Far from
Equilibrium

1.1 Introduction

Since the Belgian Nobel laureate Ilya Prigogine showed in 1944 that
macroscopic spatial structures can emerge in systems driven far from
equilibrium, the thermodynamics of nonequilibrium [18, 19, 20, 21, 22, 23]
has become one of the main branches of modern physics. Pattern formation
phenomena occurring in systems of very different nature (physical,
chemical, biological and even social) result in a plethora of Dissipative
structures1, as baptized by Prigogine himself. A browse of almost any
journal in the field reveals the variety of examples of pattern formation,
as they occur in galaxies [24], the atmosphere, semiconductors and gas
plasma [25, 26], liquid crystals [27], lasers [28, 29], models of morphogenesis
and population dynamics [30, 31], fluid convection [32], autocatalytical
chemical reactions [33, 34], etc. Figure 1.1 shows the astonishing similarity
of nonequilibrium patterns originated in completely different systems: a
galaxy on the left and a storm on the right. On a grand scale, patterns
in galaxies have much in common with those in interacting chemicals or in
the aggregation of microorganisms [35]. The fact that similar phenomena
appear in widely different contexts shows that quite different microscopic
processes may lead to the same macroscopic patterns. This means that

1They are called dissipative structures because systems organize themselves into
ordered structures overcoming dissipation in response to an external stress.
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Figure 1.1: Formation of spiral structures in the Rosses’s Galaxy
(left, http://www.seds.org/messier/m/m051.html) and in a storm (right,
http://visibleearth.nasa.gov/Sensors/Terra/). Despite the similarity, the microscopic
mechanisms underlying the formation of these structures are completely different.

they are not induced by the microscopic dynamics and we should look not
only for their common symmetries but the underlying mechanism that gives
rise to self-organization and the onset of a macroscopic structure.

When a system is brought away from thermal equilibrium by applying
external constraints, it may go through a series of instabilities that destroy
the symmetries of the original state, leading to a new solution. This is
the case of the well-known Rayleigh-Bénard instability in fluid convection,
where a thin layer of silicone oil heated from below gives way to an array of
hexagonal convection cells out of an initial uniform or conducting state [21].

While hydrodynamic instabilities have been studied since the beginning
of the twentieth century, the spatial structures that appear in chemical
active media were at first considered the result of bad experimentation,
impurities, etc., and they aroused little interest compared to the patterns
developed in hydrodynamical systems. Nevertheless, chemical patterns
have been observed in numerous systems and their relation to various
biological phenomena (morphogenesis, cardiac and neural activity...) is
now well established. While forces and flows are central to fluid systems,
patterns occur in chemical systems because of the interplay of reaction
and diffusion processes. This two simple factors could lead to a wide
range of pattern forming instabilities, as Alan Turing in 1952 showed in
his remarkable paper [30] on the chemical basis of morphogenesis, which
opened up new fields to the study of active media.

By an active medium we understand a system of autonomous elements
distributed continuously in space, such that each of them possesses

http://www.seds.org/messier/m/m051.html
http://visibleearth.nasa.gov/Sensors/Terra/
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nonlinear dynamical properties and interacts with the surrounding units
according to the laws of diffusion. Depending on the nonlinear properties
of the local units, each element can transit through different states either
under the influence of an external perturbation or spontaneously, and give
rise to an excitation pulse that propagates through the system by diffusion
coupling. So, an active medium is an assembly of a large number of identical
local elements that self-organize as a consequence of cooperation, giving rise
to a more complex structure.

Cooperative processes are well documented in diverse chemical and
biological systems such as the Belousov-Zhabotinsky (BZ) reaction [13],
the propagation of nerve pulses, heart beats and the aggregation of slime
molds, to name a few. In the special case of the heart, (for a review see [36]),
circular waves of electric impulses initiated at the sinus atrial node spread
over the walls of the heart, and they are the responsible of the pumping of
the heart. But more complicated spatiotemporal behavior can occur if the
heart tissue presents some kind of obstacles (damaged tissue) that favor
the formation of a “re-entrant”, a repetitive propagation of a wave through
the same closed pathways in the tissue (see Fig. 1.2).

These re-entrants may be identified with the theoretical concept
of a spiral wave when the circulation pathways are not around any
anatomical obstacle in the tissue, but around functionally determined
propagation blocks caused by the re-entrant wave itself. It is believed
that these abnormal spatiotemporal patterns are associated with some
cardiac disorders as cardiac arrhythmia or tachycardia [37, 38]. The medical
implications warrant a detailed analysis of the spatiotemporal patterns
during the processes of generation and propagation in the heart.

The BZ chemical reaction may serve as an aid to help us to understand
the dynamics of the heart as well as other physiological systems. Arthur
T. Winfree was the first one who showed the possibilities that chemical
reaction-diffusion systems offer for the study of nonlinear waves and
pattern formation [39]. The BZ reaction is one of the most convenient
chemical reactions to perform experiments of any type and it was used in
the studies presented in this thesis. Especially useful is the ruthenium-
catalyzed version of the BZ reaction because it is light-sensitive allowing
us to control its kinetics by projecting a pattern of illumination onto the
reactive medium. We will be interested in those patterns in reaction-
diffusion systems where the kinetics is spatiotemporally modulated. They
exhibit a variety of behaviors not found in the corresponding homogeneous
systems which are induced by the external fields. Many reaction-diffusion
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Figure 1.2: Visualization
of the development of ven-
tricular fibrillation from a
scroll wave in a computa-
tional model of the canine
heart. From [40].

processes in nature take place in nonhomogeneous media or may be
coupled to external processes that affect the kinetics in a nonuniform
and complex fashion. The research presented in this thesis explores the
phenomenology of spatiotemporal structures in active media subjected to
both periodical and fluctuating fields of illumination and characterizes some
of the phenomena quantitatively using numerical simulations and simple
analytical models.

This chapter is organized as follows. In Section 1.2 a short introduction
to reaction-diffusion systems is presented. This section is in turn divided
in two subsections: in Section 1.2.1 the temporal dynamical behavior
of the reacting system is studied, and in Section 1.2.2 some features of
the propagation phenomena in the corresponding unstirred system are
presented. Finally, in Section 1.3 a comparison between the descriptions of
deterministic and stochastic dynamics is made, emphasizing the separation
between the systematic motion and fluctuations when it is possible and
when fluctuations can produce new phenomena that are absent from the
deterministic scenario.

1.2 Reaction-Diffusion Systems

The phenomenology of pattern formation in active media can be
represented mathematically in general form as follows:

∂xi

∂t
= fi(∇xi, x) +∇(Di∇xi) + gi(x)Fi(r, t) (1.1)

where the variables xi determine the state of the system, fi may be
nonlinear functions of x and ∇xi, Di are the diffusion coefficients and
Fi(r, t) are external fields that can be coupled to the dynamics of the system
if gi(x) is not a constant function. In many cases, including the chemical
system used in this thesis, fi do not depend on ∇xi and the diffusion



1.2 Reaction-Diffusion Systems 5

coefficients do not depend on the spatial variables. If we also consider the
system free of any influences from outside, the generalized mathematical
form describing the phenomenology of an active media will be the following:

∂xi

∂t
= fi(x) + Di∇2xi (1.2)

which corresponds to a reaction-diffusion system. The important feature
of this system is the existence of different time scales and spatial ranges of
diffusion for the different species which allows to reduce the dynamics of
the whole system to that of few variables. Specifically, we are interested in
a pair of reaction-diffusion equations of the activator-inhibitor type,

εu
∂u

∂t
= f(u, v, φ) + l2u∇2u (1.3)

εv
∂v

∂t
= g(u, v, φ) + l2v∇2v (1.4)

where u is the activator and v the inhibitor concentrations. Parameters εu

and εv are the characteristic time scales, and lu and lv the characteristic
length scales of the activator and the inhibitor, respectively. f and g are
certain nonlinear functions and φ is the control parameter.

Equations (1.3) and (1.4) have been used to model several problems
in physical, biological and chemical systems (see [31]). The rest of
variables of the system have faster time scales, and according to the
slaving principle [19] it is possible to disregard those variables that relax
very fast to the stationary state. Pattern formation in activator-inhibitor
systems is associated with a positive feedback of the activator u, known as
autocatalysis, which results in “self-production of the activator substance”;
this process of self-production is controlled by the inhibitor v that suppress
the growth of the activator.2 These two competing processes (where
εv � εu) give rise to different kinds of patterns in these systems. The
properties of the patterns and pattern formation scenarios in Eqs. (1.3)
and (1.4) are mainly determined by the relationship between the length
scales lu and lv, and between the time scales εu and εv, together with the
shape of the nonlinear function in Eq. (1.3). In these systems we can find
static (Turing patterns), pulsating, and traveling patterns.

From Eq. (1.2) two different problems can be isolated:

2An illustrative example will be the infectious agent as the activator and the immunity
level as the inhibitor in the epidemic propagation.
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• Analysis of the local dynamics, in the absence of diffusion (“point
system”).

• Analysis of the propagation phenomena, considering diffusion.

These two problems will be addressed in the next two subsections.

1.2.1 Reacting Chemical Systems. Stirred Systems

In the following we will focus exclusively in the chemical systems
phenomenology. The diffusion terms in Eqs. (1.3) and (1.4) can be
neglected whenever a careful mixing of the reagents has been performed,
or the dimensions of the medium are small compared to the characteristic
length (r �

√
Diεi) associated to the state variables of the system. In this

case we retrieve what is known as the “point system”:

∂u

∂t
= ε−1

u f(u, v, φ) (1.5)

∂v

∂t
= ε−1

v g(u, v, φ) (1.6)

The above equations present different types of dynamical behavior
depending on how the nullclines f(u, v, φ) = 0 and g(u, v, φ) = 0 of
the stirred system intersect in the phase space (u, v). The intersections
correspond to the stationary solutions of (1.5) and (1.6). The stability of
these stationary points will depend on the signs of ∂tu and ∂tv around the
nullclines. This will give the qualitative behavior of the orbits in the phase
space.

In many cases, activator-inhibitor dynamics of the autocatalytic type
are well described by cubic models as shown in Fig. 1.3. This figure presents
a schematic plot of the nullclines for the Oregonator model (which will be
introduced in Chapter 2) crossing at the point (u0, v0) (known as the rest
state) and the signs of the reaction rates f and g for small deviations of
the concentrations u and v from the point (u0, v0).

The different stability situations are shown in Fig. 1.4, namely: bistable
(Fig. 1.4a), excitable (Fig. 1.4b), and oscillatory (Fig. 1.4c) behavior. In
Fig. 1.4a the relative position of the nullclines (which depends on the
parameters of the model) leads to the existence of three stationary points,
two of them are stable fixed points, each one having its own basin of
attraction (initial condition A belongs to the attraction basin of the rest
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Figure 1.3: Schematic plot of the nullclines f(u, v, φ) = 0 and g(u, v, φ) = 0 of the
Eqs. (1.5) and (1.6) for the special case of a cubic model like the Oregonator (Chapter
2). The stable and unstable branches are shown by the arrows towards or away from the
nullclines.

state, whereas B to that of the rightmost fixed point). The system can go to
either state depending on the initial conditions. If only a single stable fixed
point is present, the system becomes excitable. Here again, certain initial
conditions decay rapidly to the stable state (A in Fig. 1.4b), while others
lead to large excursions before the system relaxes to the stable state (point
B in Fig. 1.4b). In this case, the fixed point is globally attracting and this
behavior underlies many phenomena in chemical and biological systems, in
which after a burst of activity induced by a superthreshold perturbation
the system returns to the rest state.

In the oscillatory case shown in Fig. 1.4c, there is only one unstable fixed
point that gives rise to a stable limit cycle in its neighborhood through
a Hopf bifurcation. The difference between oscillatory and excitable
dynamics is that in the oscillatory regime there is no need of an initial
supercritical perturbation to produce an excursion through the phase space.

Another important feature concerning the motion of the phase point
through the phase space is how fast are the variations during one oscillation.
In general, the motion will be nonharmonic, corresponding to a relaxation
oscillator, due to the very different reaction rates εu and εv. According
to this, the phase point goes rapidly from B to the attracting branch of
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Figure 1.4: Representation of the possible
dynamical behaviors arising from Eqs. (1.5)
and (1.6). Trajectories of the system defined
by these equations are plotted starting from
initial conditions A and B. The stationary
points are marked with full dots if they
are stable and with open dots if not.
In the bistable case (a), there are two
stable fixed points and one unstable in the
middle. The fixed point is stable with
respect to small perturbations (A), but
larger perturbations (B) place the system
in the other stable branch. Case (b)
the system is excitable which means that
it has a fixed point globally stable since
any perturbation relax back to the fixed
point, which sometimes may involve a large
excursion before relaxation. (c) Oscillatory
system exhibiting large amplitude relaxation
oscillations approaching a limit cycle associ-
ated with the unstable fixed point.

the nullcline f = 0, and then moves slowly up this branch until it reaches
the top of the nullcline. From this point, the system jumps to the other
attracting branch and finally goes down slowly this branch. If the system
is excitable, it will end up relaxing to the fixed point. On the other hand, if
the system is oscillatory, it will go down to the lowest part of the nullcline
f = 0 and will jump back the opposite attracting branch and so on. In any
case, the system performs a large-amplitude cycle with alternating fast and
slow variations. Note that after excitation the system spends a long time
along the left branch of the slow manifold where it is not susceptible to
small perturbations. During this time the system is in its refractory period
trefract and the total duration of the excursion through the phase space
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after excitation is named recovery time trecov.
At this point, we have seen the different dynamical regimes we can

find in a stirred system. In what follows we will introduce the possible
types of patterns and their behaviors in the systems under consideration,
reaction-diffusion systems of the activator-inhibitor type.

1.2.2 Propagation Phenomena. Spatially Extended Sys-
tems

What happens with the previous analysis of the Section 1.2.1 if we consider
diffusion?. Different scenarios will arise depending on the relationship
between the characteristic length scales lu and lv. Specifically, when the
inhibitor is slower and shorter-ranged than the activator, only traveling or
propagating patterns may exist. On the other hand, when the inhibitor
is long-range and fast compared to the activator, only static dissipative
patterns may form, known as Turing structures. We will focus on traveling
patterns and their properties in both one-dimensional and two-dimensional
cases.

1.2.2.a 1D Pulse Propagation

The most basic consequence of diffusion is the existence of propagating
fronts due to an initial local disturbance in the medium. This perturbation
propagates without attenuation, in contrast with a purely diffusive medium
with no intrinsic dynamics where the amplitude of the perturbation
decreases as it spreads from the initiation point. These structures in
dissipative media are referred to in the Soviet literature as “autowaves”
[41, 42]. Their character depends on the regime of the system. In a bistable
medium, they are trigger fronts connecting the two stable states. In the
oscillatory regime there exist phase fronts in the form of different oscillation
phases but constant amplitude. In the case of an excitable medium, in
contrast to trigger waves, as the front propagates the medium goes back
to its initial state of rest, giving rise to a propagating pulse with a leading
edge (the jump from the steady state to the attracting branch in Fig. 1.4b)
and the trailing edge (the jump from the top of the nullcline to the other
attracting branch). This is the most interesting case for us because the
excitable regime of the BZ reaction is the most common in the experiments.

The properties of propagating pulses are determined mainly by the
interaction between u and v. The variable u is referred to as the trigger
variable because the kinetics of u causes the excitability in the system, and
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a b

Figure 1.5: (a) 1D propagation in a nonexcitable medium: superposition of a
propagating pulse (white lines) at different times (from left to right). Because the medium
does not support propagation, the pulse fails to propagate and does not reach the end of
the medium. (b) 2D propagation in subexcitable medium: snapshots of a pulse with free
ends as it propagates from left to right. Because of the medium conditions, the pulse is
not able to grow at its ends but shrinks until it totally disappears.

the variable v is called the recovery variable because together with u it is
responsible for bringing the system back to the rest state. A special feature
of excitable media is that any wave front is followed by a refractory tail in
which the medium is not reexcitable during the refractory period. Almost
all the features that autowaves share (namely, they do not penetrate each
other and do not reflect in the system boundaries3) can be explained in
terms of the existence of a refractory tail associated to each trigger front..

An excitable medium can support the propagation of a pulse with
constant amplitude. The velocity and height of the pulse will depend
on both the diffusion coefficient and the active properties of the medium.
Specifically the width of the refractory tail is determined by the refractory
period and the front velocity v (λrefract = v trefract) which is given
approximately, for the case of chemical waves, by v v (KuDu)1/2 where
Ku and Du are the effective rate constant and diffusion coefficient of the
trigger variable. But sometimes, there exist situations where the magnitude
of the available amplification is not large enough to sustain stationary-
amplitude autowave propagation. It is the case of a nonexcitable medium
which is illustrated in Fig. 1.5(a). If a pulse is initiated in such a medium,
it propagates through some distance until the amplitude becomes less than
some critical value and disappears. The distances traveled by the pulses
become larger as the properties of the system approach those of an excitable
medium.

The velocity of a propagating pulse does not only depend on the
excitability of the medium but also on its previous history. In case of a

3Similar to what happens when two fronts of fire collide in a fire-break.



1.2 Reaction-Diffusion Systems 11

pulse train created by periodically stimulating some localized region, the
leading pulses condition the medium for the following ones and the train as
a whole propagates differently from a solitary pulse. In general, there is a
relationship between the wavelength and the velocity of the train that can
be considered as a dispersion relation for nonlinear periodic waves. As the
period becomes larger, the medium has time to relax back to the rest state
and the propagation velocity will approach the velocity of a solitary pulse.

1.2.2.b 2D Propagation

In two spatial dimensions, the wave front is a line and the velocity is not only
affected by previous activity but also depends on the shape of this line, that
is, on the wave front curvature k. This is defined as positive when the center
of curvature is behind the propagating front and negative in the opposite
situation. A linear relation between the normal velocity of the front and the
curvature k can be derived (see Appendix A and [43, 44, 45]) by considering
εu small in Eq. (1.3) and using singular perturbation methods.

The result is known as the “eikonal”
equation and express the proportionality
between the normal velocity vn and the
curvature k of the moving wave. When
k is positive the velocity of propagation is
reduced, and speeds up the front when it is
negative, according to the following equation,

vn = v0 −D k (1.7)

where v0 is the velocity of a plane wave and D is the diffusion coefficient
of the activator. This equation shows the stabilizing role of diffusion: the
convex geometry defocuses diffusion whereas concave geometry focuses it,
increasing the flux into the medium at rest state. This mechanism helps to
stabilize the propagating front against short-wavelength perturbations.

This vn − k dependence has been investigated experimentally in the
framework of the BZ reaction in [46, 47, 48] and in the heart tissue [49] and
it was found to be valid only for slightly curved fronts. Experiments also
confirm the existence of a critical minimal size below which propagation
will not take place (from Eq. (1.7) Rcrit = D/v0). For very large negative
curves, experiments show a strong deviation from the linear prediction and
a nonlinear expression should be taken in these cases as it is demonstrated
in [50].
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(d) (c) 

(b) (a) 

Figure 1.6: Different geometric forms of autowaves (from [51]).

In an spatially extended system it is possible to initiate planar wave
(Fig. 1.6(a)) pattern by applying a perturbation along a line, or a circular
wave (Fig. 1.6(b)) by means of a local perturbation which grows up keeping
the shape constant. After a transient of higher curvature, circular waves
approach to plane ones propagating at constant speed. Far away from the
center, curvature effects are negligible. Both plane and circular waves have
been used to test the eikonal equation by means of the collision of two plane
waves or two circular waves to produce a V- shaped front (Fig. 1.6(c)) [48]
and cusplike structures [46] respectively, with high negative curvature. But
while the V-shaped patterns are stable the cusplike structures are not, so
no reliable data can be obtained from them.

If the medium is perturbed periodically, plane and circular wave trains
can be obtained. The latter are known as target patterns and they are found
during Dictyostelium aggregation [35] or in the heart around the sinus
atrial node [49]. In these examples target patterns are related to regions
called pacemakers that present local oscillatory behavior. Sometimes they
are nucleated on defects like dust particles or bubbles in the BZ reaction or
dead cells in the heart tissue. The frequency at which they are emitted can
vary depending on the local characteristics of the medium itself. Moreover,
if there exist regions with different emission frequencies, the pacemaker
with the higher frequency will survive and consume the lower-frequency
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one.

Another common and striking pattern in two-dimensional excitable
media is the spiral wave (Fig. 1.6(d)). Its wide occurrence in chemical
and biological media makes it a target of intensive study [52]. Its origin
is associated with a break in a propagating front that can be caused
by nonexcitable heterogeneities in the medium [53, 54, 55, 56, 57] or
with a perturbation in the tail of the back front which may originate a
discontinuous front due to the vulnerability of the medium [58, 59]. Both
mechanisms produce free ends that begin to curl up and become the tips of
a two oppositely rotating spiral waves. The way the tip starts to curl
is described in [43, 60] and depicted in Fig. 1.7. Basically, when the
perturbation breaks the propagating front, there exists a point along the
interface separating the excited and the recovery regions where the front
no longer propagates forward uniformly. This induces a twisting effect on
the interface motion that turns to rotate around some center (sprouting) to
develop the spiral structure. The region around which the tip of the spiral
rotates is the core whose size and shape depends on the excitability of the
medium: in low excitable media the tip follows a circular trajectory (“rigid
rotation”) and the size of the core is large compared to the refractory tail
λrefract, while highly excitable media give rise to pointwise cores and the tip
often performs a complex motion called “meandering” , with the trajectory
often resembling the shape of a flower.

A broken wave front will develop into a spiral wave if the excitability
of the medium is high enough to allow the expansion of the wave front at
the tip, that is, besides moving in the normal direction, the wave front can
sprout or contract at its tip. The velocity G of this tangent motion will
depend on the curvature k of the wave front at the free end in a similar
manner as given by the eikonal equation (1.7): G = G0 − γ k0, being G0

the tangent velocity of the tip of a plane wave and k0 the curvature of
the wave front close to the tip. Thus, changes in the excitability change
the velocity of sprouting G0. The range of excitabilities at which G0 is
negative, i.e., the broken wave front contracts at its tip, is called subexcitable
regime. Within this regime a wave front of finite length shrinks and finally
disappears as it is shown in Fig. 1.5(b). As opposed to nonexcitable
behavior (where the amplitude of the wave front decays, as moves forward,
until it disappears), the subexcitable character can only emerge in 2D
propagation because involves a contraction of a wave front perpendicular
to its normal propagation. This particular regime will be treated in detail
in Chapter 3.
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Figure 1.7: Schematic re-
presentation of the formation
mechanism of a spiral wave.
An initial continuous propaga-
ting pulse is broken by its left
side (a). The new created free
end has room behind where
to move and a new velocity
component arises (b). The
combination of the normal and
the tangent velocities makes
the pulse to rotate (c) which
will lead to a fully developed
spiral. Note that the sense of
advance of the initial propaga-
ting pulse is downwards.

(b) 

(c) 

rest state 

excited state 

(a) 

1.3 Deterministic vs Stochastic Dynamics

So far we have presented only deterministic equations giving the response
of the system to any initial condition. But very often physical systems
include noise sources which should be included in the dynamical equations
[1]. This can be done by taking the deterministic Eq. (1.2) and introducing
random fluctuations in a general way:

∂xi

∂t
= Di∇2xi + fi(x, φ) + gi(x)ξi(r, t) (1.8)

where ξi(−→r , t) represents a stochastic force driving the dynamics of the
variable xi.

The different scenarios described by Eq. (1.8) can range from simple
systematic motion that can be isolated from a noisy background (which
will appear as an uncertainty in the data) to new phenomenology arising
exclusively because of the presence of noise (for instance, new steady states
which are absent in a deterministic scenario, or change of stability of a
deterministic state).

Equations (1.8) represent a set of stochastic partial differential
equations SPDE known under the name of spatiotemporal Langevin
equations. The main difference between these equations and Fokker-Planck
equations is that the former involve field variables while the latter deal
with the probability densities. Depending on the term gi(x), the way the
fluctuations are introduced can be additive or multiplicative. Additive
noise (gi(x) = 1 ∀i) describes an uncontrollable microscopic situation with
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unknown degrees of freedom. They are internal fluctuations like thermal or
statistical that can not be avoided. Multiplicative noise (gi(x) 6= constant)
arises in experimental situations where some control parameter of the
system fluctuates. In this case the noise is external because it is controllable
from outside.

This is the case that will be further developed in this thesis, with
spatiotemporal fluctuations of light intensity used to generate and perturb
chemical waves. In order to obtain insight into the dynamical behavior
of Langevin equations one has to resort to numerical simulations because
of the impossibility to obtain exact analytical solution in most of the
cases involving nonlinear terms. The numerical integration of stochastic
differential equations is quite different from that of the ordinary differential
equations. The presence of random terms requires averaging over
many trajectories, each one corresponding to a particular realization
of the stochastic term, or equivalently to a particular sequence of
random numbers. The algorithms used in the numerical calculations are
summarized in Chapter 2 for the different noise correlations functions
considered in this work:

〈ξ(r, t) ξ(r′, t′)〉 = σC

(
r− r′

`
,
|t− t′|

τ

)
(1.9)

where σ is the intensity of the noise, ` is its correlation length and τ its
correlation time. We should note that in an external noise situation the
noise parameters can be controlled externally and therefore both correlation
parameters can be tuned independently of the noise intensity. In particular,
we will address the behavior of our system under both colored and white
temporal correlations.

Finally, we should mention that numerical and analytical calculi have
been done in the Stratonovich sense whenever the noise terms entered in
a multiplicative way. Within the chosen interpretation, besides the fact
that considering the gaussian white noise is retrieved as the limit of a
real noise when the temporal correlation tends to zero, the procedures of
calculation concerning integration and derivation will follow the classical
rules of mathematical calculus.





Chapter 2

Experimental Setup and
Numerical Model

2.1 Introduction

There are many research groups around the world devoted to the study of
complexity and dissipative structures in the field of chemical oscillations,
and as an example we can name just a few of them: Kenneth Showalter’s
group at the West Virginia University [61], Harry Swinney’s group at the
University of Texas [62], Mario Markus’s group at the Max-Planck Institut
at Dortmund, Stephan Müller’s group at the Magdeburg University [63], T.
Yamaguchi at the National Institute of Materials and Chemical Research
in Japan, and Vicente Pérez-Villar’s group at the University of Santiago
de Compostela [64], among others. The oscillating chemical reactions have
been chosen as a convenient experimental system because they provide
a controllable and relatively easy to model manifestation of complexity.
This effort has helped in turn to develop mathematical models of biological
processes in single cells and multicellular ensembles that are less accessible
to experimental manipulations but share many common features with their
chemical counterparts.

An interesting paper about the history of chemical waves and
oscillations in a liquid-phase chemistry was published in 1991 by Anatol
M. Zhabotinsky [65]. It turns out that the first reaction of the scientific
community was that of refusal to accept the possibility of sustained
concentration oscillations in a homogeneous reaction. Much effort was
indeed devoted in trying to prove that the oscillations were caused by
some heterogeneous process or deficiencies in the experimental technique.
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Despite the fact that I. Prigogine had shown in 1944 that oscillations could
exist in systems far from equilibrium, in 1951 B. P. Belousov was not
allowed to publish his amazing discovery of the chemical reaction with
color oscillations. It was not until 1960 that the research on self-organizing
chemical reactions begun, when A. M. Zhabotinsky (a graduate student)
started to investigate the Belousov’s recipe and replaced some chemicals to
improve the color change in the reaction, thus opening a very rich field of
research.

Nowadays, the reaction discovered by Belousov and the different
variants developed from the original recipe have come to be known as
the Belousov-Zhabotinsky reaction. In Section 2.2 we will describe briefly
the chemistry of this reaction and in Section 2.2.1 the photosensitive
variant employed for the experiments in this thesis. Next in Section 2.3
we will describe the experimental setup and the calibration process. The
different spatiotemporal patterns used to control the excitability of the BZ
reaction are introduced in Section 2.3.2. Finally Section 2.4 is devoted to
the “Oregonator model”, a numerical model capable of describing many
respects of the behavior of the real BZ reaction.

2.2 The Reaction of Belousov and Zhabotinsky.
The FKN Model

The BZ reaction is called a chemical clock because of the oscillatory cycle
involved in the reaction. In 1972, R. Field, E. Körös, and R. Noyes
described, in what is known as the FKN model, the basic chemistry of
the BZ reaction [66]: around thirty different chemical species, including
intermediates, take part in the various interlocking cycles of chemical steps
comprising the BZ reaction. The kinetic mechanisms involved in the BZ
reaction are so complex that even nowadays new steps of the chemical
reaction continue to be discovered.

The overall process is the oxidative bromination by acidic bromate of
an organic substrate (generally malonic acid) catalyzed by an oxidation-
reduction metal ion pair such as Ce3+/Ce4+, Fe+2/Fe+3 or Ru+2/Ru+3.
The reaction mechanism consists of three main parts schematically
represented in Fig. 2.1:

I. The autocatalytic oxidation of the metal ion catalyst by bromate with
HBrO2 as the autocatalyst.

II. The reaction between HBrO2 and Br−.
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III. The catalytic reduction of the metal ion by malonic acid connected
with bromide ion production.

Figure 2.1: Schematic representation of
the cycles involved in the BZ reaction.
The autocatalytic production of the hypo-
bromous acid (HBrO2) induces the metal
ion oxidation from oxidation state (+2) to
oxidation state (+3) (I). This changes the
color from yellow to white in the ruthenium
catalyzed reaction. The oxidation states
of ruthenium will change again due to the
reduction by malonic acid (III). Because
of the reaction between Br− and HBrO2

the autocatalytic oxidation is completely
inhibited (II). The concentration of the
Ru+3 decreases due to process III. The
cycle repeats again when the concentration
of the Br− decreases enough to start the
autocatalytic oxidation again and raise the
concentration of Ru+3.

When the metal ion oxidizes from the lower oxidation state to the
higher one there is a color change in the reaction depending on the catalyst
used. In the case of ruthenium, it changes from orange-colored to white,
allowing to see concentration waves in an extended system or periodic
color changes in a continuously stirred mixture if the reaction is oscillatory,
Section (1.2.1). According to the FKN model, the system can be reduced
by the method of quasistationary concentrations (based on the slaving
principle) and be described by only three species which would lead the total
dynamics. These three species are the HBrO2 (which is the autocatalytic
species and acts as the trigger variable), the catalyst which can be one of
the metal ions mentioned above, and the Br− an intermediate species which
acts as the inhibitor of the reaction.

The BZ reaction’s temporal behavior is often studied in a continuously
stirred tank reactor (CSTR) where a control parameter (such as a reactant
concentration or the inflow rate) is varied producing steady-state, periodic
or chaotic behavior [67, 68, 66]. In unstirred thin films of solution or gels
(to avoid convection), the BZ reaction displays different types of waves (see
Section 1.2.2). Various properties of such waves (amplitude, velocity, front
structure, dispersion relations, relation between curvature and velocity. . . )
have been studied in detail (see [33] and references therein).

In this thesis we present two-dimensional studies of wave process in a
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thin photosensitive gel. In the next sections, we will describe the chemistry
and properties of the photosensitive BZ reaction catalyzed by ruthenium
immobilized in a silica gel matrix, as well as the setup used to perform and
monitor the experiments.

2.2.1 The Photosensitive Variant of the BZ Reaction

The influence of light on the BZ reaction has been known for some 30 years
since V. Vavilin et al. [69] studied irradiation of a cerium-catalyzed BZ
medium with ultraviolet (UV) light. They found that oscillations could
either be altered or suppressed depending on the light intensity and the
initial concentrations. Later on, H. Busse and B. Hess observed wave
initiation by a spot of UV light in a ferroin-catalyzed BZ reaction [70]. In
[71] they studied the effect of the visible light on the BZ reaction catalyzed
by different catalysts and found that only the ferroin and ruthenium
catalyzed systems were significantly affected.

The interest in systems that can be influenced by light lies in studies
of spatiotemporal behavior, since they can be controlled adjusting locally
or globally the illumination intensity. Among the light-sensitive BZ
reactions, the system catalyzed by the ruthenium complex Ru(bpy)3Cl2
is a good candidate because light with wavelength around 450 nm changes
the underlying chemical reaction affecting the excitability properties [72,
73, 74]. Examples are the photochemical memory device in Kuhnert
et al. [75, 76], where the image of a mask was reproduced in an
oscillatory medium; the control of wave propagation along a stripe of higher
excitability in [77]; the modulation of the frequency of a train of autowaves
through a moving boundary in [78]; and the control of spiral waves by
periodical modulation of the light intensity [79] or by a simple optical
feedback loop [80].

The behavior of the BZ reaction with a ruthenium-based catalyst is
strongly affected by exposure to visible light. The predominant effect is
the reduction of the excitability in proportion to the illumination intensity.
Taking the intensity of the light that reaches the reaction as the only control
parameter and keeping the initial concentrations of the reactants constant
we observe, as shown in Figure 2.2, different regimes of system behavior
for gradually increasing light intensity. For low light intensity, phase waves
can be observed in oscillatory media. As the light intensity is increased
above some value the medium becomes excitable and trigger waves can
propagate only if they are initiated somewhere. For higher values of the
light intensity the system enters in the subexcitable region, where waves
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Figure 2.2: Sequence of images showing the effect of the light intensity on the
ruthenium- catalyzed BZ reaction. From left to right, light intensity increases and
the reaction changes from oscillatory to nonexcitable, passing through excitable and
subexcitable conditions in the middle. Phase waves are characteristic of oscillatory media
and trigger waves are present in the rest of excitable levels.

with free ends propagate forward but shrink. Finally, for high enough
values, light illumination inhibits wave propagation completely.

Several mechanisms have been proposed to explain the dual effect of
light on the BZ reaction, namely, the induction of oscillations for low-
intensity illumination and the inhibition of chemical wave activity for high-
intensity illumination. These two processes have been explained in [72].
The first photochemical process is the absorption of a photon of wavelength
452 nm by the Ru(bpy)+2

3 complex:

Ru(II) 
 Ru(II)∗ (2.1)

After the photoactivation of Ru(bpy)+2
3 , which is proportional to the light

intensity, this can reacts in two separate ways:

I. Ru(II)∗ + BrMA → Ru(III) + Br− + org. prod.

II. Ru(II)∗ + Ru(II) + BrO−
3 + 3H+ → 2Ru(III) + HBrO2 + H2O

The first process involves the reduction of the bromomalonic acid to
produce bromide. It also produces Ru(III) which, according to the FKN
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mechanism (see Section 2.2) is the primary agent in generating Br− via
its reduction by malonic acid. In the second process, HBrO2 is generated
from the reduction of BrO−

3 in low-intensity illumination conditions. These
two mechanisms account both for experimentally observed high-intensity
inhibition and low-intensity induced oscillations. The former is due to the
fact that the generation of Br− (the inhibitor in this system) is proportional
to the light intensity while the latter is due to the production of the
autocatalyst HBrO2, the crucial propagator species.

2.3 Experimental Setup

The experiments were performed in the setup depicted in Fig. 2.3. The
setup can conceptually be separated into three main parts according to
their function: illumination, reaction and acquisition.

A Sony CPJ-D500 video projector (1) was used to illuminate the
reaction from below. This device allows to project fields of illumination
with eight-bit gray scale between 0 and 255 not only varying in space but
also in time [10, 11, 16]. These patterns are dynamically generated by a
PC (10). The projected image is focused on the top of a diffuser-glass (3)
with the help of a lens (2) and the objective lens of the video projector
(1). The diffuser-glass (3) has two purposes: enhance the contrast of the
transmitted light monitored through a CCD camera (Sony SSC-M350CE)
(7), and equalize the spatial inhomogeneity produced by the bulb in the
video projector (80 W ).

The BZ reaction was carried out in a spatial closed reactor (4). The
reaction consists in a liquid solution and a layer of gel (1 mm) cast on
a glass plate. The gel (a silica gel, [81]) serves as a matrix in which the
catalyst is immobilized, avoiding in this way hydrodynamic perturbations.
The aqueous solution is a mixture of KBr, NaBrO3, malonic acid, and
H2SO4 that covers the gel1. With typically used concentrations the system
sustaines waves for somewhat more than 2 h. Thus, to avoid spurious
effects due to the aging of the system, we kept observation times as short
as possible. The room temperature was kept at 25± 1◦C with the help of
an air-conditioning device. The details of the reaction recipe can be found
in the Appendix B.

The quasi-two-dimensional spatiotemporal patterns developed in the
BZ reaction are monitored (8) and recorded (9) in transmitted light using
a vertically placed CCD camera (7) and a band-pass filter (6) at 450 nm.

1The used concentrations will be given each time an experiment is described.
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Figure 2.3: Schematic representation of the experimental setup: (1) video projector,
(2) lens, (3) diffuser-glass, (4) sample dish, (5) objective lens, (6) interference filter, (7)
CCD camera, (8) TV monitor, (9) video recorder, (10) PC, (11) signal splitter, (12) PC
monitors.
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Figure 2.4: Calibration
curve of the transmitted light
through gray levels from 0
to 255. Light intensity
(mW/cm2) was measured with
a photodiode (Appendix B)
in a squared region of a
given gray level. Points
were fit to a sigmoidal curve:
I = GrayToV olts(G) =
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32.33.

The use of the filter helps to enhance the contrast since this wavelength
corresponds to the maximum in the absorption spectrum of the ruthenium
complex Ru(bpy)+2

3 . The observed images are monitored (12) on a PC,
digitized by an image-acquisition card (miroVideo DC30 plus) and analyzed
using a PC (10). A signal splitter (11) allows the signal corresponding to
the eight-bit gray pattern be monitored and projected at the same time.

2.3.1 Setup Calibration

The level of excitability on the reaction medium depends on the intensity
of the light from the projector reaching the gel. Different levels of intensity
are set by projecting different gray levels from 0 to 255 out of 256. Before
performing an experiment it is necessary to determine the transmission
function, that is, the transmitted light intensity as a function of the gray
level.

A photodiode (see Appendix B) was used to measure the light intensity
at a point on the diffuser-glass. The dependence was found to be nonlinear
as shown in Fig. 2.4. For darkest and brightest gray levels the light
intensity is almost constant and only for intermediate values there is a
linear response from the projector to changes in the gray level. This
calibration curve corresponds to an operation mode of the video projector
characterized by specific brightness and contrast settings. The knowledge of
this relationship allows us to project precisely the desired illumination field
in each point through the corresponding gray level distribution according
to the calibration curve.

The next step in the calibration process is to determine the level of
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excitability corresponding to each value of the light intensity. An indirect
way to do this is to measure the velocity of a trigger wave. Kuhnert and
Krug studied the velocity of the waves in an undisturbed ruthenium system
[74]. They found a linear relationship between the velocity and the product
of bromate and sulfuric acid concentrations, so the more acid is there the
reaction the higher the velocity is. The influence of visible light was also
investigated in detail in [73]. Changes in the wave velocity proportional
to the intensity of illumination were found as well as inhibition of wave
propagation.

We have characterized this dependence particularly due to its
application in our analytical study. In analytical models, the effects of
the illumination are often introduced primarily through the dependence
of the velocity on the intensity of light. Thus in order to compare
experimental observations with theoretical predictions such dependence
has to be determined. Figure 2.5 shows a typical experiment, where
five short waves propagate along five stripes of different gray levels [82].
Initially, a large planar wave is created at the beginning of these stripes by
projecting a black square, thus preventing light reaching this region which
becomes oscillatory. When the phase wave above the dark region reaches
the boundary between the oscillatory and excitable domains, it develops
into a trigger wave with planar shape. The regions between each gray
stripe are nonexcitable in order to separate the wave fronts propagating at
different velocities. The velocities are calculated by measuring the distance
traveled in a given interval time ∆t = tf − ti. We have found a linear
relationship between light intensity and wave velocity. However, for larger
and lower values of the light intensity, this linearity is lost because the
closeness to the oscillatory and nonexcitable regimes.

2.3.2 Spatiotemporal Light Intensity Distributions

In the next chapters we will find different spatiotemporal configurations
of the illumination field or, equivalently, of the excitability. Thus it is
convenient to introduce them right now and refer to this section each time
we need it.

The spatial distribution is defined by n×m square cells, each one having
its own light intensity. The parameters that will characterize each pattern
are the correlation time τ and the correlation length `. The correlation time
τ is given by the time-correlation function of the illumination 〈(I(t) I(t′)〉
and ` by ` = Lx/n = Ly/m, where Lx and Ly are the dimensions along the
X and Y directions.
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Figure 2.5: Left: Experiment to determine the light-velocity dependence consisting in
five stripes of different light transmission values separated by 100% transmission regions.
Each wave propagates at different velocity calculated as the rate between the space
traveled between times ti and tf and ∆t = tf − ti. Right: Velocity-light intensity
relation.

In most cases random spatial configurations will also vary in time. The
randomness can be defined here by following Gaussian or dichotomous
distributions, described in detail in the following sections:

• Quenched dichotomous structured noise.

• Time correlated Gaussian structured noise.

• White Gaussian structured noise.

2.3.2.a Quenched Dichotomous Structured Noise

This is a static pattern that consists of an array of square cells of size `,
whose light intensities I are given by:

I(r) = I0 +
n∑

i=1

m∑
j=1

ξijΘij(r) (2.2)



2.3 Experimental Setup 27

Figure 2.6: Examples of quenched dichotomous structured noise templates for the light
transmission. Each of them is characterized by the cell size `, the minimum correlation
size, the two values of the distribution I0±∆I and their probability. The pattern on the
left side has both values in the excitable regime that occur with equal probability. The
one on the right side is a typical template to study percolation phenomena because black
cells permit propagation while the white ones don’t. The probability of occurrence of a
black cell is in this case 0.4.

where

ξij =
{

+∆I with probability p,
−∆I with probability q=1-p,

(2.3)

accounts for the random distribution and

Θij(r) = Θij(x, y)
= θ(x− (i− 1)`) θ(i`− x) θ(y − (j − 1)`) θ(j`− y)

(2.4)

for the spatial distribution. θ is the Heaviside function and (i, j) are the
discrete coordinates of a noise cell 2. The cell size `, the noise dispersion
∆I and the seeding probabilities p and q are the characteristic parameters
of this light field distribution. The mean value of I is 〈I(r)〉 = I = I0 +
∆I (2p− 1).

Two examples of this kind of transmission field are shown in Fig. 2.6.
Specifically, these are the ones used in Chapter 4 to study how a quenched
disorder affects wave propagation and gives rise to percolation phenomena.
For the first case, it is required that p = q = 1

2 (which means that I = I0),
and I0 ±∆I within the excitable regime. For the second one, I0 + ∆I falls
in the nonexcitable regime and p ranges from 0 to 1.

To generate these patterns, a random number generator from the
Numerical Recipes [84], producing a uniform distribution, was used. A

2This particular notation was taken from [83].
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vector of size n×m, initialized to 0, contains the p×n×m random positions
marked with 1. Those sites that are still 0 will be filled with one value of
the distribution and those marked with 1 with the other:

numcell=n*m
do k=1,numcell

irnd(k)=0
enddo
numcell_g1=p*numcell
do while (numcell_g1.gt.0)

pos=nint((numcell)*ran1+1)
if (irnd(pos).eq.0) then

irnd(pos)=1
numcell_g1=numcell_g1-1

endif
enddo
do i=1,n

do j=1,m
k=(i-1)*m+j
pattern(i,j)=irnd(k)*(g1-g2)+g2

enddo
enddo

where numcell_g1 is the number of cells of type 1 filled with gray g1,
and g1 and g2 are the two gray levels of the dichotomic distribution to be
projected.

A specific algorithm for p = 0.5 was used in order to force the mean
value I0 per row:

do j=1,m
do k=1,n

irnd(k)=0
enddo
numcell_g1=n/2
do while (numcell_g1.gt.0)

pos=nint(n*ran1+1)
if (irnd(pos).eq.0) then

irnd(pos)=1
numcell_g1=numcell_g1-1

endif
enddo
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do i=1,n
pattern(i,j)=irnd(i)*(g1-g2)+g2

enddo
enddo

2.3.2.b Time Correlated Gaussian Structured Noise

A time correlated Gaussian structured noise can be described by the same
expression ( 2.2) except for ξij that now is time dependent with a Gaussian
distribution. In the time domain, the random term ξij(t) is an Ornstein-
Ulhenbeck process generated by a linear damping equation driven by white
noise ξw:

d ξij

dt
=

−1
τ

ξij +
D

τ
ξw
ij (2.5)

Iij(t) = I0 + ξij(t) corresponds to a Gaussian distribution, correlated in
time with first and second moments given by:

〈 Iij ( t )〉 = I0 (2.6)

〈 Iij ( t ) Iij ( t′ )〉 = (D/τ) exp(− | t− t′ | /τ) (2.7)

for each (i, j) cell, as it is shown in Fig. 2.7. Cells are independent and
characterized by a spatial correlation `, a correlation time τ , a mean value
I0, and a noise dispersion σ2 = D/τ . The exponentially correlated noise
ξ(t) was obtained at each site (i, j) by an integral algorithm suggested by
Fox et al. [85].

Briefly, this pattern was generated by using the algorithm cited above
and a normal deviates generator from Numerical Recipes based on the Box-
Mueller method. Every cell evolves independently from the others with the
same mean I_med and standard deviation sigma:

call itime (iarray)
idum=-iarray(1)*iarray(2)*iarray(3)+1 /Initializing the seed

/with the clock of the system
do n=1,1000

dato=ran1(idum)
enddo
expdttau = exp(-dt/tau)
desvnoise=sigma*dsqrt(1.-expdtau**2)
g_med=Inv(GrayToVolts)(I_med)
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Figure 2.7: Left: example of a Gaussian structured noise transmission pattern. Right:
characterization of the probability distribution and correlation function of the light
intensity at one cell randomly chosen from the pattern on the left.

do t=1,10000,1
do i=1,n

do j=1,m
aleat = gasdev(idum)
noise(i,j)=noise(i,j)*expdttau+desvnoise*aleat
pattern(i,j)=g_med+nint(Inv(GrayToVolts)(noise(i,j)))

enddo
enddo

enddo

being Inv(GrayToVolts) the inverse of the function that converts gray
levels to mW/cm2 according to the calibration curve given in Fig. 2.4. The
meaning of the time scale given by tau is clearly shown in Fig. 2.8 where the
auto-correlation of the noisy variable at different lags is investigated. When
the lag is of the order of tau, which occurs in the forth case, the correlation
is completely lost and a cloud of points develops along the diagonal of the
first quadrant. Experimentally, the cells are updated every 100 ms, which
is the fastest rate allowed by the computer which has to fill the matrix with
the gray values to be projected and display them through the video card.
This latter operation takes most of the time between consecutive updates.

2.3.2.c White Gaussian Structured Noise

This last case of Gaussian structured noise shares the same probability
distribution features of the preceding one. The difference lies in the time
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Figure 2.8: Representation of the auto-correlation of a time correlated series ξ(t) for
different lags. From top to bottom, and from left to right, the lag increases until it
becomes of the order of the correlation time τ . The result is an increasing dispersion out
of the diagonal.

evolution of each cell. Now there is no memory, and the present value of
the noise is completely independent to the previous one:

do t=1,10000,1
do i=1,n

do j=1,m
aleat = gasdev(idum)
noise(i,j)=sigma*aleat
pattern(i,j)=g_med+nint(VoltToGray(noise(i,j)))

enddo
enddo

enddo

The small time (100 ms) taken by the computer to refresh the
array pattern ensures fluctuations with extremely small correlation time,
approaching an effective white noise limit.
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2.4 Oregonator Model

2.4.1 Introduction

The complex chemical mechanism proposed by Field, Körös and Noyes
[66] at the University of Oregon, and described in Section 2.2, results in a
simple model called Oregonator involving only three intermediate species
and several reactants whose concentration is considered constant [86]. This
model can be modified [87] to describe the photosensitive Ru(bpy)+2

3 -
catalyzed BZ reaction:

A + Y → P + X (2.8)

X + Y → 2P (2.9)

A + X → 2X + 2Z (2.10)

2X → P + A (2.11)

Z → hY (2.12)

φ→ Y (2.13)

where A=BrO−
3 , P=HBrO, X=HBrO2, Y=Br−, and Z=Ru(ox), h is a

stoichiometric factor, and φ the bromide flow due to the photochemical
effects (also accounting for the oxygen effects). The parameter φ plays the
same role as the light intensity does in the real experiment and models the
photosensitive property of the BZ reaction.

By applying the law of mass action to reactions (2.8)–(2.13) and using
the Tyson– Fife scaling procedure [88], we obtain a set of three ordinary
differential equations which describes the dynamics of the Oregonator
model:

ε
du

dt
= u(1− u) + w(q − u) (2.14)

dv

dt
= u− v (2.15)

ε′
dw

dt
= φ + fv − w(q + u) (2.16)

where u, v, w are the dimensionless concentrations of HBrO2, Ru(bpy)+2
3

and Br−, respectively; ε, ε′ and q are the scaling parameters; f = 2h is an
adjustable stoichiometry parameter.

Equations (2.14)–(2.16) can be reduced to a system of only two
equations by using the smallness of the parameter ε′ in Eq. (2.16) compared
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to ε. As the fastest variable, w can be considered in constant equilibrium
with the other variables, thus ẇ ≡ 0 and

w =
φ + fv

u + q
(2.17)

ε
du

dt
= u(1− u)− (φ + fv)

u− q

u + q
(2.18)

dv

dt
= u− v (2.19)

With this reduced Oregonator model it is possible to reproduce the
dynamical behaviors found in the BZ reaction, namely oscillations and
excitability. Adding diffusion terms to the system it is also possible
to model the formation and propagation of traveling waves of chemical
activity.

Two sets of parameters have been used throughout the numerical
simulations performed to model the different experimental situations. They
are summarized in the following table, with the values of the parameter φ for
which the system changes from oscillatory to excitable and from excitable
to nonexcitable also included.

f q ε Du Dv osc/exc exc/nonexc

set 1 3 0.002 0.05 1 0 -0.005 0.024

set 2 1.4 0.002 0.01/0.03 1 0.6/0 0.005 0.078/0.087

Note that the diffusion coefficient of the variable v is zero in order to mimic
that in the experiments the catalyst is immobilized in a gel matrix.

2.4.2 Numerical Integration of the Deterministic Model

The complete deterministic model is obtained by adding diffusion to
Eqs. (2.18) and (2.19):

ε
∂u

∂t
= u(1− u)− (φ + fv)

u− q

u + q
+ Du∇2u (2.20)

∂v

∂t
= u− v + Dv∇2v (2.21)

The parameter φ is a deterministic function of time and space.
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The parabolic Eqs. (2.20) and (2.21) were numerically solved by
using the finite-difference method. Functions u(x, y, t) and v(x, y, t) are
represented by their values at the discrete points xi = i∆x and yj = j∆y
and discrete times tn = n∆t with i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny and
n = 0, 1, . . . , N 3. The grid spacings along the x and y-axes were taken
to be equal ∆x = ∆y = h. The derivative terms in Eqs. (2.20) and
(2.21) were substituted by a FTCS (Forward in Time Centered in Space)
representation, accurate to first-order in ∆t for the time derivative and to
second-order in h for the space derivative:

∂u

∂t
≈

un+1
i,j − un

i,j

∆t
(2.22)

∇2u ≈
un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 − 4un

i,j

h2
(2.23)

and the same discretization scheme for the v variable.
Substitution of Eq. (2.22) and (2.23) in Eqs. (2.20)–(2.21) results in the

explicit equations for the u and v evolution:

un+1
i,j = un

i,j + ∆t

[
Fn

i,j(u, v)
ε

+
Du

h2
∇2u

]
(2.24)

vn+1
i,j = vn

i,j + ∆t

[
Gn

i,j(u, v) +
Dv

h2
∇2v

]
(2.25)

where F and G are the reactive functions and the Laplacian operators
for the u and v variables follow a 5-point scheme, as stated above in
Eq. (2.23). Both time and space steps, ∆t and h respectively, were chosen
to ensure numerical stability (2D∆t

h2 ≤ 0.5) and accuracy. In addition, h
has been appropriately chosen to avoid the rectangular shape that wave
fronts acquire as they propagate, induced by the anisotropy between the
discretization axes and the diagonal directions introduced by the five point
scheme.

2.4.2.a Initial Conditions

Three kinds of initial conditions were used, namely:

1. Plane wave
3The spatial and temporal dimensions will be given, respectively, in space and time

units which are defined as 1 s.u.= grid points × ∆s and 1 t.u.= time iterations × ∆t,
being ∆s the grid size and ∆t the time step.
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2. Spiral wave

3. Rest state

The first initial condition corresponds to the simplest form of propagation.
One side of the two dimensional rectangular medium is stimulated above
threshold and followed by a refractory back. After this initial setup a
straight line wave front is elicited.

A spiral wave is created when a continuous wave front (such a plane
wave) is broken and one half of the medium is reset to the stationary state.
This allows the other half to curl and develop a spiral wave.

The rest-state initial condition corresponds to having the variables at
the stationary value for the whole system.

2.4.2.b Boundary Conditions

The final step to close the numerical scheme concerns the time evolution
of the points on the boundary of the spatial region to study. For a two-
dimensional medium, no-flux boundary conditions (NFBC) are commonly
used through this thesis to mimic the presence of an impermeable physical
barrier:

∂u

∂x

∣∣∣∣
∂Ω

=
∂u

∂y

∣∣∣∣
∂Ω

= 0 (2.26)

Here, ∂Ω represents the boundary of the two dimensional medium and the
same condition holds for the variable v. These equations are implemented
for a rectangular medium of dimensions Nx×Ny grid points in the following
way:

ui=0,j = ui=1,j

ui=Nx+1,j = ui=Nx,j ∀j

ui,j=0 = ui,j=1 (2.27)

ui,j=Ny+1 = ui,j=Ny ∀i

Sometimes the implementation of periodical boundary conditions
(PBC) was needed to simulate an infinite medium along one or two spatial
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dimensions. In those cases, this was accomplished by setting:

ui=0,j = ui=Nx,j

ui=Nx+1,j = ui=1,j ∀j

ui,j=0 = ui,j=Ny (2.28)

ui,j=Ny+1 = ui,j=1 ∀i

Finally, a last type of boundary conditions are Dirichlet ones, which
specify the values of the boundary points as a function of time. These were
used to impose specific values on the variables at the boundaries or in cases
with a pacemaker at the beginning of the medium.

2.4.3 Numerical Integration of the Stochastic Model

Differences in the numerical integration of Eqs. (2.20)- (2.21) arise when
the term φ is no longer deterministic but fluctuates in time. They become
stochastic partial differential equations (SPDEs), and require special
treatment in their numerical simulation. We will follow the algorithms
developed in [89, 1] to obtain the discretized form of Eqs. (2.20)-(2.21)
with a random term that ranges from white noise to colored noise of
the Ornstein-Ulhenbeck type, or quenched noise through a random spatial
distribution of the field φ. The difference between white and colored noise
is that the latter is in turn generated by a linear damping equation driven
by white noise (Eq. (2.5)) whose evolution in time must also be simulated.
Quenched situations do not require special numerical techniques as they
can be simulated using the algorithms for PDEs. In any of these cases, the
solution depends on the averaging over many simulations, each of which
corresponds to a particular realization of the stochastic term.

The stochastic part to be integrated can be expressed in the following
form:

∂u

∂t
= Du∇2u + F (u, v,∇2) + G(u, v)ξ(r, t) (2.29)

where F = 1
εu(1 − u) − (fv + φ0) u−q

u+q is the deterministic part and G =
−u−q

u+q is the function that multiplies the noise term ξ(r, t) which has a
general correlation function given by Eq. (1.9). Further we shall present
two numerical algorithms used depending on wether the noise is white or
colored in time.
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2.4.3.a Gaussian Noise White in Time

A noise white in time is characterized by the following correlation function:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) (2.30)

where D is the noise intensity. For a spatially structured noise, ξ(r, t) in
Eq. (2.29) is simulated by placing a ξij with correlation (2.30) and Gaussian
distribution within each cell of size `. For a discretized medium with Nx×
Ny grid points, it implies generating Nx

l ×
Ny

l totally uncorrelated Gaussian
random numbers at each time step. Considering the kth cell, the algorithm
to evaluate the variable u at time t + ∆t is given by:

un+1
i,j = un

i,j +
Du

h2
∆t∇2u + Fn

i,j∆t

+ Gn
i,jX

n
k +

1
2
Gn

i,j

dGn
i,j

du
[Xn

k ]2 +O
(
∆t3/2

)
(2.31)

where:

Xn
k =

∫ t+∆t

t
ξ(t′) dt′ =

√
2D∆t γn (2.32)

is a Gaussian random number with zero mean value and variance 〈X2
k〉 =

2D∆t, defined in terms of γn (a Gaussian random number with zero mean
value and variance equal to one). The algorithm used in simulations is of
first order in ∆t, which is more sensitive to the actual value of ∆t and to
the number of realizations than one with higher order terms in ∆t. The
Gaussian random numbers γ were generated most of the times by using
the gasdev subroutine from Numerical Recipes [84], which in turn produces
Gaussian random numbers by means of the Box-Mueller algorithm. In
particular, the Gaussian random number generator proposed by [90] was
used in the simulations performed in Sec. 4.2.

2.4.3.b Gaussian Noise Colored in Time

The same procedure developed in Section 2.4.3.a applies for the case of noise
colored in time of the Ornstein-Uhlenbeck type whose correlation function
is given by:

〈ξ(t)ξ(t′)〉 =
D

τ
e−

|t−t′|
τ (2.33)

of variance σ2 = D
τ and correlation time τ . Now, due to the fact that ξk

is colored in time, the algorithm is much simpler than the one given in the



38 Experimental Setup and Numerical Model

previous section for the white noise case:

un+1
i,j = un

i,j +
Du

h2
∆t∇2u + Fn

i,j∆t

+ Gn
i,jξk

n +O
(
∆t3/2

)
(2.34)

The calculation of ξn
k for each time step was performed by exactly solving

the linear differential equation for ξ driven by white noise (Eq. (2.5)) leading
to the following algorithm [85]:

ξn+1 = ξne−
∆t
τ + σ

√
(1− e−

2∆t
τ ) γn (2.35)

where γn is a Gaussian random number with zero mean and variance equal
to one. For each time step and correlated cell, algorithm (2.35) has to
be implemented to feed (2.34). The Gaussian random numbers γ were
generated as in the previous section.



Chapter 3

Effects of Periodical Forcing
on Wave Propagation

Abstract. In this chapter the effect of space- and time-periodic forcing
on wave propagation is investigated. The impact of domain shape on wave
propagation in excitable media is considered using channeled domains with
sinusoidal boundaries. Trains of fronts generated periodically at an end of
the channel are found to assume a quasiperiodic spatial configuration which
repeats periodically in time. The phenomenon is numerically studied using
the Oregonator model. Spatial return maps for the height and position of the
successive fronts are analytically obtained, and reveal the similarity between
this spatial quasiperiodicity and the temporal quasiperiodicity appearing in forced
oscillators. The effect of homogeneous modulation of the excitability is studied
for a subexcitable system. Wave propagation in such system is made possible
by periodical modulation of a homogeneous illumination field. The propagation
can be understood in terms of an interplay between the radial expansion of the
wave and the motion of its free ends as the excitability varies periodically.
This description leads to a simple kinematic analysis that provides insights
into the initial conditions and forcing parameters giving rise to sustained wave
propagation.

3.1 Introduction

Spatially extended dynamical systems display interesting and sometimes
unexpected behavior in response to external perturbations [21, 33].
Temporal perturbations of excitable media [91, 92, 79, 16], as well as spatial
modulations [93, 94] and spatiotemporal fluctuations [95, 96, 11, 10], give
rise to new types of dynamical behavior. In this chapter, the effects of
simple spatially homogeneous periodic modulations are investigated in two
very different scenarios. In the first one, developed in Section 3.2, periodic
modulation is introduced through the geometry of the boundaries. A wave
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train propagates along a narrow excitable channel with sinusoidally varying
width. The spatial frequency and the amplitude of the modulation are
expected to nontrivially affect the spatial distribution of the fronts, since
the propagation depends on the width of the medium. The second system
presented in Section 3.3 makes use of temporal periodical modulation of
the excitability in a subexcitable medium (Section 1.2.2), that is, a medium
unable to sustain propagation of bounded fronts. Again, it can be presumed
that changes in the forcing parameters such as the period and the amplitude
of the modulation around the subexcitable state may lead to final states
different from ones in absence of modulation. A parameter region is shown
to exist, where the subexcitable character of the medium is inverted and
propagation sustained.

3.2 Quasiperiodicity in a Sausage-Shaped Do-
main

Excitable media display a very rich spatiotemporal behavior with regimes
ranging from fairly well ordered structures of propagating waves [33] to
highly uncorrelated spatiotemporal chaos. The study of these features
and their mutual connections provides insight for understanding and
maybe eventually controlling phenomena of great practical importance,
for instance the arisal of deadly fibrillations in cardiac tissue [97].
Similar ordered and turbulent patterns also occur in extended chemical
reactors operating away from equilibrium conditions. In many of these
applications, a crucial but frequently ignored ingredient is the presence
of boundaries. For example, it has been shown that boundaries and
obstacles in inhomogeneous media serve to either pin or repel spiral patterns
[98, 49, 99, 100] or even to create them [57, 56]; moving boundaries
[78], striped domains [101, 77] and propagation through narrow channels
[102] have also been reported in the literature as nontrivial domain
configurations, as they change the properties of waves such as their
frequency [78] or their velocity [101, 77].

Unfortunately, the current understanding of boundary effects in
nonlinear partial differential equations is rather incomplete, and sometimes
surprisingly nontrivial behavior lurk behind the apparent simplicity of
some problems. A recent study [103], for example, shows that relatively
regular boundary conditions such as Dirichlet’s on the banks of a sausage-
shaped channel can elicit several types of spatial complexity such as
frozen quasiperiodicity and chaos even in very simple reaction diffusion
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equations. There, the axial coordinate along the channel acts as a ‘time’
in the equations describing the time-independent spatial patterns and the
undulated boundaries play the role of a periodic force inducing chaos in a
dynamical system that is nonchaotic in the absence of driving.

At the same time, propagation of waves in excitable media has been
studied exhaustively in other contexts [33]. Due to their ubiquity in large
two-dimensional systems, much of this work deals with spiral waves. In
contrast, the propagation of front trains has received much less attention.
This may seem surprising since the same spirals themselves can be regarded
far from their cores as a periodic train of two-dimensional traveling fronts.
These trains are characterized by a dispersion relation c = c(λ), giving a
relation between the constant front train velocity and its uniform spacing
λ, and their dynamics is very simple. More complex behavior appears
even in one-dimensional systems if the excitable medium recovers the rest
state not monotonically but via damped oscillations [104]. In this regime,
propagating wave trains often relax to irregularly spaced configurations of
fronts that can be seen as spatial chaos.

Guided by the previous results obtained by Egúıluz et. al in [103], the
purpose of the present study is to investigate the asymptotic propagation
of excitable wave trains generated by local time-periodic stimulation at the
end of a sinusoidally undulated channel [105]. This elongated configuration
enables us to borrow concepts from the theory of dynamical systems since
spatial longitudinal coordinate along the channel behaves as a time-like
coordinate. The outline of this chapter is as follows. In Section 3.2.1 the
method used to handle the boundary conditions is described within the
framework of the Oregonator model. This consists of a coordinate change
which brings the undulated domain into a rectangular one. The study has
been performed by varying the parameters of the sinusoidal forcing and
results are presented in Section 3.2.2 which is divided in two parts devoted
respectively to strong and weak forcing. Finally, in Section 3.2.3 we present
a more general analytic theory of the results obtained in Section 3.2.2.

3.2.1 Numerical Model

The simulations were performed on the Oregonator model given by
Eqs. (2.20) and (2.21) with the parameters f = 3, q = 0.002, ε = 0.05,
φ = 0.002, Du = 1, and Dv = 01.

1Unless explicitly indicated, all variables are dimensionless except for those given in
space and time units. ∆t = 0.0005, horizontal axis ∆x = 0.15, vertical axis ∆y = 0.05.
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Figure 3.1: Channel-like
domain of integration with
sinusoidal boundaries.
The upper and lower
curves are defined by the
functions y0(x) and y1(x).
The modulated distance
between them is given by
∆(x) = s + d− d cos( 2πx

λp
).

The spatial domain of integration is tailored as sausage-shaped channel
along the longitudinal direction as shown in Fig. 3.1. The transverse
coordinate y is bounded by two sinusoidal walls, y0(x) and y1(x) = s−y0(x),
with

y0(x) = −d

2
[1− cos(kx)] (3.1)

The spatial frequency is k = 2π/λp, the undulation amplitude d, the
minimum separation s, and the transverse distance between the boundaries
∆(x) = y1(x) − y0(x) = s + d − d cos(kx). At the boundaries we impose
the Dirichlet condition u(x, y0, t) = u(x, y1, t) = 0.004, a value close to
the fixed point of the local dynamics (this could be implemented in the
photochemical BZ reaction by annihilating any excitation in the exterior of
the domain via strong enough illumination. In contrast, a physical barrier
-such as the border of a Petri dish or any obstacle in the medium- would
imply zero-flux boundary conditions).

An efficient way described in [103] to solve numerically Eqs. (2.20)-
(2.21) within the region limited by y0(x) and y1(x) and by x = 0, L, is by
mapping this undulated region onto a rectangular one defined by ỹ1 = 1,
ỹ0 = 0, and x = 0, L, where L is the length of the channel. For arbitrary
functions y0(x) and y1(x), the map (x, y) → (x, ỹ) is obtained with the
change of variables,

ỹ =
y − y0

y1 − y0
(3.2)

Under this map, the diffusion term in Eq. (2.20) transforms as [103]:

∇2u → ∂2
xxũ + F (x)∂2

ỹỹũ + G(x)∂2
xỹũ + H(x)∂ỹũ , (3.3)
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where

F (x) =
1 + (∆xỹ + y0x)2

∆2
(3.4)

G(x) = −2
∆xỹ + y0x

∆
(3.5)

H(x) =
ỹ
(
2∆2

x −∆∆xx

)
−∆y0xx + 2∆xy0x

∆2
(3.6)

∆(x) = y1(x)− y0(x) (3.7)

∆x(x) =
d

dx
∆(x) (3.8)

∆xx(x) =
d2

dx2
∆x(x) (3.9)

y0,1x =
d

dx
y0,1 (3.10)

y0,1xx =
d2

dx2
y0,1 (3.11)

Note that, if the channel has constant width, ∆x = ∆xx = 0. F (x),
G(x) and H(x) are periodic functions reflecting the undulations of the
boundaries via modulations measured by the product kd. In the limit
kd → 0 (straight channel), Eq.(3.3) becomes the standard Laplacian.

Wave trains are generated by stimulating the medium at the left end
x = 0 of the channel by driving u periodically in time above and below
the excitability threshold. The opposite end of the channel (x = L) is
a no-flux boundary. During the simulations we have mainly varied the
forcing parameters λp and d, for several wave train periods and channel
widths. After a transient, the fields u and v converge to a configuration
of propagating fronts that repeats itself periodically in time in synchrony
with the wave generator at x = 0.

In the following discussion, we denote by xn and an the longitudinal
position and maximum of u at the channel axis, respectively, for the nth
front. A snapshot of a segment of the channel is plot in the upper part
of Fig. 3.2 where different gray levels are proportional to the value of u,
maxima of which are plotted in the lower part of Fig. 3.2.

For comparison, in a straight channel (d = 0) of a width s the
asymptotic configuration consists of equally spaced wave fronts propagating
with velocity c = λ/T , where λ is the spacing between successive fronts and
T is the forcing period. This velocity increases with the channel width [77]
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Figure 3.2: In the upper panel, the white area limited by gray undulated boundaries
is the excitable region where fronts originated at the left end propagate. The transverse
features are the fronts traveling to the right. Darker fronts have a larger value of u,
as indicated in the colorbar. The lower panel displays the envelope of the maximum
amplitude of the fronts. Parameters: λp = 50, s = 1.1 s.u., and d = 1.9 s.u.
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Figure 3.3: Wave train
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Figure 3.4: Profile of the variable u along the middle line of a sinusoidal channel of
λp = 50, s = 1.1 s.u., d = 4 s.u., and T = 5 t.u.

above critical value sc. For narrower channels the fronts cannot propagate
since the unexcited boundary layers fill-up the whole width of the channel.
In Fig. 3.3 we plot the train velocity and the maximum amplitude of the
wave fronts as a function of the width of the straight channel.

3.2.2 Results

In modulated domains with d 6= 0 a wide range of new spatial configurations
emerge, which are incommensurated with the boundaries. Typically, both
the spacing and the amplitude of the fronts become spatially quasiperiodic.
This can be seen in Fig. 3.4, where the profile of the variable u at time t =
644 t.u. is plotted along the center of the channel. The mean wavelength
of this train is about 150 grid points for a stimulating period of T = 5
t.u. The observed pattern in this figure occurs in a modulated channel of
λp = 50 grid points.

According to the strength of the spatial forcing kd ∝ d/λp we distinguish
strong and weak modulations. We shall describe, as an illustration, in more
detail, the cases λp = 50 and λp = 1000.

The results for strong modulation are shown in Figs. 3.5, 3.6 and
3.7 corresponding to different minimum channel separation s. For each
figure, the amplitude of the boundary undulation d increases from top
to bottom. The quasiperiodic behavior of the pulse height in the first
column, becomes evident as d increases. The second column in Fig. 3.5
shows also the maximum an of each front as a function of its position
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Figure 3.5: Numerical results obtained with the Oregonator model for strong forcing.
First column: Maximum height of each front within the train, as a function of position
x. Second column: Same as before but with position x folded modulo λp = 50. Third
column: Return map of the front positions modulo λp. Each row is for a different
amplitude d (in s.u.). Parameters: λp = 50, T = 5 t.u., s = 1.1 s.u.. Note that channel
length L = 15000 is much larger than that in Fig. 3.2.
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Figure 3.6: The same as in Fig. 3.5 but s = 0.95 s.u.
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Figure 3.7: The same as in Fig. 3.5 but s = 1.5 s.u.



48 Effects of Periodical Forcing on Wave Propagation

0 200 400 600 800 1000
0

200

400

600

800

1000

x n+
1 m

od
 (

 1
00

0 
)

d=0.5
d=1.0
d=1.5
d=2.0

0 200 400 600 800 1000
0.3

0.35

0.4

0.45

0.5

0.55

x
n
 mod ( 1000 )

a n

d=4.0                 
d=8.0                 
d=0.5  analytical

Figure 3.8: Weak forcing behavior at λp = 1000 and s = 2 s.u. Above: Return map
of the front positions modulo λp. Below: Maximum height of each front as a function of
the front position modulo λp. Solid lines are from Eqs. (3.17) and (3.19).

modulo, λp. This plot provides information about the distribution of the
front height maxima relative to the elementary unit of the channel. Notice
that the fronts do not always reach their minimal height at the narrowest
channel sections (x = mλp) as one might expect from the behavior in
straight channels depicted in Fig. 3.2. Moreover, the fronts can now
propagate even when the channel is narrower (s = 1.1 s.u.) in some
places than the minimum width sc = 1.65 s.u. that allows propagation
in straight channels. The last column in Fig. 3.5 displays the return maps
of the (n+1)th front position xn+1 (relative to the unit channel cell) as a
function of the position xn of the previous front. The shapes of the curves
are similar to the circle maps (see Appendix C) describing the temporal
dynamics of periodically forced self-oscillators, thus confirming our aim
when constructing the system: the analogy between spatial behavior along
a longitudinal coordinate in a channeled domain, and time evolution in
dynamical systems. The analogy suggests that our system should exhibit
the same richness of spatial behaviors as present in time evolutions of the
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Figure 3.9: Comparison of the resulting patterns for different periods of the wave train
propagating in identically modulated channels. Left: T = 10 t.u., the maximum height
of each front an(x) along the channel (above) and within one modulation wavelength of
the channel (below). Right: the same as in left side but T = 5 t.u. Rest of parameters:
λp = 50, d = 4 s.u., s = 1.1 s.u. The system is shown at t = 644 t.u. corresponding to a
stationary configuration which persists after the initial transient.

circle map.

The weak forcing case is illustrated in Fig. 3.8. As in the case of
circle maps for very weak forcing, the front-positions return map shows
a very small deviation from linearity with the given parameter values.
This approximate linearity implies that the front train wavelength is nearly
constant and the influence of the channel walls is negligible. This influence
on the front heights is, however, more pronounced. Minima of front height
are situated at the narrowest channel sections, in agreement with Fig. 3.3,
while the maxima saturate for large enough d.

The effect of varying the period of wave initiation at x = 0 on the
resulting spatial configuration is illustrated in Fig. 3.9. The maximum
wave height along the channel is shown for two different periods, T = 5
and T = 10 t.u. The parameters of the spatial forcing are the same in both
cases.
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3.2.3 Theoretical Analysis

We shall now derive an analytical expression for the return maps of
successive wave fronts positions and maximum heights. The approach
is based on rather general arguments, not explicitly dependent on the
particular model Eqs. (2.20)-(2.21). In case of weak forcing we assume
that the front velocity approaches quasiadiabatically the velocity c(∆) of
the wave in an uniform channel of the same width ∆ as the local width of
the undulated channel Fig. 3.3.

This is confirmed in Fig. 3.10 where the maximum heights of the fronts
at position xn are plotted against the corresponding channel width at that
position and superimposed to the case of a straight channel (curve extracted
from Fig. 3.3). Thus, the velocity of the nth front is

ẋn(t) = c(∆(xn)) (3.12)

In our channel ∆(x) = ∆0 − ∆1 cos(kx) with ∆0 = s + d and ∆1 =
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Figure 3.10: Maximum heights
of the fronts at position xn as a
function of the channel width of a
straight channel (solid line) and of a
modulated channel (�). λp = 1000
and s = 2 s.u.

d. In order to proceed analytically an approximation for c(∆) should be
introduced. For small d’s the width variation is also small and c(∆) can be
replaced by a linear fit a + b∆ of an appropriate range of data in Fig. 3.3.
Hence, c(∆(xn)) ≈ c0 − c1 cos(kxn) where c0 = a + b∆0 and c1 = b∆1.
Eq. (3.12) can now be integrated during one period T of the front generator,∫ xn(T )

xn(0)

dxn

c0 − c1 cos(kxn)
= T (3.13)

to obtain:
2

k
√

c2
0 − c2

1

[arctan f(xn)]xn+1(0)
xn(0) = T (3.14)
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with

zn = f(xn) =
√

c0 + c1

c0 − c1
tan

(
kxn

2

)
(3.15)

In Eq. (3.14) we use the time periodicity of the wave train to write
xn(T ) = xn+1(0). This is the crucial step to convert the time-differential
equation (3.12) into a map for space positions.
Defining ϕ = arctan z and 4 = 0.5 kT

√
c2
0 − c2

1 we have 4 = ϕn+1 − ϕn,
and the return map for the variable z is

zn+1 = g(zn) =
zn + tan4

1− tan4 · zn
(3.16)

In terms of the front position x we finally have:

xn+1 = f−1 (g(f(xn))) (3.17)

For the maximum height of the wave fronts, the same adiabatic
assumption leads to an = h (∆0 −∆1 cos(kxn)), with h(∆) being the
maximum height of the fronts in a straight channel of width ∆. A further
step in the qualitative description of the observed positional mismatch
between the minimal-height of the fronts and the narrowest sections of the
channel is to consider a short adaptation time τa of the front characteristics
to the local width:

ȧn(t) =
1
τa

(h(∆(xn))− an) (3.18)

Linearly fitting the data from Fig. 3.3 in the range (s, s + 2d) we have
h(∆) ≈ a′ + b′∆ for small d. Then, h(∆(x)) ≈ h0 − h1 cos(kx), with
h0 = a′ + b′∆0, and h1 = b′∆1.

Integrating Eq. (3.18) for small d and kc0τa � 1 so that we can set
xn(t) = xn(0) + c0t + O(d), we get a relationship linking the wave front
heights and positions,

an+1 = h0 −
h1√

1 + τ2
ak2c2

0

sin (k(xn + c0T ) + θ) (3.19)

Here θ = arccos
[
1/
√

1 + (τac0k)2
]

describes the displacement of the
minimal heights from the narrowest sections.

Since the derivation of Eqs. (3.17) and (3.19) is formally valid only in
the weak forcing limit we first contrast the theory against the numerical
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shape of an(xn) from Eq. (3.19)
by increasing d (s.u.) beyond
the weak forcing limit. τa =
0.01, λp = 50, s = 1.1 s.u.

data in Fig. 3.8 for d = 0.5, to confirm the good agreement2. More
detailed numerical explorations reassure us that both adiabaticity and
small d approximations are justified and that the small deviations in
Fig. 3.8 are only due to the linear approximation on c(∆). Moreover,
a systematic d expansion in Eq. (3.17) leads precisely to a circle map
supporting the observation that this model is relevant to the description of
our boundary-induced patterns in a given limit (Appendix C). Finally, while
the agreement between the theory and the numerics becomes less precise
as the forcing increases, the theory still describes qualitative features of the
strong forcing regime. As an example, Fig. 3.11 shows how the maxima
and minima of an(xn) shift as d is increased.

3.2.4 Conclusions

In summary, we have shown that undulated channels induce nontrivial
longitudinal effects on propagating periodic wave trains. In particular, the
trains assume quasiperiodic spatial configurations that cannot be simply
deduced from the shape of the channel. These structures can be described
in terms of spatial return maps that are very similar to the circle maps
whose iteration describe the temporal dynamics of forced oscillators. This
similarity allows one to speculate about the existence of even more complex
configurations representing the spatial realizations of the chaotic regimes
of these maps. The phenomenon reported here should be experimentally
observable in the photosensitive Belousov-Zhabotinsky reaction with proper
lighting conditions at the boundaries.

2 Fittings to Fig. 3.8 lead to c0 = 5.37, c1 = 0.25, h0 = 0.40, h1 = 0.052, and τa = 0.1.
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3.3 Sustained Propagation in a Periodically Mo-
dulated Subexcitable Medium

In this Section, we study the effects of spatially homogeneous, periodic
modulations of excitability on wave propagation in a subexcitable medium.

Propagation of an excitation depends upon its spatial properties and
the excitability of the medium. It is possible to determine the limiting
excitability below which the medium is nonexcitable, and except for
transients does not support continuous propagation of autowaves regardless
of the extent of initial stimulation. For the excitable medium there is
a separatrix in terms of excitability and extent of initial excitation that
delineates for each excitability the initial conditions leading to continuous
propagation from those that disappear after initial transient. Systems in the
vicinity of this separatrix are sometimes called subexcitable since depending
on small changes in size and shape of the initial conditions the same medium
can exhibit qualitatively different fate of the initiated wave.

The term subexcitable has been used through the literature by authors
who meant to address situations which here we defined as unexcitable
[106, 5]. Most of the work concerned unfavorable conditions for wave or
signal transmission has used external noise sources to enhance or maintain
such propagation [11, 8, 107, 106]. Here we address a method of controlling
wave propagation by periodically forcing the excitability of a subexcitable
medium [108]. In Section 3.3.1 we present experimental examples of
modulation supported wave propagation and corroborate these results with
numerical studies. We also offer a simple kinematic analysis in Section 3.3.2.

3.3.1 Experimental and Numerical Results

The excitability of the medium was controlled by varying the light intensity
as it has been described in Section 2.3. In order to maintain the chemical
medium in a particular subexcitable state, the light intensity was set to a
reference value, I0. A modulation of the excitability was then introduced by
varying the light intensity as a square wave, with values I0±A/2 alternating
with period T . This was accomplished by projecting computer generated
images similar to the one shown in Fig. 3.12 onto the gel medium. Waves
were generated in the darker region on the left and allowed to propagate
to the region on the right, the illumination of which has been periodically
varied. The initial length of the wave front entering the forced area was
determined by the size of the connecting part between these both regions.

Typical results are shown in Fig. 3.13. Panel (a) shows overlaid images
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16 mm

11 mm

I
0

reference value Figure 3.12: Pattern
projected onto the gel:
wave fronts are created
at the dark leftmost part;
wave propagation is in-
vestigated in the lighter
region on the right; the
bridge connects the two
regions and determines the
initial length of the wave
front.

taken at equal time intervals of a wave propagating in the subexcitable
medium (corresponding to constant illumination at the reference intensity
I0). We see the contraction and collapse of the wave segment due to
a negative tangential component of the velocity at the free ends of the
wave. Panel (b) shows that the propagation distance of the wave is
increased with the application of a periodic modulation of the light intensity
around I0. With longer modulation periods, the wave propagation is
greatly enhanced, as shown in panel (c). Sustained wave propagation is
exhibited for certain periods and amplitudes of light intensity modulation

a

b

c

Figure 3.13: Overlay of images
taken every 20 s of a wave
propagating in a subexcitable
light-sensitive BZ medium with
periodic modulation of light in-
tensity: I = I0 ± A/2, I0 =
3.87 mW/cm2, and A = 0.22
mW/cm2. (a) wave evolution
with no modulation, (b) partial
support of wave propagation
with a modulation period of T =
66 s, and (c) sustained propaga-
tion with T = 133 s. Reagent
concentrations: 0.27 M NaBrO3,
0.05 M malonic acid, 0.2 M
H2SO4, 0.15 M bromomalonic
acid, 2 mM Ru(bpy)2+3 . The
medium domain is 1.59 cm ×
0.74 cm.
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a

b

c

d

Figure 3.14: Calculated wave behavior using the Oregonator model of the
photosensitive BZ reaction, Eqs. (2.20)-(2.21). Excitability is modulated periodically
through φ = φ0 ± A/2, where φ0 = 0.0766 and A = 0.004, as a square wave with period
T . (a) wave evolution with no modulation, (b) partial support of wave propagation with
a modulation period T = 9, (c) sustained propagation with T = 10, and (d) expanding
wave with T = 11. Zero flux boundary conditions were used in an array of 900 × 200
points (time step 10−3 and grid point spacing 0.15). The parameters were ε = 0.03,
f = 1.4, q = 0.002, Du = 1, and Dv = 0; the initial length of the wave segment was the
same in all calculations (6.8 s.u.).

that generate excitabilities above and below the subexcitable reference
state on an appropriate time scale. Numerical simulations with the
two-variable Oregonator model modified to include the photosensitivity of
the BZ reaction (Section 2.4), provides insights into the support of wave
propagation by periodic modulation of excitability. Figure 3.14 shows the
evolution of wave fronts calculated with the Oregonator model for different
values of the modulation period T and a constant amplitude A. Wave
propagation in the subexcitable medium without periodic modulation is
shown in panel (a). With T less than the critical value, the temporal
modulation of excitability temporarily prolongs the life of the wave front,
as shown in panel (b), but does not prevent its eventual collapse. Sustained
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Figure 3.15: Wave behavior of the Oregonator model for different values of modulation
period and amplitude. Parameter values below the line correspond to decaying
wave fronts; parameter values above the line correspond to expanding wave fronts.
The boundary corresponds to sustained propagation of wave fronts with periodically
modulated length. System parameters and numerical integration are the same as in
Fig. 3.14.

wave propagation occurs at the critical period Tc, shown in panel (c), where
the wave front displays a periodic modulation in length corresponding to the
periodic modulation in excitability. For periods longer than Tc, the wave
front grows until it reaches the boundary of the medium, panel (d). Once
pinned at the boundaries, the wave takes on the features of an unbounded
planar wave, which propagates indefinitely for these conditions.

The effects of periodic excitability modulation on wave propagation
are summarized in the phase diagram shown in Fig. 3.15, which shows
the qualitative asymptotic behavior as a function of the forcing period
and amplitude. Along the critical line, a balance between the rates of
contraction and expansion gives rise to sustained wave propagation. Below
this line, the modulation is not sufficient to prevent wave collapse, although
wave propagation is increasingly enhanced for periods and amplitudes
approaching the line. Above the critical line, the excitability modulation
supports propagation, and the wave segment increases in length as it
propagates. In our experiments and model calculations, this expansion
always resulted in an extension of the wave to the boundaries of the
rectangular reaction domain.
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a
b

Figure 3.16: (a) Contours of the excited fronts of panel (c) of Fig. 3.14 together with
circles at the right side marking the end points. (b) Enlargement of (a) with added
tangential and normal velocity vectors.

We follow the motion of one of the end points of the front (since it
is symmetrical). The end point is located on the contour of the excited
region for panel (c) of Fig. 3.14. Figure 3.16(a) shows those contours with
the end points marked with a circle. A blow-up of this figure is shown
in Fig. 3.16(b) where the tangential and normal velocity vectors are also
plotted at the end points. Note how the tangential component becomes
negligible during wave expansion and negative when contraction.

Graphs of the temporal evolution of the velocity (Fig. 3.17(a)) both
at the middle point of the wave front, vm, and at the end point, vt and
vn, show a periodical modulation with the forcing period. Whereas vm
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Figure 3.17: (a) Temporal variations of the normal velocity at the middle (vm) of the
wave front and of the normal (vn) and tangential (vt) velocities at the end point for the
case of panel (c) in Fig. 3.14. (b) Temporal evolution of the size of the wave fronts of
panels (b), (c) and (d) of Fig. 3.14.

and vt present a clear square pulse shape synchronized with the external
modulation, vn behaves similarly to wave front in Fig. 3.17(b). Its behavior
is a composition of exponential growth and decay periods.

3.3.2 Analytical Approach

Chemical wave propagation in a medium with modulated excitability can
be analyzed using a simple kinematic model for the motion of a curved
wave front with free ends (see Appendix A). The wave is represented by a
single oriented curve with two end points. Each small segment of the curve
moves in its normal direction with velocity vn, and the end points have a
tangential velocity component vt. We consider an expression for the total
length ` of the curve, evolving in time for homogeneous conditions,

d`

dt
=
∫ `

0
k vn d` + 2vt (3.20)

The first term in Eq. 3.20 represents the increase in length due to the
radial expansion of the curve, whereas the second term corresponds to the
contraction of the curve at its ends. For critical values of the parameters,
these two processes compensate each other to yield a propagating wave
with a constant shape. Thus, integrating Eq. 3.20 under the assumption
k = const., results in the following temporal variation for the total length,

`(t) = ( `0 − `c ) e
t
τ + `c (3.21)
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Figure 3.18: Temporal evolution
given by Eq. (3.21) for different
initial lengths `0

where `0 = `(0) is the initial length, τ = (kvn)−1 is the characteristic time,
and `c = −2vtτ is the critical length such that when `0 > `c, `(t) →∞ and
when `0 < `c, `(t) → 0 3.

This solution is, thus, unstable, with any deviation from the critical
length lc respect to l0, leading to an exponential divergence from this length
with a characteristic time τ as shown in Fig. 3.18.

Observations suggest that modulation of excitability results in two
effectively separate modes of wave evolution, each approximately described
by its own set of empirical kinematic parameters that can be measured from
images of propagating wave fronts (Fig. 3.16). These parameters define two
critical lengths `−c < `+

c and the corresponding time constants τ− and τ+.
The solution for the modulated medium can, thus be written as a piecewise
function:

` =

{
(`0 − l−c ) e

t
τ− + `−c 0 < t ≤ T

2

(`(T
2 )− `+

c ) e(t−T
2

) 1
τ+ + `+

c
T
2 < t ≤ T

where t is taken modulo T . Since the length changes periodically in time,
the length at the end of the period must return to its initial value, `(T ) =
`(0), which leads to the following relation between the initial condition l0
and the forcing parameters:

`0 =
`−c (1− e

T
2τ− ) e

T
2τ+ + `+

c (1− e
T

2τ+ )

1− e
T
2

( 1
τ− + 1

τ+ )
(3.22)

3It should be noted that exponential trends are also observed experimentally during
one half of the modulation (see Fig. 3.16)
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Figure 3.19: Length of expanding (dotted line), sustained (solid line), and contracting
(dashed line) waves according to Eq. 3.20. Modulation periods are T = 9.985, 10.000,
and 10.015, respectively, with 10.000 being the critical period for the initial half-length
`0 = 6.66 s.u. Parameters are `−c = 5, `+c = 18, τ+ = τ− = 2.6. Small circles correspond
to length of the wave calculated with the Oregonator model with the same parameters
as in Fig. 3.14, panel (c).

Figure 3.19 shows the evolution of the front length given by Eq. 3.22.
The parameters are chosen to approximate the wave behavior in Fig. 3.14.
The three trajectories correspond to three different modulation periods.
The modulation with the critical period Tc, found from Eq. 3.22 for this
particular initial length, results in a periodic solution. The modulation
with a lower period, T < Tc, produces a decaying solution; the modulation
with a higher period, T > Tc, produces an unconstrained growth in the
length of the wave.

The support of wave propagation in a subexcitable medium by
excitability modulation can be understood by considering the wave segment
evolution during each half of the driving period. During the half where the
medium is more excitable, the wave develops a curved shape and increases
in length; during the half where the medium is less excitable, the wave
shrinks and becomes quasiplanar. Both the amplitude and period of the
modulation, as well as the initial length and curvature of the wave segment,
determine which process dominates and, hence, whether the wave shrinks
and disappears or grows and continues to propagate. When these processes
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are balanced, sustained propagation is exhibited, as shown in panels (c) of
Figs. 3.13 and 3.14 respectively.

We should note, however, that although this approach yields a
description in good agreement with the phenomenology, it relays on rather
arbitrary definition of the ’front’ and its ’endpoint’.

A more satisfactory approach can be developed starting with a shape
of a wave segment propagating with a constant size in a medium of just
sufficient excitability. In this case it is possible to define a meaningful
contour of the reaction zone. The point where the contour becomes
tangential to the direction of the wave translation provides an unambiguous
definition of the endpoint. Considering how the shape of such segment
changes in response to a small perturbation of the medium excitability, one
can arrive to the exponential divergence law similar to the one presented
above.

3.3.3 Conclusions

In summary, we have found that periodic modulation of excitability around
a subexcitable state may give rise to sustained wave propagation, depending
on the forcing parameters and initial conditions. For critical values of these
constraints, the sustained propagation assumes a form where the length of
the wave varies periodically with the period of the external modulation.
The propagation is further enhanced by adjusting the forcing parameters
such that the wave front grows in length.

It should be noted that both experiments and numerical simulations
have been carried out by using a square-shaped periodical function. Similar
results can be obtained with a smoother periodical modulation such a
sinusoidal one and a continuous analytical model can be derived showing
analogous trends as the ones displayed by the piecewise model here
introduced.





Chapter 4

Wave Propagation under
Disorder

Abstract. The effect of quenched disorder on the propagation of
autowaves in excitable media is studied both experimentally and numerically in
relation with the light-sensitive Belousov-Zhabotinsky reaction. Spatial disorder
is introduced through a random distribution with two different levels of light
intensity. In one dimensional case the (time-averaged) wave speed is smaller
than the corresponding to a homogeneous medium with the mean excitability.
On the contrary, in two dimensional medium the velocity increases. The results
are interpreted using kinematic and scaling arguments. In particular, for d = 2
we verify a theoretical prediction of a power-law dependence for the relative
change of the propagation speed on the disorder amplitude. In a complementary
study, the behavior of chemical waves advancing through a disordered excitable
medium is investigated in terms of the percolation theory. By controlling the
number of sites with a given illumination, different percolation thresholds for
propagation are observed. The influence of spatiotemporal colored disorder
on wave train propagation in nonexcitable media is also investigated. This study
has been performed within the framework of the Oregonator model in terms of the
characteristic noise parameters. Some features seen in single front propagation,
for instance, noise induced propagation improvement for an optimal level of the
noise intensity, are also found for periodic wave trains. However, we also observe
novel phenomena, such as an enhancement of propagation for correlation times
of the noise comparable to the period of the wave train.

4.1 Wave Propagation under a Quenched Disor-
der

4.1.1 Introduction

Propagation of excitation waves in inhomogeneous media has been studied
from different points of view. One such approach considers the interaction
of waves and inert obstacles, which is thought to be relevant to cardiac
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fibrillation. Excitation waves may be disrupted by irregularities in the
heart muscle [109, 110, 111] and the planar front broken [112, 55, 56]). The
effect of fluctuations on nucleation and propagation of waves has also been a
subject of extensive research [113, 114, 10, 83]. Earlier studies demonstrated
many ingenious ways to introduce fluctuations into chemically reactive
systems. In one experiment carried out by De Kepper and Horsthemke [115]
the noise generator has been a container full of polystyrene balls shaken by
a turbulent flux of air. After crossing this device, stochastically modulated
light has been used to produce transitions in a chemical reaction. In a
different experiment performed by Maselko and Showalter [116] catalyst
coated resin beads in a BZ medium served as nucleation sites for the
wavefronts.

Fluctuations allow systems to explore new regions around those present
in the deterministic scenario. Noise is ubiquitous in any realistic situation
and it is natural that its effects on wave front propagation had been
addressed in many papers during the last years [117, 118, 119, 120,
121, 122, 123, 124, 14, 15]. Different aspects of front propagation have
been considered, especially the modification of the front velocity and the
spreading of the front due to fluctuations [117, 122, 123] and with self-affine
scaling behavior characterized by a roughening exponent [124, 14, 15]. The
scaling phenomenology exhibited by stochastically growing interfaces has
been analyzed from different points of view, namely during the time regime
corresponding to transient development [15, 125] and during the time that
follows transient relaxation where the overall propagation rate of the steady
propagation of the interface is characterized [14].

The role of fluctuations has been modeled using both additive and
multiplicative noise sources. Both bistable or excitable wave front
motion in one and two dimensional media have been considered. Front
roughness induced by fluctuations has received special attention [126,
127]. Particularly there have been analyzed the quenched versions
[128, 125] of either the Edwards-Wilkinson (EW) [129] or the Kardar-
Parisi-Zhang equations [15] as they apply to kinetic roughening induced
by time-independent disorder. In this section we aim at studying, both
experimentally and numerically, the effects on the propagation of autowaves
originated by introducing time independent random spatial fluctuations in
the medium excitability [130, 131]. Specifically, rather than characterizing
the front roughening we are interested in how the propagation velocity is
affected by the amplitude of the disorder depending on the dimensionality
of the noise. This question is elucidated in Section 4.1.2.
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Wave front propagation through a lattice with random excitability
affords a chance to mimic percolation phenomena experimentally using
autowaves. Percolation theory allows to interpret many physical
experiments where connectivity plays a fundamental role (for a review,
see Refs. [132, 133]). Representative examples are electrical conductivity
in disordered semiconductors [134, 135], percolation at the superconducting
transition in Y–Ba–Cu–O thin films [136], two–dimensional percolation in
cluster deposition [137] and fingering phenomena [138].

Considered in its original version, percolation is a static geometric tool
relating accessibility properties within a lattice and eventual crossing of it to
the occupancy probability of its constituent sites. In this sense, percolation
theory establishes the existence of a threshold or critical value pc, below
which only finite (non connecting) clusters are present, whereas an infinitely
connected path is generated at pc. In addition to the examples cited above,
there are well-known situations, such as fluid displacement in oil fields or
forest fire spreading, where percolation ideas, even at their most simple
and intuitive level, have been fruitfully used [132]. However, as far as we
know percolation concepts have never been systematically addressed before
in connection to autowave propagation in chemical media. This is quite
surprising if one considers the apparent similarities between some of the
these situations and the invasion of a non-excited medium by an excited
front.

In Section 4.1.3, we study both experimentally and numerically the
propagation of a wave front in a medium consisting of clusters with two
different values of excitability [139]. Waves could only propagate through
one kind of clusters, which reminds the situation found in experiments of
disordered semiconductors [134, 135]. Characteristic times are studied as a
function of the relative excitability levels and interpretations are given in
terms of the classical percolation theory.

4.1.2 Random Dichotomous Disorder. Distorting Pheno-
mena

4.1.2.a 1D Disorder

In order to investigate the effect of spatial disorder in one dimension, the
experiment shown in Fig. 4.1 has been conducted. We use a photosensitive
BZ medium divided into two halves - one homogeneous and another one
inhomogeneous. Between them, the medium is nonexcitable because of the
high light intensity. The spatial disorder on the right part is described
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Figure 4.1: Propagating wave front on
light sensitive media consisting of a left-
side homogeneous and a right-side quasi-one-
dimensional inhomogeneous medium with a
brighter stripe between them where fronts
can not propagate. An initial flat front
splits into two that were represented at three
different times. The front which propagates
through the inhomogeneous part undergoes
an appreciable delay with respect to the
other one. Stripe size, ` = 1.1 cm. Reagents
concentrations: 0.71 mM Ru(bpy)+2

3 , 0.18 M
KBr, 0.33 M malonic acid, 0.39 M NaBrO3,
and 0.69 M H2SO4.

in Section 2.3.2.a as a dichotomous quenched noise in one dimension in
the direction of the wave front propagation. The light intensity in the
homogeneous part is the same as the mean value I0 in the inhomogeneous
distribution.

Wave propagation starts at the bottom of the medium where a planar
front is created as described in Section 2.3.1. As the front propagates
upwards, it splits in two parts because of the nonexcitable middle region.
The resulting wave fronts propagate through the corresponding medium
of interest without interacting with each other. Figure 4.1 shows three
instants of this propagation where the planar front in the inhomogeneous
part is observed to propagate slower on average than that propagating
under uniform illumination equal to the spatial average of the illumination
in the inhomogeneous region. Note that the wave fronts preserve planar
shape because of the 1D character of the modulation.

Several experiments were carried out to characterize the dependence of
the wave front velocity on the amplitude of the disorder. The velocity of
planar autowaves decreases linearly with light intensity in the illumination
range considered here. The two values of the dichotomous distribution
were varied around fixed mean light intensity I0 giving rise to different
amplitudes of the disorder. Velocities were measured as the ratio of the
traveled distance between two points and the corresponding time interval.

The results are shown in Fig. 4.2 together with the numerical
simulations performed using the Oregonator model (see Section 2.4). The
continuous line is the analytical prediction based on kinematic arguments
presented further. The vertical axis is the wave velocity v through the
inhomogeneous medium relative to the velocity v0 in the homogeneous
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Figure 4.2: Dependence of the relative variation in wave velocity vs amplitude disorder
both numerically (φ0 = 0.01) and experimentally (I0 = 0.36 mW/cm2). Continuous line
(slope −1) represents the theoretical prediction given by Eq. (4.8). Numerical points (�)
were simulated with stripes of width 10 space units and the best linear fit corresponds to
a slope of −0.93; experimental data (o) were obtained with squares of length of 1.1 cm
and adjusted to a line of slope −1.42. Model parameters: f = 3, q = 0.002, ε = 0.05,
Du = 1, Dv = 0, φ0 = 0.01

part. The horizontal axis is the degree of disorder given in terms of wave
velocity. The first conclusion is that one dimensional spatial disorder in
excitable media induces a decrease in the wave velocity as the amplitude
disorder increases. Both numerical and experimental data follow the same
trend. The observed discrepancies between them probably can be caused
by unavoidable experimental limitations and systematic inaccuracies in
velocity measurements.

As an additional remark, there exist numerical results showing the
influence of different length scales of heterogeneities on the propagation
speed of pulse propagation in one spatial dimension [140]. The
heterogeneous system consisted in a periodically changed excitability of
modulation period d (which would correspond to our stripe size). They
found an optimal size dopt for which the pulse propagates faster than in the
corresponding effective homogeneous medium. For d > dopt the velocity
decreases with d. The observed feature is due to the smallness of the
modulation wavelength compared to the pulse width for d ≤ dopt (which
is not our case). In these conditions the pulse profile can not completely



68 Wave Propagation under Disorder

t
f
 

t
i
 

Figure 4.3: Two-dimensional
setup with randomly
distributed squares. An
initial flat front gets distorted
in the randomly illuminated
zone and moves faster than in
the homogeneous part; ` = 2.3
mm and size of the medium in
the transversal direction to the
propagation is 5.4 cm. Same
concentrations of reagents as
in Fig. 4.1.

adapt its profile to the the local inhomogeneities as it propagates because
it does not have enough time.

Our experimental and numerical conditions would fall in the limit
of large modulation wavelength. In this limit, both periodically and
stochastically changing excitation give rise to a propagation velocity smaller
than in the corresponding homogeneous medium. Despite the authors in
[140] do not analyze the velocity dependence on the difference between the
two values of the dichotomic distribution, the same linear decreasing trend
is expected.

4.1.2.b 2D Disorder

The 2D setup was prepared analogously to the quasi-one dimensional
configuration, this time with randomly distributed squares of two possible
light intensities in both directions of the inhomogeneous part, as shown
in Fig. 4.3. A typical experiment consisted again in generating a planar
wave at the bottom of the medium and observing its evolution along the
vertical axis. In this way both the shapes and velocities of the two free-end
non-interacting fronts at either side of the central stripe were compared.

Contrary to the 1D situation, in 2D, dynamically evolving, distorted al-
though still well-defined autowaves propagate faster than the corresponding
planar front propagating under uniformly distributed light with the same
intensity as the spatial average over nonuniform area.

Quantitative measurements are shown in Fig. 4.4, where again the
relative wave velocity in the inhomogeneous part is shown against the
amplitude disorder. The wave velocity of the distorted front was measured
in this case by averaging the front position h(x, t) at time tf , which is equal
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to:

h(t) =
1
N

N∑
i=1

h(i, t) (4.1)

where one summation term corresponds to one cell of the pattern.
Wave propagation was found to be dependent on the spatial correlation

of the disorder. Measurements for different cell sizes carried out both
numerically and experimentally are shown in Fig. 4.4. For the same
amplitude of disorder, an increase in the relative wave velocity is observed
as the square size becomes larger. The spatial correlation is an important
factor in the wave front dynamics. As it becomes larger, the wave front
gets more distorted because it has more time to adapt its profile to the
local velocity field. This behavior reaches a saturation point (see Fig. 4.4)
which agrees with the fact that the maximum speed of the front is given
by the highest local velocity [82].

Studies of wave propagation through a medium with a checkerboard
type excitability distribution have been carried out in [140] using the
modified Oregonator model for light-sensitive BZ media. The authors
investigate the dependence of the wave front velocity on the size of
the spatial inhomogeneity obtaining higher pulse velocities than the one
corresponding to the equivalent homogeneous situation. But again they do
not consider the dependence on the difference of the two excitation values
of the checkerboard. But within the context of growing interfaces in weak
stirred fluids, periodic flow fields consisting in a checkerboard pattern of
vortices of opposite signs yield quadratic dependence of the propagation-
rate increment v − v0 on the amplitude disorder.

These experimental observations of the differences between propagation
in a one and two dimensional disorder are also found in numerical
simulations. These will be discussed and interpreted in the next section
in the framework of the kinematical analysis.

4.1.2.c Theoretical Interpretation

Before proceeding further let us clearly state the conditions with which our
experimental and numerical study comply. This will enable us to interpret
the observed results in terms of generic kinematic arguments widening
in this way the scope of our study beyond the particular randomness
realization analyzed here:

i) We restrict ourselves to thin fronts measured on the length scale
introduced by the disorder.
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Figure 4.4: Dependence of the relative variation in wave velocity on the amplitude
of disorder from simulations (φ0 = 0.01) and experiments (I0 = 0.36 mW/cm2).
Simulations: medium width of 160 space units with noise squares 10 (•), 20 (∗) and 40
(�) units in size. Continuous lines represent non-linear fits of Eq. (4.12), with β = 0.831,
1.04 and 1.35 respectively. The typical front width is about 2.5 s.u. Experimental results
are shown for a medium width of 5.4 cm and ` = 2.3 mm (o), and for 6 cm and ` = 2.7
mm (�), with β = 1.59 and 2.89 respectively. Model parameters are the same as in
Fig. 4.2.

ii) We verify, both experimentally and numerically, that the autowave
speed adapts quasi-adiabatically to the local conditions.

iii) Finally, in 2D case, we assume that the amplitude of disorder, i.e., a
measure of the dispersion of local velocities in our two-state model, is
small.

In particular for the 2D case, the above conditions lead us to conclude
that diffusion lengths in this problem will always be considerably smaller
than the length scale associated to the front deformation. In turn
this justifies the use, both as a central theoretical issue as well as
an advantageous computational resource, of the linear speed-curvature
relation, also well-known as first-order eikonal equation ([43, 44, 141, 142]
and for a much more recent treatment see also [143, 144] and references
therein), which gives the normal velocity of the autowave in terms of its
local plane-wave value corrected by a curvature term (see Appendix A). On
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the other hand, by invoking condition (ii), this local velocity is assumed
to be at any time fixed by the space-dependent illumination. We translate
such a relation into Cartesian coordinates for the position of the front,
denoted y = h(x, t) (Appendix A):

ht = v(x, h)
√

1 + (hx)2 + D
hxx

1 + (hx)2
(4.2)

where D is an effective diffusion coefficient and, in general, a function of
diffusion coefficients of the species involved in the front propagation. This
coefficient is assumed to be independent of the light intensity [82, 145].
Besides conditions (i) and (iii) and the assumption of isolated fronts, let
us consider Eq. (4.2) to be valid within the Zykov’s limit (see ref. [44]).
D has been estimated from the integration of the full Oregonator model
with circular fronts. To validate our assumptions, both versions, the
complete reaction-diffusion scheme (2.20)-(2.21) and the local one (4.2),
were checked to give the same results with great accuracy, for both front
shapes and velocities.

Let us formulate our theoretical scenario. In a 1D situation, and
invoking conditions (i) and (ii), the propagating interface can be viewed as
a point-like object which follows instantaneously a spatial profile of velocity
v(y) = v0 + δv(y), which is two-valued and characterized by

〈v(y)〉 = 0

〈v(y)〉 = (δv)2

It may be convenient to relate the time-averaged velocity v̄ to the statistical
properties of v(y). If the medium width L is large enough compared to the
spatial correlations of the disorder and under self-averaging conditions, then

1
v̄

=<
1

v(y)
> (4.3)

Substitution of v(y) and taking v0 as a common factor gives

<
1

v(y)
>=

1
v0

<
1

1 + δv
v0

> (4.4)

Considering δv(y) to be bounded by |δv(y)| < v0, the Taylor series
expansion of the right part of this equation reads,

<
1

v(y)
>=

1
v0

∞∑
n=0

(−1)n <

(
δv

v0

)n

> (4.5)
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expression which relates the time-averaged velocity to the statistical
moments of the disorder. For the two-state model considered here, δv ≡
±∆v, the right part of Eq. (4.5) can be computed exactly,

<
1

v(y)
>=

1
v0

∞∑
n=0

(
∆v

v0

)2n

(4.6)

and immediately following from these Taylor series,

<
1

v(y)
>=

1
v0

(
1

1− ( δv
v0

)2

)
(4.7)

Rearranging terms, we obtain an equation in terms of a reduced velocity,
which relates the time-averaged velocity and the amplitude of disorder

v̄ − v0

v0
= −

(
∆v

v0

)2

(4.8)

The theoretical prediction represented by this equation was compared
with numerical and experimental results in Fig. 4.2. The quantitative
agreement is excellent in the numerical simulations. Experimental
results also support the previous theoretical considerations given the
unavoidable experimental limitations mainly due to light dispersion and
intrinsic inaccuracies in velocity measurements. This effect is shown in
Fig. 4.2 where experimental data deviate from the theoretical prediction
(continuous line) as the amplitude of disorder increases. Here, the inhibitor
which is continuously produced in the brighter squares tends to invade
the darker ones, increasing there the effective value of the illumination
intensity. This effect becomes more important as the amplitude of the
disorder increases. Therefore, the corresponding mean value of the light
intensity I0 varies slightly with the amplitude of disorder.

It should be remarked that the previous expression derived for a 1D
random excitability distribution can be easily obtained for a periodic
distribution giving rise to the same result. If we consider N squares of
size ` of alternating excitabilities corresponding to speeds v+ = v0 + ∆v
and v− = v0 −∆v, the time-averaged velocity after propagating a distance
L = N` is v = L/T , where T = t1 + t2 + ... + tN and ti is the time
spent in each square. Because of the periodically changing excitability,
T = N

2 (t+ + t−) being t+ = `/v+ and t− = `/v−. Substituting T and
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making some calculations, we obtain

v =
L

T
=

N`
N
2 ( 1

v+
+ 1

v−
)

=
v2
0 −∆v2

v0
(4.9)

which gives the same dependence as Eq. (4.8).
In 2D the situation is more involved. We start directly from our central

equation (4.2) and develop it, consistently with approximations (i)-(iii)
above, using a small-gradient approximation for (1 + h2

x)±1/2 ∼ 1 ± 1
2h2

x.
Noting v(x, h) = v0 + δv(x, h) and retaining the lowest-order nonlinearity
on hx we have

ht = v0 +
v0

2
(hx)2 + Dhxx + δv(x, h) (4.10)

where an extra multiplicative term (hx)2δv(x, h) has been neglected
assuming small amplitudes of disorder. Notice that, written in this way
and after some trivial reparameterization to remove the trivial v0 term
(h → h − v0 t), this equation strongly resembles the well-known KPZ
model for the propagation of random interfaces [15]. A quite similar
KPZ-like equation has also been considered by Kerstein and Ashurst [14]
when dealing with interfaces propagating in randomly advected media.
The only notable difference in their equation is that the diffusive term
hxx, responsible for the transverse redistribution of fluctuations along the
interface, is replaced by a product of hx with the transverse component
of the advecting flow. They have also shown that for weak randomness
(weak stirring) such transverse redistribution effect is irrelevant for their
scaling analysis. What makes such an analysis particularly appropriate to
our situation is that the authors have focussed explicitly on the limit of
frozen flows, which is completely equivalent to our scenario of quenched
disorder. Under these conditions the main result reads explicitly [14],

uT = λ + cλ

(
u′

λ

)p

(4.11)

being uT the steady propagation velocity, λ the laminar flame speed, u′

the root-mean square velocity fluctuation of the flow field, c a numerical
coefficient, and p = 4

3 . Identifying uT , λ, and u′ with v, v0 and ∆v
respectively, and rearranging terms, Eq. (4.11) transforms into

v̄ − v0

v0
= β

[(
∆v

v0

)2
]2/3

(4.12)



74 Wave Propagation under Disorder

We use this equation to fit the numerical and experimental results in
Fig. 4.4 with good quantitative agreement. In particular, the observed
power laws and corresponding exponent are consistent with the theoretical
prediction, whereas the prefactor β in Eq. (4.12) is clearly seen to depend
on the length scale of the spatial inhomogeneities.

4.1.2.d Conclusions

In excitable media spatiotemporal variation of the medium’s properties
provides a rich set of possibilities for affecting wave front dynamics. We
have studied propagation in a medium whose dichotomic time-independent
excitability varies randomly in space. In 1D, the relative variation of
the velocity with respect to the velocity v0 in the corresponding effective
homogeneous medium decreases linearly with ∆v, as the total time spent
in crossing the whole medium becomes larger. In 2D, the propagation-rate
v − v0 increases proportionally to the 4

3 power of the disorder amplitude
relative to v0. This time the front gets distorted and the interplay between
curvature (influenced by the length of the inhomogeneity) and the fast and
slow motion of the wave parts determine the velocity of the whole front.

4.1.3 Percolation Phenomena

Many physical processes are easily explained within the context of
percolation theory. Such processes are called critical phenomena in the
sense that a peculiar behavior emerges near some critical value related to
geometry. An illustrative example is that of an insulating surface randomly
covered by small pieces of a conductive material. As we add more and
more of the conductive patches, the conduction across the surface will
at some point suddenly jump from zero up to some high value and will
increase relatively slowly after that. There are other similar examples such
as spreading of the fire in a forest as a function of the density of combustible
material or percolation of a fluid through a porous substrate as a function
of substrate porosity. In each of these cases there is a critical value of the
relevant parameter dramatically changing the mode of conductance, fire
spreading, etc.

A simple percolation model is a 2-dimensional square lattice, with cells
randomly populated with a probability p. If the number of cells is very
large, we see that for small probabilities p, there is no path through the
populated cells connecting the opposite sides of the lattice. However, this
path always exits for p > pc. Specifically, the first connecting path of infinite
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a b

c d

Figure 4.5: Four different snapshots of the propagation of a wave front through a
light sensitive BZ medium consisting of a random distribution of excitable squares (black
squares) in a nonexcitable medium (white squares). The wave can propagate only through
black sites. The initial wave front propagating from the bottom, (a), breaks up and only
a small part reaches the top while other fronts move around the lattice, (b-d). Times,
(a) 0 s, (b) 778 s, (c) 1068 s and (d) 1405 s. (Proportion of black squares, p = 0.5;
size square, 3 mm; medium size, 4.5 cm × 6 cm; light intensity in black squares, 250
µW/cm2, and in white squares, 750 µW/cm2.

length appears at p = pc (for an infinite lattice) and with increasing p its
length reduces to the limit ultimately set by a straight connection between
the sides of the lattice.

The phenomenology described above has the same features as the one
observed with autowaves propagating through a disordered medium with
nonexcitable clusters (see Fig. 2.6). This is shown in Fig. 4.5 where a
planar wave front starts to propagate at the bottom-side of the medium
and reaches the top side after breaking up into several parts due to the
white cells that are nonexcitable. Figure 4.5 shows in four different panels
the time evolution of a wave front in a single experiment. Only one of them
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reaches the upper side, whereas the others wander around the lattice until
their total annihilation, Fig. 4.5(d).

Experimental measurements of the transit and termination times (which
will be defined later) were done for different values of the proportion p
of squares with a given light intensity (excitability). Five experiments
were carried out for each value of p. Each realization corresponds to a
different inhomogeneous pattern of n × m randomly distributed dark and
light squares (black and white from now on) of light intensities Ib and Iw

respectively, chosen in such a way that the wave cannot propagate through
the white squares. This favors the breaking up of the front into several small
fronts that move independently through the lattice. In order to change
the actual connectivity of the two–dimensional lattice, two different light
intensities were used for the dark squares. With the lowest light intensity,
waves can propagate from a black site both to the nearest neighbor black
squares (squares with one side in common) and to the next-nearest black
neighbors (squares with one vertex in common) (see Fig. 4.6(a1-a3)). With
the highest light intensity, waves can only propagate between two black sites
with a common side (Fig. 4.6(b1-b3)). Figure 4.6 bottom shows a schematic
drawing of the two types of connectivity within the lattice, where top and
bottom lines are connected through the occupied sites represented by the
bigger dots.

Figure 4.7 exhibit the footprint of percolation phenomena. The inverse
of the transit time is shown averaged over five realizations for each p. The
transit time is defined as the time elapsed from the wave front leaving
the bottom part of the medium until some small piece of it reaches first
the top. No successful wave propagation is found below a critical value
pc which depends on the light intensity used for the black cells, pc ≈ 0.4
or pc ≈ 0.6. For p well below pc, there are mostly isolated sites and a
few small clusters, so that the wave front cannot reach the upper edge
of the pattern. For p well above pc, most of the black sites belong to
the infinite cluster, and the transit time is approximately constant. At
the percolation threshold, pc, a fractal path of neighboring black squares
appears which connects the bottom with the top of the medium for the
first time, either through the corners or common sides, pc ≈ 0.4, or only
through the common sides, pc ≈ 0.6. As a result, even though the wave
propagates through the medium, the percolating cluster is very different
from a straight line, slowing the wave front down.

What happens near pc is called critical phenomena and most of the
quantities that describe the system either become null or diverge at pc as
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Figure 4.6: Top: numerical simulation of
the wave propagation through black squares
with different values of the parameter φ,
(a1-a3) φ = 0.01 and (b1-b3) φ = 0.015
giving rise to different types of connectivity.
Left: cluster connectivity in a square lattice
here represented by the centers of the
square cells. a) Clusters are defined as
groups of nearest and next-nearest neighbors
which are occupied (bigger dots). The
site percolation threshold is about 0.4072.
b) Only nearest neighbors are allowed to
form clusters if they are occupied. The
percolation threshold is shifted to 0.5928.
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Figure 4.7: Inverse of the transit time for propagation between both edges of the
experimental system (see text) is plotted as a function of the probability of black sites p.
The continuous lines represent nonlinear fits to Eq. (4.13) above the percolation threshold
for two different geometries, (�) cells connected by common sides, (o) cells connected by
common sides and corners. At least five experiments were carried out for each value of p
in order to compare with theoretical results typical of infinite media. Parameters of the
fitting curves are: (o) α = 0.1, pc = 0.4. (�) α = 0.08, pc = 0.6.

a power law according to a critical exponent. In our case, the fraction P
of sites belonging to the infinite network is proportional to the inverse of
the transit time τ : for large lattices we have no propagation (τ−1 = 0)
if no infinite network of neighbors is present, that is for p < pc. When p
is appreciably larger than pc, nearly all the black squares have clustered
together to form one infinite network, and the wave front velocity (∝ τ−1)
as well as the fraction P of sites in the infinite network increase linearly
with p. We expect that this linear relationship between P and τ−1 holds
for the whole range of p.

From percolation theory, the parameter P obeys a power law when
p → pc, in the form P ∝ (p− pc)β. The critical exponent β describes how
rapidly the connectivity of the infinite network disappears at the percolation
threshold. In Fig. 4.7, points corresponding to the elapsed time for p > pc

were fitted as

τ−1 = α(p− pc)β (4.13)

with the critical exponent β = 5
36 corresponding to the square lattice

[132]. It should be noted that critical exponent only depends on the
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Figure 4.8: Extinction time for autowaves propagating through lattices with probability
of black sites p, (left) experimental, (right) numerical simulations, for two different lattice
geometries (symbols have the same meaning as in Fig. 4.7). For p → 0, the front can
propagate only through a few black sites before extinction, while for p → 1, almost the
whole front reaches the top of the lattice. In between, at the cusp the small broken parts
of the front spend an infinite time wandering through the lattice until annihilation. Solid
lines are spline interpolations of the experimental and numerical data (which are averaged
over 10 runs for each value of p). (a) Experiments: Maxima located at (o) pc ≈ 0.5, (�)
pc = 0.6. Parameters as in Fig. 4.7. (b) Simulations: Maxima located at (o) pc ≈ 0.45,
(�) pc = 0.6. Model parameters: ∆t = 0.001, ∆x = 0.3, f = 3, q = 0.002, ε = 0.05,
Du = 1, Dv = 0, φb = 0.01(0.015) φw = 0.04(0.04) to produce pc ≈ 0.45, (pc = 0.6).

dimensionality of the lattice and does not depend on its structure. Thus,
regardless of the different number of neighbors on a given black site (eight
and four), the disappearance of the connecting network at the percolation
threshold follows the same law, only at different percolation thresholds
(0.5928 and 0.4072, respectively).

The extinction time is defined as the time elapsed until complete
disappearance of all waves from the same lattice. Figures 4.8(a-b) show
the lifetime of autowaves averaged over many lattices with the same p
as a function of probability p for two spatial geometries: square lattice
connected only by nearest neighbors and by both nearest and next-nearest
neighbors. Experiments show a peak at p ≈ 0.6 for the first geometry
and near p ≈ 0.5 for the second one. At p ≈ 0.6 extinction times are
longer than at p ≈ 0.5 because in experiments light intensity was kept
higher in order to restrict wave propagation through sides in common only,
thus decreasing wave velocity. The presence of such peaks is associated to
the fractal properties of the connecting cluster present at p = pc, whose
length (and hence the corresponding transit time) is no longer linearly
proportional to the length of the lattice. Due to finite-size effects the peaks
appear as of finite height, and are round shaped. In fact, the value of
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p ≈ 0.5 does not match exactly the threshold pc = 0.4072 predicted by the
theory and found in the transit times measurements of Fig. 4.7. However,
in the simulations lattice sizes were larger, and the critical value obtained
in Fig. 4.8(b), pc ≈ 0.4, agrees better with the expected value1.

4.2 Noise-Enhanced Wave Train Propagation in
Unexcitable Media

4.2.1 Introduction

Several publications have appeared recently regarding the effects of noise on
spatial structures in dynamical systems [5, 96, 130, 131, 95, 11, 10]. Most
of them have dealt with single front propagation in subcritical conditions,
which is enhanced when an optimal level of noise is added to the system.
This phenomenon implies that noisy backgrounds can help weak signal
transmission through neural fibers [146, 147] or other nonlinear electronic
circuits [8, 107]. The phenomenon lying behind these examples is generally
referred to as “stochastic resonance”[148].

In 1998, Kádár et al. described noise-supported traveling waves in
two-dimensional subexcitable media [11]. Spatiotemporal noise was applied
to a photosensitive chemical medium for different pixel sizes and using
a Gaussian noise updated at regular time intervals. An optimal noise
level was found at which the relative signal strength became maximal.
The authors also suggested the existence of an optimal noise time scale
supporting propagation. As it was explained in Chapter 1, in subcritical
conditions of excitability, there are two different modes of propagation:
subexcitable [11, 10, 108] and unexcitable. In the subexcitable regime,
wave segments with free ends contract tangentially and may eventually
disappear, depending on their size and shape. In the unexcitable one, any
initial perturbation decays in amplitude until it eventually disappears. This
last scenario is more dramatic since even unbounded waves disappear.

In the present section we study the propagation of a one dimensional
train of wave fronts in the unexcitable regime under a spatiotemporal noise
forcing [149]. Because of the one-dimensional situation we are considering,
only transitions from excitable to unexcitable regimes are possible. The
consideration of a time periodic structure introduces a new feature: the
possibility of interaction between consecutive fronts. We expect to find

1The numerical calculations included in Section 4.1 have been performed by Daniel
Vives, who has collaborated with our group during this PhD thesis.
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Figure 4.9: Simulated medium with the excitability represented in a eight-bit gray
scale. Nu denotes the boundary between the excitable region on the left, where the wave
train is created and propagates, and the spatial distribution of cells of size ` that fluctuate
independently of one another around a mean value φu

0 in the nonexcitable region.

different rates of supported transmission depending on the period of the
wave train and on the correlation time of the noise. Previous studies have
found stochastic resonance related to the intensity of the noise giving rise
to an improvement of the wave front propagation through a subexcitable
medium. Here, we will try to determine from a numerical point of view the
effects on the propagation of a periodic wave train through an unexcitable
channel of a time-correlated spatiotemporal noise as a function of its noise
intensity, correlation time and correlation length.

4.2.2 Numerical Model

Numerical studies were performed using the two-variable Oregonator model
introduced in Section 2.4.2 with a time step of 10−3 t.u. and a grid size
of 0.15 s.u. in a one dimensional array of N = 1000 points. Zero flux
boundary conditions were maintained at the end of the system. The
spatiotemporal fluctuations were introduced through the light intensity
parameter φ in Eq. (2.20). Under homogeneous illumination, the system
becomes unexcitable for φ > 0.024.

Pulses of constant amplitude A = 0.2 and width δt = 0.1 t.u. (equal to
100 time steps) were periodically delivered at x = 0, in order to obtain a
wave train with constant period T . Waves develop and travel through
an excitable medium (its properties being determined by the value of
φe

0 = 0.002) of size Nu = 600 points before entering the unexcitable region,
consisting of an array of independent fluctuating cells of size ` lattice units,
with average light intensity φu

0 = 0.025 (see Fig. 4.9). The expression for
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the fluctuating field as a function of the position is thus:

φ(x, t) =


φe

0 0 < x < Nu

φu
0 +

nl∑
i=1

ξi(t)Θi(x) Nu ≤ x ≤ N
(4.14)

where i is the discrete coordinate of a noise cell ranging from 1 to nl =
(N − Nu)/` and Θi(x) is a shorthand for Θi(x) = Θ(x − (i − 1)`) Θ(i` −
x), with Θ being the Heaviside function. ξi(t) stands for an Ornstein-
Uhlenbeck process at a cell i, namely a Gaussian process with zero mean
and a correlation function 〈ξi(t)ξl(t′)〉 = σ2 exp(−|t − t′|/τ)δil, which is
the same expression as Eq. (2.33) except for the spatial correlation. The
parameter ` fixes the characteristic length of the inhomogeneous fluctuating
excitability. In the limit τ → 0 the white–noise limit ξw(t) is recovered if
σ2τ is finite. For τ →∞ the frozen or static Gaussian distributed noise is
obtained. Numerical simulations have been carried out by varying the noise
dispersion σ, the correlation time τ and the noise pixel size `. The control
points were equally distributed (each 25 lattice units) along the unexcitable
channel, and another one was placed in the excitable zone (x = 500).
Measurements of the ratio between the number of wave fronts reaching
each control point to the number of waves exiting the excitable region were
performed and averaged over five realizations.

4.2.3 Results

Without noise (σ = 0) waves entering the unexcitable region immediately
die out. With modulation, depending on the noise parameters waves can
travel longer distances. The distance also depends on the period T of the
wave train. Figure 4.10 shows the percentage of wave fronts reaching each
control point beyond the border between the excitable and the unexcitable
regions with and without noise. Note the exponential decay with x (x >
Nu) when noise is present, compared to the abrupt (linear) fall when it is
absent, indicating that a few fronts are able to survive and do indeed reach
very far. On the other hand, it seems that more spaced fronts (T > 5) are
more vulnerable to noise, since the distance to which all of them arrive is
drastically reduced.

The main results of the numerical simulations performed varying the
different noise parameters are summarized in Fig. 4.11 for a constant value
of T = 5 t.u. A colormap plot represents the percentage of wave fronts
reaching the control point situated at 175 points beyond the border (Nu =
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Figure 4.10: Percentage of wave fronts reaching the different control points placed
along the unexcitable region (x > Nu), with (bottom) and without noise (top), for
several periods of the wave train. Numerical parameters: ε = 0.05, f = 3, q = 0.002,
Du = 1, and Dv = 0. Noise parameters: σ = 0.001, log10 τ = −0.75, ` = 40 points.

600) as a function of the noise dispersion σ and the correlation time τ , for
three different values of the noise pixel size `. From the figures it is evident
that wave propagation depends on the spatial correlation of the noise. As
` is increased, the percentage of wave fronts reaching the control position
increases as well (note the different scales on the colorbars) and they reach
a maximum for higher values of the correlation time.

• For ` = 10, the noise pixel size is slightly smaller than the front width
(≈ 20 lattice spacings) and there is no noise level or time scale for the
noise that appears to be optimal. Instead, up to a critical value of
the noise intensity (below which the transmission rate is zero) there
is a sharp increase that saturates for high values of σ. No clear
dependence on the correlation time is observed.

• For ` = 100 there are large highly correlated regions, such that
each front propagates under almost pure temporal noise. For low
correlation times, temporal fluctuations occur so frequently that they
are effectively averaged out. On the other hand, for τ > T the noise
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Figure 4.11: Colormap plots of the percentage of wave fronts reaching the control
position at x = Nu + 175, as a function of the noise dispersion σ and correlation time τ
for three different noise pixel sizes `. Note the different scales on the percentage of wave
fronts of the colorbars. Numerical parameters: ε = 0.05, f = 3, q = 0.002, Du = 1 and
T = 5 t.u.

varies slowly and there are fluctuations that allow the propagation to
last longer.

• For ` = 40 there is a compromise between noise intensity and
noise correlation time, giving rise to a tiny improvement on wave
propagation for intermediate values of σ and for correlation times of
the order of the period of the wave train T = 5.

The global effect of increasing the spatial correlation is thus a shift to the
right of the maximum for the transmission rate, here shown as a red area
on Fig. 4.11.

For ` = 40 and a constant value of τ (∼ 1) there occurs stochastic
resonance as a function of the noise amplitude. A better perspective of
the phenomenon is given in Fig. 4.12, for T = 20 t.u. and at different
control points. Close to the boundary Nu the transmission rate decreases
as σ increases, see Fig. 4.12(a). But far away from the extinction point for
the deterministic unexcitable system (x > 125) the rate of wave fronts that
reach distant positions exhibits a peak as a function of the noise variance
σ2 (the signature of a stochastic resonance) Fig. 4.12(b).

A resonance-like behavior is also observed with respect to the correlation
time. Figure 4.13 shows the percentage of wave fronts versus τ for different
control positions at constant noise intensity σ. As in the previous case,
a local maximum develops as τ increases (Fig. 4.13(b)), while for τ → 0
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Figure 4.12: Percentage of wave fronts reaching the positions indicated as labels
superimposed to the graphs, as a function of the noise dispersion σ, for T = 20 t.u.,
` = 40 and log(τ) = −0.75. (b) corresponds to a magnification of (a).
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Figure 4.13: Percentage of wave fronts reaching the positions indicated as labels
superimposed to the graphs, as a function of the correlation time τ , for T = 5 t.u.,
` = 40 and σ = 0.001. (b) corresponds to a magnification of (a).

the medium averages fluctuations and for τ → ∞ the wave train has to
overcome a static structured noise.

In order to gain an insight into the meaning of this last behavior, we
have represented the percentage of wave fronts reaching a fixed position
(x = Nu+175) for two different frequencies of pulse initiation, as a function
of τ . The result is plot in Fig. 4.14. It can be observed that the maximum
rate occurs at different values of τ and that this value is of the order of the
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period of the wave train.

4.3 Conclusions

We have investigated the effect of spatiotemporal fluctuations on a wave
train propagating in an unexcitable regime and shown that stochastic
resonance occurs not only for an optimal intensity of the noise but
also for a correlation time that matches the characteristic time of the
periodic structure. Generally, the introduction of noise has extended the
propagation length. This is in agreement with other studies in noisy
overdamped bistable oscillators [107, 150, 151] where the interplay among
noise, nonlinearity and forcing gives rise to an enhancement of propagation.



Chapter 5

Noise-Induced Brownian
Motion of Spiral Patterns

Abstract. Spiral chemical waves are experimentally and numerically
investigated in the light-sensitive Belousov-Zhabotinsky reaction under randomly
induced spatiotemporal variations of excitability. When the randomness is
absent, the spiral tip performs a circular motion around the core, while when
spatiotemporal disorder is switched on Brownian motion is identified. This is
characterized by an effective diffusion coefficient which shows a rather complex
dependence on the time and length scales of the noise relative to those of
the spiral. In particular, a resonant-like effect was observed with the time
correlation and the noise dispersion fixed. A kinematically based model is used
to interpret the spiral motion whose results are in good qualitative agreement
with experiments and numerics.

5.1 Introduction

Spirals are generic structures in extended nonequilibrium systems. They
occur in many reaction-diffusion systems [33], such as the well-known
Belousov-Zhabotinsky (BZ) reaction [13]. They have also been observed in
a heart muscle during cardiac fibrillation [49, 152] and during aggregation
of Dictyostelium amoebae [153]. Spiral rotating patterns have also
been observed experimentally in extended electronic media such as a dc
driven planar semiconductor, in freely propagating flames in combustion
systems [154] or in the Rayleigh- Bénard convection for certain regimes
of temperature difference across a layer of fluid [21, 32]. Spiral patterns
also appear as elementary oscillatory solutions of the Complex Ginzburg-
Landau (CGL) equation [155] .

Due to their presence in such diverse systems, spiral waves have been
study widely both by theorists [156, 157, 158, 159, 60] and experimentalists
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[13, 39] in attempts to elucidate the dynamical laws governing their
development and motion. Depending on the system, different mechanisms
of spiral initiation are possible. Spatial differences in the recovery
properties, invasion of a wave into a vulnerable region of the preceding
wave [59], as well as sharp boundaries or obstacles [57, 160, 55] are known
to be able to generate spiral waves. Of particular relevance to our study,
in a BZ reaction with catalyst immobilized on the resin beads [116] the
number of spontaneously initiated spirals has been found to depend on the
size of the bead and the level of excitability of the medium.

Beyond the standard description of spiral waves, their response to
spatial and temporal forcing has been largely analyzed. With respect to
temporal forcing [91, 16, 79], periodical modulation of a parameter may lead
to a resonant behavior such as drift of vortices [91, 92]. Temporal [79, 161]
and spatial [16] synchronization occurs when the forcing entrains the
internal oscillatory dynamics with a sequence of frequency-locked regimes
that can be observed as the forcing frequency is varied. Spatial forcing has
been introduced as a light gradient both rotationally and translationally
invariant in space [93] which induced a resonance drift of a spiral wave
equivalent to the one produced by a periodic light modulation in a spatially
uniform medium. Drift of vortices has also been observed under dc
[162, 163] and ac [164] electric fields and periodical mechanical deformations
of an elastic excitable medium [94]. Several studies have shown that the
drift of a spiral as a whole can also occur due to its interaction with a
boundary [98, 100], with other spirals [165, 166] or with defects [167, 168]
which may break the translational symmetry of the medium.

The influence of random heterogeneities on extended excitable systems
has also attracted a considerable attention. Fluctuations in excitable media
have been used as initiator of new spatial structures [116, 10, 169] where
the presence of random perturbations has been found to be necessary for
creation and sustained maintenance of coherent structures. In particular,
Garćıa-Ojalvo et al. [169] studied how parametric noise is able to induce
a complex behavior in a simple numerical model of excitable media whose
dynamics, in the absence of noise, consists of a simple spiral wave which
stays static or performs a meandering motion. Close to the propagation
threshold, in terms of the spatial coupling, the presence of noise gives rise
to a permanent turbulent state which resembles the spiral breakup in the
ventricular fibrillation in the heart muscle [112, 97]. Other constructive
applications of noise concentrate in media which can not support wave
propagation in deterministic homogeneous conditions. That is the case in
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sustained wave propagation in subexcitable media [114, 11, 106] which is a
subject of much theoretical and experimental interest.

Complementary, the role of superimposed disorder on preexisting
spatiotemporal patterns has been examined, in relation to propagating
pulses [130, 123, 83], to the dynamics of CGL spirals [170] and 3D
scroll ring structures [96]. Concerning the vortex motion in noisy media,
different behaviors have been addressed depending on the nature of the
fluctuations. In this venue an oscillatory reaction-diffusion system with
a structured disordered periodic forcing has been analyzed in [83]. The
authors considered both quenched and time-varying disorder (updated on
a time scale multiple of the forcing period) which gave rise to an irregular
stop-start motion caused by pinning and depinning events and to a noisy
flower-like trajectory. In the later case, the mean-square displacement of
the spiral core shows a periodic behavior with time, with period equal to
the mean period of rotation of the spiral. In the same context of a reaction-
diffusion model but with excitable dynamics and space-time white Gaussian
fluctuations, Garćıa-Ojalvo et al. [169] observed a slow meandering of spiral
cores which eventually drift to the boundaries where they disappear. A
similar dynamics due to noise has been observed and analyzed in [170]
within the framework of the CGL equation. The authors start from an
initially stable spiral wave of the CGL in the absence of fluctuations. The
spiral core under a weak additive white noise performs a Brownian motion
characterized by a diffusion constant which increases linearly with noise
strength.

Through this chapter, we will study the effect of a spatiotemporally
correlated structured noise on the motion of a spiral wave in the
photosensitive BZ reaction [95]. In Section 5.2 the tip dynamics under
simple homogeneous and periodical conditions is addressed. In Section 5.3
the random motion of the spiral tip will be described qualitatively as
a function of the correlation time and characterized through the time
dependence of the mean-square displacement of the spiral core. The
diffusion coefficient is quantitatively analyzed for spatially uniform and
spatiotemporal varying fluctuations in Section 5.3.1. The analysis is
completed by proposing in Section 5.4 a simple theoretical model based
on a kinematic approach [157], capturing the basic features observed in
experiments and numerical simulations.
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5.2 Tip Motion. Periodical Forcing

The dynamical behavior of a spiral wave in a homogeneous medium is
studied following the trajectory described by its tip during rotation around
the core. This motion, even in homogeneous conditions, can be very
complex [171, 172] depending on the excitability of the medium and on
the presence of a boundary.

Rigid rotation is the simplest regime of spiral wave motion. The spiral
wave rotates around a circular core with a constant angular velocity and
the shape of the wave front does not change with time, as it is shown in
Fig. 5.1(a) overlaying the contours of the spiral wave at two different times.
A kinematical description of this motion based on the eikonal equation is
given in Appendix A.

Rigid rotation is characteristic to the highly excitable medium. As the
excitability is decreased, the spiral tip starts to meander and its motion
changes to quasiperiodic cycloidal rotation [171]. This compound rotation
is characterized by two frequencies which define the tip motion around a
core with radius R1 and around another circle with radius R2 > R1, giving
rise to a trajectory composed of a certain number of lobes or petals. Such
trajectories are usually called flower patterns. In Fig. 5.1(b-d) three kinds of
trajectories, from circular to five lobed pattern, are plotted corresponding to
different values of the parameter f in the Oregonator model. The motion
becomes more complex for lower excitabilities, consisting of irregular or
even chaotic trajectories.

In order to follow the trajectory of the spiral tip, it is necessary to locate
the tip during its motion. Numerically, the method used to compute the
tip is described in [171] where the tip is defined as the point of maximum
cross product of u and v gradients, where u and v are the variables of the
Oregonator model (Section 2.4).

pmax=-100000
idif=0
iold=itip_cw /Store the previous position
jold=jtip_cw /of the tip
if(itip_cw.lt.25.or.itip_cw.gt.nx-25.or.

jtip_cw.lt.25.or.jtip_cw.gt.ny-25) then
write(*,*) ’The tip is close to the boundary’
stop

endif
iini=itip_cw-xsearch
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a

b c

d

8 s.u. 

Figure 5.1: Trajectories of the spiral tip for different excitabilities of the medium. These
trajectories were obtained with the Oregonator model varying the parameter f : (a) and
(b) f = 1.4, (c) f = 2, (d) f = 3. Rest of parameters: ε = 0.01, φ = 0, q = 0.002,
Du = 1, Dv = 0.6, h = 0.16, ∆t = 0.001.

ifin=itip_cw+xsearch
jini=jtip_cw-ysearch
jfin=jtip_cw+ysearch /Coordinates of the rectangular
do i=iini,ifin /region of search
do j=jini,jfin

dudx=u(i+1,j)-u(i-1,j)
dudy=u(i,j+1)-u(i,j-1) /Partial derivatives
dvdx=v(i+1,j)-v(i-1,j) /of variables u and v
dvdy=v(i,j+1)-v(i,j-1)
if(abs(dudx)+abs(dudy)+abs(dvdx)+abs(dvdy).ne.0.) then

p=dudx*dvdy-dudy*dvdx /Cross product of
if(p.gt.pmax) then /u and v gradients

pmax=p
itip_cw=i
jtip_cw=j

endif
endif

enddo
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a

b

c
1.6 s.u.

Figure 5.2: Tip trajectories measured
for three different periods Tf of sinusoidal
forcing of the parameter φ. The solid line
represents the core motion. Modulation
periods (a) Tf = 1.71, (b) Tf = 1.7325, (c)
Tf = 1.75. The model is the same as in
Fig. 5.1 and f = 1.4, φ0 = 0.01, A = 0.003
(amplitude of the modulation).

enddo
idif=idif+ abs(itip_cw-iold)+abs(jtip_cw-jold)

If the actual tip position changed with respect to the previous step, that
is, idif 6= 0, the coordinates of the spiral tip are stored in a vector. This
algorithm works for clockwise rotation, whereas minor changes should be
make in case of anticlockwise rotation (the cross product changes its sign
and we are looking for the minimum).

The angular velocity and the curvature of the tip trajectory depend
on the parameters of the medium. Hence, if the parameters of the system
(light intensity, chemical concentrations) change, the spiral tip will follow a
new trajectory with a slightly displaced center of motion. If the parameters
are periodically modulated, which is the simplest way to externally force
the medium, the small variations of the trajectory that occur during each
period of the modulation will be accumulated in time. This causes the
tip to follow a trajectory which differs significantly from the corresponding
homogeneous situation and which depends on the modulation period. This
is shown in Fig. 5.2 for three different periods of modulation which give
rise to different resonance drifts of a spiral wave. The cores follow circular
paths (solid lines) characterized by specific radii Rc. As the frequency
of the external force approaches the natural frequency of rotation of the
unperturbed spiral (full resonance), the core center moves along a straight
line (Fig. 5.2b).
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5.3 Brownian Motion. Colored Gaussian Noise

So far we have introduced the dynamics of the spiral wave in various
deterministic situations such as a simple homogeneous case and the motion
under periodical forcing. From now on, our concern will be the study
of the spiral dynamics in fluctuating media, both spatially homogeneous
and structured, subjected to a colored Gaussian temporal modulation
introduced in Section 2.3.2.b.

a b

c d

Figure 5.3: Experimental (a) and numerical (c) initial conditions consisting in a fully
developed spiral wave. (a) wavelength λ = 0.27 cm, period T = 45 s, core size d = 0.11
cm, (b) λ = 9.6 s.u., T = 1.69 t.u., d = 3.2 s.u. Experimental (b) and numerical (d)
characteristic patterns of fluctuating illumination. (b) ` = 0.9 mm, I0 = 0.28 mW cm−2,
(d) ` = 3.2 s.u., φ0 = 0.01. Any cell in the array fluctuates around the same mean value
and with a temporal autocorrelation of the exponential type.

As a first step in examining the effects of spatiotemporal noise on spiral
dynamics we report on a series of experiments conducted with fixed cell
size `, which essentially measures the spatial correlation of the fluctuations
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Figure 5.4: Sequence of snapshots at 0, 15, 30, and 45 min of the motion of a spiral
wave under the effect of spatiotemporal fluctuations (noise-free images). The positions
of the tips of the whole sequence were marked in the last image with the labels 1,2,3 and
4.

and which is assumed to always be comparable to or larger than the size of
the spiral core. In each series we vary the correlation time, τ , keeping the
noise dispersion, σ2, constant (refer to Section 2.3.2.b for the meaning of
the noise parameters). For the sake of comparison, a set of experiments and
numerical simulations has also been performed with pure temporal noise
(i.e. corresponding to the limit of infinite `).

Experiments started with the generation of a free end in a square lattice
of 2.5 cm × 2.5 cm size by inhibiting one half of a planar wave. After 5
minutes under uniform illumination, the medium was covered with a fully
developed spiral of approximately nine wave lengths as shown in Fig. 5.3
and subjected to an illumination pattern of structured noise with Gaussian
random values at each cell.

Numerically, we used the two-variable Oregonator model modified to
include the effect of the light intensity on the Ru-catalyzed BZ reaction
defined by the equation. (2.18)- (2.18). These equations were numerically
integrated using an Euler method with a time step of 10−3 t.u. and a grid
size of 0.16 s.u. in an array of 500 × 500 points with zero flux boundary
conditions. The tip coordinates of the spiral (see Fig. 5.3) were tracked
following the point where the cross product of u and v gradients was
maximal (Section 5.2). For each value of τ , approximately one hundred
trajectories were simulated to reduce statistical dispersion.

The experimental and numerical initial states were selected in such a
way that in the absence of randomness, the spiral tip rotated quasi-rigidly
around its core, with no net translational mobility. After the fully developed
spiral wave was subjected to Gaussian fluctuations its core started to
wander. This motion is pictured in Fig. 5.4, where the spiral follows an
erratic path. In the absence of fluctuations, the sequence would be a
repetition, except for a different phase, of the same initial state represented
by the first image. The Doppler effect in the wave train due to the motion
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Figure 5.5: Logarithmic plots of numerical (a) and experimental (b) data of the tip
dispersion averaged from 12 and 5 runs respectively. The best fit straight line has the
slope 1.096 in (a) and 0.85 in (b).

of the core is also noticeable in this case.
This wandering was found to be of the Brownian diffusion type by

calculating the mean-square displacement at long times. This squared
dispersion follows a linear time dependence, signature of Brownian motion:

〈R2〉 = 〈[r(t)− r(0)]2〉 = 2dDt (5.1)

with d = 2 for the two-dimensional case, D the diffusion coefficient and
r the position vector of the spiral tip. If we take the logarithm at both
sides of Eq. (5.1), we obtain a linear equation y = x + b with y = log 〈R2〉,
x = log t, and b = log 2D. In Fig. 5.5(a), the logarithm of the mean-square
displacement for a set of twelve numerical trajectories obtained for τ = 1.5
t.u. is shown as a function of the logarithm of time and the same is done for
the experimental data for τ = 1 s in Fig. 5.5(b). Skipping the initial points
which correspond to a transient dynamics, the data fit well to a straight
line of slope 1 in both cases, thus confirming the diffusive nature of the core
motion.

The qualitative effect of τ on the Brownian motion of the spiral is
illustrated in Fig. 5.6. Both experimentally (a-c) and numerically (d-f) it
is found that its mobility largely depends on τ . For values of τ smaller,
(Fig. 5.6(a,d)), and greater, (Fig. 5.6(c,f)), than τ = T/2π, T being the
rotation period, the trajectories are confined to a reduced part of the whole
medium. On the contrary, for τ around T/2π, (Fig. 5.6(b,e)), trajectories
span over a larger region reaching the boundary where the spiral finally
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a b c

d e f

Figure 5.6: Superimposition of the final spiral state and the whole trajectory of the
tip for three different values of τ obtained experimentally (a-c) and numerically (d-f). In
the experiment, the noise pattern was updated at 700 ms intervals and was interrupted
during 50 ms every 35 s in order to capture a noise-free image of the wave activity. (a)
τ = 1 s, (b) τ = 35 s, (c) τ = 100 s, (d) τ = 1 t.u., (e) τ = 20 t.u. and (f) τ = 100
t.u. The arrow indicates the initial position of the tip. Experimentally, same parameters
as in caption of Fig. 5.3 and concentrations 0.18 M KBr, 0.33 M malonic acid, 0.39 M
NaBrO3, 0.50 M H2SO4, and 0.71 mM Ru(bpy)+2

3 . Numerically, φ0 = 0.01, ε = 0.01,
f = 1.4, q = 0.002, Du = 1,Dv = 0.6, σ = 0.0033, ` = 3.2 s.u.

dies out.
In the next sections, a quantitative study of this phenomenon will be

shown, in terms of an effective diffusion coefficient calculated from the
tip mean square displacement by averaging over many trajectories at long
times.

5.3.1 Quantitative Results for the Core Dispersion

Before quantitatively studying the response of a spiral wave to the most
complicated scenario of a spatiotemporal external noise, we consider
fluctuations modeled as pure temporal (spatially uniform) noise for the
sake of comparison. As addressed in the previous section, we report
quantitative measures on spiral wave dispersion based on series of numerical
and experimental realizations corresponding to a fixed value of ` (the
spatially uniform case would correspond to the limit of infinite `) which
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Figure 5.7: Typical paths followed by the spiral core under the effect of random
fluctuations for three values of the correlation time. (a) τ = 0.01 t.u, (b) τ = 0.27
t.u, (c) τ = 10 t.u. Rest of parameters the same as in Fig. 5.6.

is larger than or comparable to the spiral core. In each series we varied
the correlation time τ while keeping the noise dispersion σ2 constant.
Representative trajectories of the core motion forced with spatially uniform
noise are shown in Fig. 5.7 for different correlation times.
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Figure 5.8: Effective diffusion coefficient versus noise correlation time τ . Continuous
(spatiotemporal noise case) and dotted (temporal noise case) lines correspond to the fits
of the analytical results given in Section 5.4. (a) Experimental results with parameters
as in Fig. 5.3. Parameter values for the pure temporal case (◦) are: σ2 = 0.00076,
ω0 = 0.14. Parameter values for the spatiotemporal case (�) are: σ2, ω0 as before and
V̄0
ω0`

= 4, a = 400. (b) Results for the Oregonator model with parameters of Fig. 5.6,

except ` = 6.4 s.u. Parameter values for the pure temporal case (◦) are: σ2 = 0.38,
ω0 = 3.7. Parameter values for the spatiotemporal case (�) are: σ2, ω0 as before and
V̄0
ω0`

= 1, a = 0.7. Error bars associated to the statistics of the experimental and numerical
data are depicted.
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Quantitative results for the spatially uniform case are displayed in
Fig. 5.8 as circles. A resonance-like behavior with the time scale of the noise
is present both experimentally Fig. 5.8(a) and numerically Fig. 5.8(b). Even
more, the resonant correlation time matches the characteristic time scale
of the spiral rotation parameterized by the inverse of its rotation frequency
τres ≈ ω−1

0 = T0/2π.
The resonant effect on the diffusion coefficient implies larger regions

visited by the spiral core in its wandering for a range of correlation times
close to the intrinsic rotation frequency of the spiral (see Fig.5.7(b)). We
can conjecture a physical interpretation of the shown dependence of the
diffusion coefficient on τ : at fixed noise dispersion σ2 the effect of random
perturbations is irrelevant for τ → 0 since fast bounded fluctuations will be
averaged out by the system (Fig.5.7(a)). On the other hand for ω0τ � 1,
the spiral core loses mobility because the noise does not change appreciably
during a rotation period of the tip (Fig.5.7(c)). Uniform noise fluctuations
are more effective if varying in a time scale close to the characteristic time
of the system.

When structured noise is externally introduced, the tip wanders through
cells of different excitabilities which fluctuate independently around the
same mean of excitability. A set of representative trajectories are depicted
in Fig. 5.9 for three different correlation times of the fluctuating field
chosen in such a way that the different modes of propagation were clearly
exhibited. The quantitative results are shown in Fig. 5.8. In this more
complex case of spatiotemporal random excitability, absolutes values of
the dispersion coefficient are even larger than in the situation of spatially
uniform fluctuations, featuring again a maximum which appears at larger
values of the correlation time. Now the dispersion is enhanced due to the
existence of a finite spatial correlation.

5.4 Analytical Approach

In order to gain some theoretical insight, we use a kinematical approach to
2d-spiral waves for weakly excitable media [157] with the basic equations
reproduced in the Appendix A. Although our experiments fall beyond that
limit, such a description enables us to capture, at least qualitatively, what
we believe are the essential features of the effect of structured noise on
well-formed spirals. For simplicity, we restrict the standard scheme A.15 to
a situation with constant angular velocity ω0 and retain the equations for
the tip position, together with the relaxation dynamics of the instantaneous
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Figure 5.9: Typical paths followed by the spiral core under the effect of structured
random fluctuations time correlated for three values of the correlation time and ` = 5.2
s.u. (32 grid points) (a) τ = 0.01 t.u., (b) τ = 3.2 t.u, (c) τ = 30 t.u. Rest of parameters
the same as in caption of Fig. 5.6.

curvature of the spiral at its free end,

dX

dt
= −V0 sinω0t−G cos ω0t

dY

dt
= V0 cos ω0t−G sinω0t (5.2)

dk

dt
= − 1

τG
(k − kc)

where the curvature correction to the normal velocity V was assumed
negligible (Dk � V0), so that V reduces to V0 (a parameter which depends
on the excitability and represents the characteristic propagation velocity of
uncurved waves).

Within the kinematic approach, it seems more natural to consider
fluctuations of V0, the tip velocity normal to the wave front, and/or the
critical curvature kc. Let us start with the simplest situation corresponding
to V0(r, t) = V̄0+ξ(r, t), but with no tangential velocity (G = γ(k−kc) = 0)
of the free end (no sprouting or contraction of the spiral curve): kc(t) = kc =
k0 which represents the particular solution of rigid rotation. Within the
spirit of the quasistatic approximation, implicit in the kinematic scheme
above, the spatial structure of the noise will only enter through the
successive positions visited by the wandering tip. Due to the complexity of
the stochastic kinematic equations, an exact analytical approach cannot be
accomplished exactly so we introduce a ’quasideterministic’ approximation
by defining effective spatial dependent noises as ξ(R(t), t) where R(t)
stands for the tip deterministic trajectory, which in our case corresponds
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to a circular motion with frequency ω0 of an unperturbed steadily rotating
spiral.

Before going further, it is necessary to specify the way the discrete
spatial nature of the noise in the experiments is translated to the analytical
kinematic scheme. Temporal and spatial correlations are bound to be
statistical independent in the experiments and numerics, that is:

< ξ(r, t)ξ(r′, t′) >= Cξ(| t− t′ |)C(r− r′) (5.3)

The temporal part, Cξ should be replaced by σ2 exp−|t−t′| /τ (Eq. (2.33)).
An immediate solution for the spatial correlation is to adopt a triangular-
like form which accounts for the anisotropy of the problem of structured
noise, i.e.:

C(r− r′) =
(

1− | x− x′ |
`

)(
1− | y − y′ |

`

)
(5.4)

This correlation function is anisotropic and the calculations become very
complicated using it. A simpler option is to resort to an isotropic correlation
function of the form:

C(r− r′) =
(

1− | r− r′ |
`2

)
(5.5)

This correlation function is expected to give qualitatively similar results
making at the same time the analytical treatment easier. We conjecture
that the problem becomes isotropic for sufficiently large times and lengths,
where the local topology of the system becomes irrelevant.

Let us first address the situation of spatially uniform noise, considering
only fluctuations in the normal velocity, V0(t) = V̄0 + ξ(t), and a steady
rigid rotation (ω = ω0, k = kc),

dX

dt
= −[V̄0 + ξ(t)] sinω0t

dY

dt
= [V̄0 + ξ(t)] cos ω0t (5.6)

The explicit calculation of the diffusion coefficient can then be calculated
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exactly1 as is shown in [173]. The tip position can be expressed as Z =
X + iY and the evolution equations (5.6) as:

dZ

dt
= [V̄0 + ξ(t)]ieiw0t (5.7)

which can be analytically integrated to give,

Z(t)− Z(0) =
V0

w0
eiw0t + i

∫ t

0
ξ(t′)eiw0t′dt′ (5.8)

For the case of a Brownian diffusion, the mean-square dispersion as a
function of the complex quantity Z looks like <| Z(t) − Z(0) |2>= 2dDt
(see Eq. (5.1)) since | Z |2= X2 + Y 2. Hence, the diffusion coefficient is
given by,

2dD =
〈

d | Z(t)− Z(0) |2

dt

〉
t→∞

= 2Re

(〈
d(Z(t)− Z(0))

dt
(Z∗ − Z(0))

〉)
t→∞

(5.9)

The calculation of D requires the evaluation of the average of the right-
hand side. From now on, we are going to write the Z(t) − Z(0) as simply
Z(t). By substituting the expressions for dZ/dt and Z∗, taking averages
and rearranging terms, we have:

Re

(〈
dZ

dt
Z∗
〉)

t→∞
=
∫ ∞

0
< ξ(t)ξ(t′) > cos

[
ω0(t− t′)

]
dt′ (5.10)

By noting that < ξ(t)ξ(t′) >= C(| t− t′ |), Eq. (5.10) is simply the power
spectrum of the noise at the characteristic frequency of the rotating spiral

P (w0) = 2
∫ ∞

0
C(t) cos(ω0t)dt (5.11)

Thus, the final expression for the diffusion coefficient reads

D =
1
4
P (w0) (5.12)

that is, it is given exactly in terms of the power spectrum of the noise [173]
at the natural frequency of the spiral. The problem is thus reduced to the

1Numerical simulations of the kinematic scheme described by Eqs. (5.2) have been
systematically carried out in [173] together with a more thorough analytical treatment
of the problem.
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computation of such power spectrum for the temporal noise defined above
Eq. (2.33), resulting in:

D =
σ2

2
τ

1 + w2
0τ

2
(5.13)

Good agreement is obtained between the experimental and numerical
points of Fig. 5.8 and this analytical prediction (dotted lines). This simple
model captures the resonance at the characteristic time scale of the spiral
rotation (w−1

0 ).
For the structured case we can proceed in a similar way except now

we focuss on the spatial correlation function. Using the quasideterministic
circular trajectory (w = w0 and G = 0), X = V0

w0
cos ω0t, Y = V0

w0
sin ω0t to

calculate the distance between tip positions at times t and t′ we obtain:

| R(t)−R(t′) |2= 2
V 2

0

ω2
0

[
1− cos

(
ω0(t− t′)

)]
(5.14)

The isotropic spatial correlation function (Eq. (5.5)) assumes the form of

C(| r− r′ |) = 1− 2
V 2

0

ω2
0

[
1− cos

(
ω0(t− t′)

)]
(5.15)

Again, we have to calculate the averaged quantity < dZ
dt Z∗ >, where now

dZ

dt
= [V0 + ξ(Z, t)]ieiω0t

Z∗(t) =
V0

ω0
eiω0t + i

∫ t

0
ξ(Z, t′)eiω0t′dt′ (5.16)

After substituting these identities, the diffusion coefficient appears as:

D =
1
4

〈
2
dZ

dt
Z∗
〉

t→∞

=
1
4

∫ ∞

0
2 < ξ(Z, t)ξ(Z, t′) > cos

(
ω0(t− t′)

)
dt′

=
1
4

∫ ∞

0
2C(| t− t′ |)C(r− r′) cos

(
ω0(t− t′)

)
dt′ (5.17)

=
1
4

∫ ∞

0
dt 2 C(t) cos (ω0t)

(
1− 4V 2

0

ω2
0`

2

1
2

+
4V 2

0

ω2
0`

2

1
2

cos (ω0t)
)
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Taking into account Eq. (5.11), the diffusion coefficient can thus
be expressed as a function of the power spectrum of the noise at the
characteristic frequency and multiples of this frequency

D =
P (ω0)

4
+

V 2
0

4ω2
0`

2
(P (0)− 2P (ω0) + P (2ω0)) (5.18)

where the trigonometric relation 2 cos2 ω0t = 1 + cos 2ω0t has been used.
Substitution of the power spectrum of the Ornstein-Ulhenbeck noise,
Eq. (5.18)

D =
σ2

2
τ

1 + ω2
0τ

2
+

σ2

2
V 2

0

ω2
0`

2

(
τ − 2τ

1 + ω2
0τ

2
+

τ

1 + 4ω2
0τ

2

)
(5.19)

This final expression describes the special case of pure temporal noise,
that is, V̄0

ω0 ` � 1, i.e. core radius much smaller than the noise correlation
length, recovering the behavior shown in Eq. (5.13). In the parameter
region where V̄0

ω0 ` ∼ O(1), D is significantly enhanced, particularly near
resonant conditions. This is again in accordance with the experimental
and numerical observations in Fig. 5.8. However, Eq. (5.19) predicts an
artificial linear increase of D at large τ . The basic limitation of the
quasideterministic ansatz which leads to Eq. (5.19) lies in the fact that
the deterministic trajectory is closed. This introduces spurious effects at
large correlation times of the noise since, for ω0τ � 1, the values of the
effective noise seen by the tip appear strongly correlated after every rotation
period. In fact, the actual trajectory is not closed and decorrelates the
effective noise by exploring spatially uncorrelated regions.

Nevertheless, the model can be formally corrected for this effect by
introducing an additional time scale τ∗, a cutoff of the correlation times,
which accounts for the above spatial decorrelation. This parameter can be
interpreted as the time needed for the tip to cross over a pixel. To justify
this additional parameter we have to take into account a crucial ingredient
that has been missing so far: the role of fluctuations in kc

2. Numerical
simulations of Eq. (5.2) carried out by Alonso & Sagués in [173] show a
rather different behavior at values of τ ' T0, depending on whether noise
is introduced only through V0 or on both V0 and kc giving rise to two
different modes of dispersion. Without noise on kc, there is a tendency of
the tip motion to attach its quasicircular motion to the boundaries between

2According to complementary simulations of the kinematic scheme and Oregonator
model, fluctuations in V0 and kc are assumed to be proportional [173]
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cells and propagate along them (see Fig. 5.9(b)). On the contrary when
noise is added also through kc this effect is avoided, the tip being confined
most of the time inside the cells except for relatively fast transits between
them. We recognize this as a signature of a pinning effect, as is indeed
also evidenced by experiments and numerical treatment of the Oregonator
model at large values of τ (Fig. 5.9(c)). According to this mechanism, the
pinning effect enables us to interpret the asymptotic decay of D for large τ
of the form D ∼ 1/τ shown in Fig. 5.9(c). For large τ , this pinned motion
drastically reduces dispersion, which will be more effective for larger values
of the correlation length as the tip anchoring will last longer. For smaller
values of `, the tip has more opportunities to move across the boundaries
of the noisy cells, giving rise to an enhancement of the dispersion. This
functional dependence can be incorporated into our scheme for V̄0

ω0 ` ∼ O(1),
by defining τ∗ ≡ a/τ and further replacing τ by τeff (1/τeff ≡ 1/τ +1/τ∗)
in Eq. (5.19).

Comparisons of this theory with the experimental and numerical results
are shown in Fig. 5.8 (continuous lines). The good agreement between the
analytical prediction Eq. (5.19) 3 (with the appropriate τeff ), and both
experiments and numerical integration of the Oregonator model, for a very
large range of parameters, suggests that the proposed model , in spite of
its apparent simplicity, does capture the basic physical mechanisms of the
problem.

5.5 Conclusions

We have studied both experimentally and numerically the effect of a
spatiotemporal structured noise on the motion of a spiral wave within the
framework of the photosensitive BZ reaction. In the absence of randomness,
the spiral tip rotates quasi-rigidly around its core, with no net translational
mobility. When the noise is switched on, Brownian diffusion of the spiral is
observed, characterized by a nonmonotonous dependence on the parameters
of the noise. Specifically, experiments conducted with fixed noise dispersion
and varying the correlation time for pure temporal fluctuations yield a
resonance-like effect on the diffusion coefficient when the correlation time
matched the intrinsic rotation frequency of the spiral. When structured
noise is added to the system, the diffusion coefficient becomes even greater,

3To circumvent somehow the limitations of the kinematic approach as applied here
in relation to the real experimental parameters, we choose to consider the dimensionless
quantity V̄0

ω0`
in Eq. (5.19) as a fitting parameter.
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especially for correlation longer times. These observations were confirmed
numerically using the two-variable Oregonator model and the analysis
was completed by using a simple theoretical model based on a kinematic
approach which captures the basic features observed in experiments.





Chapter 6

Regular Wave Propagation
Out of Noise

Abstract. A pacemaker, regularly emitting chemical waves, is created
out of noise when an excitable photosensitive Belousov-Zhabotinsky (BZ)
medium, strictly unable to autonomously initiate autowaves, is forced with a
spatiotemporal patterned random illumination. These experimental observations
are also reproduced numerically by using the Oregonator model, and further
analytically interpreted in terms of genuine coupling effects arising from
parametric fluctuations. Within the same framework we also address situations
of noise sustained propagation in subexcitable media.

6.1 Introduction

Since their discovery thirty years ago [13], target patterns constitute one of
the most distinctive and visually compelling examples of self-organization
in chemical systems. Somewhat more general, control on wave initiation
and propagation may have a wealth of potential implications not only for
chemical [174, 39, 33] or biochemical systems [175, 3] but extending to
cardiology [176] or neurophysiology [4] contexts. Although unavoidably
present in any realistic situation of these scenarios, the minimization of
noise and disorder is always pursued under the rationale that their effects
may if not destroy, at least largely mask, the intrinsic spatiotemporal
regularities of any such wave propagation phenomena. But there exist
numerous experimental and numerical examples of just the opposite, the
beneficial role that noise may play in some unfavorable situations where no
structures can propagate or exist under purely deterministic conditions.

That is the case of the recent experimental finding of noise-supported
waves in subexcitable chemical media [11], where sustained propagation is
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achieved at an optimal amount of noise. Similar results have been obtained
in the context of coupled bistable electronic elements concerning noise-
level dependent signal transmission [8, 107]. With this unified perspective
we highlight the specificities of these phenomenologies in relation to other
celebrated noise- constructive effects, taming spatiotemporal chaos with
disorder [177], noise-induced synchronization to global oscillations for
arrays of excitable units [178, 106, 10], noise-induced spiral dynamics in
excitable media [169, 179, 114, 113] or coherence resonance oscillators
[180, 181].

Regarding the onset of new spatial structures out of noise [10, 106]
it is important to highlight the mechanisms involved in such phenomena.
Wave activity is spontaneously nucleated due to accumulated subthreshold
perturbations in [10], while in [106] an inhomogeneous initial condition is
required. Spatially uncorrelated noise seems to be more effective to sustain
structures than a global noise affecting in an identical way all fluctuating
lattice cells. In general, there exists a value of noise which optimizes
the response of the nonlinear system, as a result of a cooperative process
involving noise, nonlinearity and coupling. And finally, statistical analysis
of the number and size of coherent structures arising from spatiotemporal
structures present power-law scaling [10, 179, 169].

Even the experimental and numerical investigations on the study of
the role of spatiotemporal fluctuations is increasing, the understanding
by which noise may give rise to an ordered behavior is still deficient.
The purpose of this chapter is to present experimental and numerical
evidence, and also an analytical explanation, of just the beneficial influence
of spatiotemporal noise [182], by showing that an excitable chemical system
may rectify external fluctuations into regularly organized wave trains
(Sec. 6.2) as well as to support propagation which becomes impossible in
their absence (Sec. 6.3). In Sec. 6.4 a theoretical framework for activator-
inhibitor models will be introduced to interpret not only this experimental
finding of created targets out of noise but the recent related one of noise-
supported waves in subexcitable media.

6.2 Noise-Created and Supported Target in Ex-
citable Media

Spatiotemporal structured noise is introduced into the system by using
a computer controlled and continuously evolving fluctuating patterned
illumination, which is video projected (from below) on to the gel film
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(Sec. 2.3.2.c). The pattern of illumination consisted of an array of square
cells of linear size ` (` = 0.44 mm), each of them obeying a gaussian
statistics (σ = 0.14 mW/cm2) around a prescribed reference illumination
value I0 for excitable conditions (I0 = 0.29 mW/cm2). The different
illumination values are reproduced through an eight-bit gray scale between
0 and 255 that is filtered by means of a video projector according to
a calibration curve (Fig. 2.4). All the cells are independently updated
according to the smallest time provided by the computer (100 ms), to
reproduce fluctuations with extremely small correlation time (mimicking
an effective white noise limit).

To assure a radial distribution of the refractory time, a central black
spot (I0 = 0, R ≈ 1.5 mm) (whose size was found to be critical) was
projected into the sample until a circular wave emerged from this local
perturbation. Structured light fluctuations were subsequently imposed

a b c d

a´ b´ c´ d´

Figure 6.1: Sequence of images, (a)-(c), showing a noise-sustained target pattern in
the BZ reaction. The medium is forced with a spatiotemporal fluctuating illumination.
The average light intensity corresponds to excitable conditions (I0 = 0.29 mW/cm2).
By comparison, images (a’)-(c’) correspond to a fluctuation free case with a constant
and uniform illumination fixed to the averaged intensity I0. Images shown in the figure
correspond to an exposed area of 1.38 × 1.36 cm2. Interval between images is 20 s.
Reactant concentrations: 0.15 M KBr, 0.34 M malonic acid, 0.38 M NaBrO3, 0.48 M
H2SO4, and 1.5 mM Ru(bpy)+2

3 .



110 Regular Wave Propagation Out of Noise

0 0.01 0.02
35

40

45

50
a

P
er

io
d 

( 
s 

)

Light Fluctuations Intensity ( σ 2 )
0.5 1 1.5 2

x 10
−7

3

4

5

6

7
b

P
er

io
d 

( 
t.u

. )

Noise Intensity ( σ 2 )

Figure 6.2: Dependence of the wave nucleation period on the noise intensity: (a)
experimental results, (b) numerical results obtained from the two variable dimensionless
Oregonator model. Continuous lines are simply to guide the eye. The set of numerical
parameters were: ε = 0.03, q = 0.0015, f = 1, Du = 1, and Dv = 0. Experimental
parameters are the same as in Fig. 6.1.

all over the system, and when prescribed above an intensity threshold,
repeated wave nucleation, leading to a circular wave train, was observed, as
shown in Fig.6.1. For the sake of comparison, we include in the same figure
the case of uniform and steady illumination at the same reference value. As
expected, a single autowave propagating from the initial condition is found
in the absence of fluctuations.

Actually, repeated wave emission could only be sustained for an
intermediate range of fluctuation intensities. For low noise level, no
periodic wave emission was observed, as it is no large enough to induce
new nucleations. On the contrary, under a too high noisy environment,
sustained wave initiation was possible but immediately waves were
continuously broken into scattered fragments progressively occupying the
whole medium.

Quantitative results consisted in measuring the period of emission as
a function of the noise level by averaging the time intervals between
consecutive waves of the BZ reaction are summarized in Fig.6.2(a). Results
reproduce a monotonous decrease of the emission period as the noise
level increases. On the contrary, there exists a critical noise intensity
approaching which the emission period diverges. For lower intensity
fluctuations the system will stay forever under purely excitable conditions.
Regarding the role of the cell size, the best results were observed when
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a

b
Figure 6.3: Numerical simulation
showing a noise-sustained propagation
(panel (b)) compared with the noise-
free case (panel (a)) for the same φ0 =
0.005, σ2 = 1.4 10−4. Concentrations
of u are represented by gray levels,
higher/smaller concentration values cor-
responding to lighter/darker color pix-
els. Rest of parameters as in Fig. 6.2.

comparable to the wave width. With half this value, which corresponds to
the size of an illumination pixel, waves hardly nucleated, whereas for larger
sizes no waves were generated, probably due to the progressively loss of the
patterned structure of the noise.

Numerical studies of noise-sustained target-like were conducted using
both the complete three-variable Oregonator model (Eqs. (2.14)-(2.16)) as
well as its reduced form that follows from the adiabatic elimination of the
rapidly varying Br− concentration (Eqs. (2.18)-(2.18)). Although both
reproduce the experimental observations, on what follows we limit ourselves
to this latter level of modelization since the theoretical considerations
addresed below may widen their scope when applied to activator- inhibitor
schemes and even admit in this case a fully analytic formulation. The model
equations thus read,

∂tu = Du∇2u +
1
ε

(
u− u2 − (fv + φ)

u− q

u + q

)
;

∂tv = u− v; (6.1)

Corresponding to the experiments above, the fluctuating excitability
was introduced through a random distribution of the local values of the
parameter φ = φ0+η(t). The pattern consisted of an array of square cells of
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a b

Figure 6.4: Numeri-
cal simulation showing a
subexcitable / excitable
transition (b) compared
with the noise-free case (a)
for the same φ0 = 0.087,
σ2 = 1.4 10−4. This
images are built up from
a superposition of snap-
shots. Rest of parameters
as in Fig. 6.2.

1×1 pixels (0.2 dimensionless space units), each of them obeying a gaussian
statistics around a fixed reference value φ0 in the excitable range. All the
cells were independently updated every time step (0.0005 dimensionless
time units) to simulate uncorrelated fluctuations (white noise limit) [1]
(〈ηi(t)ηj(t′) = 2σ2Cijδ(t− t′)〉). The model equations were integrated in a
two-dimensional rectangular grid of 320×320 pixels (unit grid size ∆ = 0.2)
with no-flux boundary conditions.

Using initial preparations similar to those in the experiments, conditions
to observe periodic wave emission were also found for an intermediate range
of fluctuation intensities. This periodic emission is shown in Fig. 6.3(b) next
to the equivalent homogeneous noise-free system where, after the initial
perturbation, no wave activity remains in it. A series of simulations was
carried out to determine the dependence of the observed periodicity of the
emitted waves on noise intensity. Periods were computed from successive
circular waves passing through four square symmetrically distributed points
separated 150 pixels from the center position and average was taken over
2 realizations of the initial condition. The results are reproduced in
Fig.6.2(b), showing similar trends to those observed in the experiments.
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a b c d

a´ b´ c´ d´

Figure 6.5: Sequence of images (a)-(d) showing a noise- mediated nonexcitable /
excitable transition corresponding to a light mean intensity of I0 = 1.04 mW/cm2 and
a light fluctuation intensity σ = 0.14 mW/cm2 and ` = 0.44 mm. (a’)-(d’) shows the
evolution in homogeneous for the same I0. Exposed area, 1.38× 1.36 cm2. Time interval
between images (a)-(d), 20 s, and between images (a’)-(d’), 10 s.

6.3 1D Noise-Supported Propagation in Nonex-
citable Media

Before addressing the theoretical explanation of the phenomena just
reported, let us show experimental results for another kind of noise-
mediated transition which takes place within the region of low excitabilities,
namely, the support of a 1-dimensional wave induced by noise in a
nonexcitable medium. A close situation was demonstrated by Kádár et al.
in [11] where they found noise-supported traveling waves in a subexcitable
photosensitive BZ reaction. A numerical picture of that is given in Fig. 6.4.
Basically, a broken wave segment (a 2-dimensional wave) propagating in a
subexcitable medium shrinks and disappears (Fig. 6.4(a)). When noise is
added to the medium, wave propagation is enhanced with increasing noise
amplitude, and sustained propagation is obtained for an optimal level of
noise (Fig. 6.4(b)) and the segment does not shrink any longer.

1-dimensional waves like circular waves are unable to be sustained in
a nonexcitable but propagates in a subexcitable medium like the previous
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a b

Figure 6.6: Numerical simulation showing a nonexcitable/subexcitable transition (b)
compared with the noise-free case (a) for the same φ0 = 0.096, σ2 = 1.4 10−4. Rest of
parameters as in Fig. 6.2.

one. In the same way, we have found that successful propagation is achieved
when a sufficient amount of noise is introduced in the medium. Such
situation is pictured experimentally in Fig. 6.5 and numerically in Fig. 6.6.

All this noise-mediated transitions presented so far can be explained
within the same analytical framework through an effective deterministic
model analytically derived in the next section.

6.4 Common Analytical Framework

The keystone to theoretically interpret the phenomenon just reported
consists in realizing that when noise is introduced through the illumination
parameter in the model equations (6.1), a random term left from the
fluctuating zero mean part, enters multiplicatively into the dynamics of the
activator variable (in our case the HBrO2) [183] in the following way:

∂u

∂t
= δ∇2u + f(u, v, φ0) + g(u)η (6.2)

being

f(u, v, φ0) =
1
ε
(u− u2 − (fv + φ0)

u− q

u + q
)

g(u) = −1
ε

u− q

u + q

However due to this nonlinear coupling, a systematic genuine nonzero
contribution arises when averaging such a noisy term in relation to the
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dynamics of the activator variable, even η has zero mean:

〈g(u)η〉 6= 0 (6.3)

This noisy term can be evaluated using the Novikov’s theorem [1],

〈g(u)η〉 = C(0)〈g(u)g′(u)〉 (6.4)

where C0 = σ2

∆2 is the spatial white noise limit.
According to this result, Eq. (6.2) can be rewritten as,

∂u

∂t
= Du∇2u + h(u, v, φ0) + ξ(u, t) (6.5)

where h(u, v, φ0) = f(u, v, φ0) + C0g
′(u)g(u) represents a new systematic

reaction term and ξ(u, t) = g(u)η(t) − C0g
′(u)g(u) a new (additive) noise

term.
Given the finite, although small, time and length scales of the

experimental fluctuations and for moderate noise intensities, one can
incorporate the dominant noise contributions which correspond to the
lowest order term of an expansion on these parameters (u = u0 + σ2u1) as
a correction to those kinetics terms, discarding additional non systematic
fluctuating terms which average to zero [184]:

∂u0

∂t
= Du∇2u0 + h(u0) (6.6)

∂u1

∂t
= Du∇2u1 + h′(u0)u1 + ξ(u0, t) (6.7)

Now, it can be seen that the resulting dynamics of the variable u0 is different
from that of the deterministic field. As a result we finally end up with an
effective totally deterministic two variable Oregonator model whose explicit
equations read

∂tu = Du∇2u +
1
ε

(
u− u2 − (fv + φ0)

u− q

u + q

)
+

1
ε

(
σ2

∆2

2q

ε(u + q)2
u− q

u + q

)
;

∂tv = u− v; (6.8)
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Figure 6.7: Diagram classifying the different dynamical regimes of the two-variable
Oregonator model (dashed lines) Eq. (6.1) and the effective two-variable model (solid
lines) Eq. (6.8). In the graph on the left the boundaries between oscillatory and
excitable regimes are shown. In the graph on the right the boundaries among excitable,
subexcitable (shrinking of 2d wave segments) and nonexcitable (collapse of 1d waves)
conditions are shown.

in terms of the noise intensity σ2 and the pixel size ∆. Once in this
form, the excitable and oscillatory properties of such a renormalized model
are easily computed. This whole procedure enables us, as shown in
Fig. 6.7, to predict a noise intensity dependent shift of the boundaries
separating the dynamical regimes (oscillatory, excitable, subexcitable and
nonexcitable) of such an effective scheme as compared to the noise free
Oregonator model. Notice that in fact such a theoretical framework
enables us to interpret not only the appearance of noise-induced target
patterns, but related scenarios of noise-supported wave propagation,
both in subexcitable (Fig. 6.4(b)) [11] and nonexcitable conditions of
Fig. 6.6(b). In other words an excitable (resp. subexcitable or nonexcitable)
propagating condition in a noise free environment turns into an oscillatory
(resp. excitable or subexcitable) situation when external uncorrelated
spatiotemporal fluctuations of zero mean and appropriate intensities are
superimposed on the illumination parameter. As a final comment, note
that the whole argument just presented highlights the delicate coupling
between noise and the nonlinearities of the chemical system, which, rather
than resulting into new noise-induced periodicities, evoke its intrinsic
”eigenvalues”, both temporal (emission frequency) and spatial (period of
the wave train). In this respect, this theoretical interpretation is essentially
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different from those based on barrier crossing dynamics arguments, that
are commonly invoked to explain the statistical periodicities observed in
related stochastic resonance [107] or coherence resonance [181] phenomena
in spatially extended systems1.

6.5 Conclusions

We have provided experimental and numerical evidence, and also an
analytical explanation, of the beneficial influence of spatiotemporal
fluctuations, by showing that an excitable chemical system may rectify
external fluctuations into regularly organized wave trains. Explicitly, we
have shown that the photosensitive BZ reaction, under excitable conditions
unable to create autowaves, does maintain a target structure when
subjected to a patterned and continuously evolving random illumination.

1The numerical calculations included in Section 4.1 have been performed by Sergio
Alonso, who has collaborated with our group during this PhD thesis.





Chapter 7

Conclusions and Outlook

Throughout this work investigation was focused on the photosensitive
Belousov-Zhabotinsky reaction and its model, the Oregonator, which have
been externally forced with both deterministic and fluctuating variations
of their respective excitability control parameters. Waves in these systems
whose kinetics are spatiotemporally modulated have been found to display
new interesting phenomena not observed in homogeneous conditions. A
summary of the general results of the different situations here addressed is:

A. Spatial and Temporal Periodical Modulations.

A1. Boundary conditions in domains with the form of sinusoidally
modulated channels may induce nontrivial longitudinal spatial
configurations of a wave train of excitation fronts. These trains
of fronts asymptotically accommodate in stroboscopically frozen
quasiperiodic spatial configurations, incommensurate with the
boundaries but periodic in time and synchronized with the stimuli.
Both the height and position of fronts exhibit a quasiperiodic
behavior that becomes more evident as the amplitude of the forcing
increases. These structures were described in terms of spatial
return maps which resembles the circle map of temporal forced
dynamical systems. This similarity allows one to speculate about
the existence of even more complex configurations representing the
spatial realizations of the chaotic regimes of these maps. Finally,
propagation of a wave train is possible through an undulated
channel even when the width at the narrowest part of the channel
is below the minimum width necessary for propagation in a straight
channel.
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A2. Temporal periodical modulation of excitability around a subex-
citable state may give rise to sustained wave propagation,
depending on the forcing parameters and initial conditions. For
critical values of these constraints, the sustained propagation
assumes a form where the length of the wave varies periodically
with the period of the external modulation. The propagation is
further enhanced by adjusting the forcing parameters such that the
wave front grows in length. The propagation can be understood
in terms of an interplay between the radial expansion of the
wave and the motion of its free ends as the excitability varies
periodically. A simple kinematic analysis provides insights into the
initial conditions and forcing parameters giving rise to sustained
wave propagation.

B. Spatial and Temporal Fluctuations.

B1. We have studied propagation in a medium whose dichotomic time-
independent excitability varies randomly in space. In 1D, the
relative variation of the velocity with respect to the velocity v0 in
the corresponding effective homogeneous medium decreases linearly
with ∆v, as the total time spent in crossing the whole medium
becomes larger. In 2D, the propagation-rate v − v0 increases
proportionally to the 4

3 power of the disorder amplitude relative
to v0. This time the front gets distorted and the interplay between
curvature (influenced by the length of the inhomogeneity) and the
fast and slow motion of the wave parts determine the velocity of
the whole front.

B2. When the dichotomic time-independent random distribution
consists in a lattice of excitable and non excitable clusters wave
propagation percolates when the proportion p of black sites
(representing excitable sites) is above the percolation threshold
for that lattice. The effective wave front velocity (proportional
to the inverse of the transit time) is observed to jump from zero
to finite values at a threshold p = pc (very close to the percolation
thresholds expected for a square lattice) when, as predicted by
the classical percolation theory, a cluster of sites with the same
excitability spans along the medium. These thresholds depend on
the number of effective neighbors which have been controlled by
adjusting the overall light intensity reaching the reaction.

B3. The introduction of spatiotemporal fluctuations on a wave train
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propagating in an unexcitable channel was found to extent the
propagation distance of the periodic structure simulated with the
Oregonator model. Stochastic resonance in the sense of the number
of fronts reaching a control position occurs not only for an optimal
intensity of the noise but also for a correlation time that matches
the characteristic time of the periodic structure. With respect
to the spatial correlation of the noise, the percentage of wave
fronts reaching the control position increases as the correlation
length increases and it reaches a maximum for higher values of
the correlation time. This is in agreement with other studies in
noisy overdamped bistable oscillators where the interplay among
noise, nonlinearity and forcing gives rise to an enhancement of
propagation.

B4. The same spatiotemporal structured noise was investigated on
the motion of a spiral wave in the BZ reaction. While in the
absence of randomness, the spiral tip rotates quasi-rigidly around
its core, with no net translational mobility, Brownian diffusion
of the spiral is observed when the noise is switched on. This
motion was characterized by a non-monotonous dependence on the
parameters of the noise. For pure temporal fluctuations a resonant-
like effect on the diffusion coefficient was found when the correlation
time matched the intrinsic rotation frequency of the spiral. When
structured noise is added to the system, the diffusion coefficient is
even more enhanced, this time for correlation times larger. These
observations were confirmed numerically using the two-variable
Oregonator model and the analysis was completed with a simple
theoretical model based on a kinematic approach which captures
the basic features observed in experiments.

B5. We have provided experimental and numerical evidence, and also
an analytical explanation, of the beneficial influence of white
spatiotemporal fluctuations, by showing that an excitable chemical
system may rectify external fluctuations into regularly organized
wave trains. Explicitly, we have shown that the photosensitive BZ
reaction, under excitable conditions unable to create autowaves,
does maintain a target structure when subjected to a patterned
and continuously evolving random illumination.
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Outlook

What needs to be done?. After finishing this thesis, it seems that many
open questions need an answer, more than at the beginning.

Concerning the role of fluctuations, an experimental and numerical
study of the batch system (without diffusion) should be performed. Right
now, there is not any deep analysis of the Oregonator model and the
BZ reaction under the effect of any kind of fluctuations. It would be
rather interesting to know how the 0-dimensional system behaves under
the presence of noise to understand later their effects on the complete
system with diffusion. It would be of special interest to focus on the
regions where the system presents critical behavior, that is, around the
excitable/oscillatory transition and also when the system stops to be
excitable. Due to the existence of a characteristic time scale, as it is
the period between two consecutive excitations, colored noise may be
of relevance in inducing some kind of transition. In this situation, a
comparison between different noises can be carried out, controlling for
example their bounds and the correlation function. At the same time,
differences between deterministic and stochastic forcing should be clarified
(if any) since they share the same frequency.

On the other extreme, going back to spatially extended systems, the
natural continuation of this thesis is to study the effects of fluctuations
in three dimensional structures, which are known with the name of scroll
waves in the literature. Some work on this respect has been already carried
out, analyzing how spatiotemporal fluctuations time correlated influence
the mean life time of a ring structure. In this way, the role of the noise
intensity could also be investigated with the aim of looking for the classical
stochastic resonance but in a spatially extended system.

A key point to develop further are the nontrivial configurations arising
from the propagation of a wave train in a sinusoidally modulated channel.
As it was said, the similarity between the spatial return maps describing
such spatial configurations and the circle map, allows one to speculate
about the existence of even more complex configurations representing the
spatial realizations of the chaotic regimes of these maps. Exploring first the
spatial return map, one could guess which region of the forcing parameters
could produce chaotic spatial structures if they would be accessible from
the computational point of view.



Appendix A

Curvature-Speed Relation
in the Singular Limit.
Kinematic Theory
of Autowaves

A.1 The Curvature-Speed Relation in the Singular
Limit

Singular perturbation theory [141, 185, 186] applied to waves of activity in
excitable media, allows us to obtain approximate information of autowave
processes from equations that are easier to solve than the full system of
nonlinear equations (2.18)-(2.19).

The theory develops within the limit where excitable dynamics present
multiple time scales and wave fronts occur as sharp transitions between
slowly varying regions. Using these arguments, the wave form consists
of two typical regions: the slowly varying region where diffusion has little
effect, and the one where the activator variable (Chapter 1) presents spatial
discontinuities making diffusion important. So, propagation of chemical
waves can be considered mediated by diffusion of the activator and the
effect of the slow variable can be neglected, resulting in the following model
problem:

∂u

∂t
= f(u) + D∇2u (A.1)
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Figure A.1: Normal vn

and planar v velocities in
the propagation of a wave
contour.

The wave front is confined to a small region of space and moves because
the interplay of reaction and diffusion of the propagator species u in the
front. We are going to consider this front as a contour line of constant u
concentration and seek for translational invariant solutions (of fixed speed
and planar form) moving in the reference frame defined by ξ = y− vt, such
that u(x, y, t) = u(x, ξ) = u(x, y − vt). Therefore, u(ξ) satisfies,

−v
du

dξ
= f(u) + D∇2u (A.2)

So, the interface h(x, t) = vt moves along the Y-axis with constant
velocity v which is determined by the kinetic term f(u). Considering now
a circular interface, such that the concentration u(r) is now only a function
of the distance from the center of curvature. The interface can be described
by u(r, t) = u0(r −R(t)) whenever the radius R is large as compared with
the interface thickness. Using the Laplacian in polar coordinates, we find
from Eq. (A.1)

∂u0

∂r

∂R

∂t
= f(u0) + D

1
r

∂u0

∂r
+ D

∂2u0

∂r2
(A.3)

which rearranging terms it adopts the final form,

−(
∂R

∂t
+

D

r
)

∂u0

∂r
= f(u0) + D

∂2u0

∂r2
(A.4)
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If we consider an infinitesimal element of the wave contour at position
r = R(t), we can assume it to have constant curvature and compare
Eq. (A.2) and Eq. (A.4), which yields,

∂R

∂t
= v − D

r
(A.5)

Equation (A.5) describes the effect of a local curvature on the interface
velocity. For an arbitrary interface shape, ∂R

∂t is nothing but the local
normal velocity vn, and Eq. (A.5) the eikonal equation which gives the
normal velocity of a curved wave front. This equation has been applied in
other different contexts than the chemical one, like flame front propagation
and crystal growth. This is a naive derivation of the eikonal equation and
more systematic and rigorous derivation can be found in [141].

Denoting the interface position as y = h(x, t) as shown in Fig. A.1, the
following geometrical relations hold:

vn = v cos α (A.6)

v =
∂h

∂t
(A.7)

cos α =
1

(1 + h2
x)1/2

(A.8)

sinα =
hx

(1 + h2
x)1/2

(A.9)

k =
hxx

(1 + h2
x)3/2

(A.10)

Using these equalities we can rewrite the eikonal equation as a function of
the front position as,

ht = v
√

1 + h2
x + D

hxx

1 + h2
x

(A.11)

This effective local equation captures the features of the original field
model (as the Oregonator model) with the advantage of a significantly
simplification and of a much simpler analytic treatment.

A.2 Kinematic Theory of Autowaves

Kinematics of wave fronts in two-dimensional excitable media has been
described by identifying such waves as oriented curves moving in the
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Figure A.2: Schematic
representation of the coor-
dinates and angle of the
tip to indicate position and
orientation of the curve
segment.

plane [20]. Within this framework the kinematical description is based
on a natural equation k = k(l, t) of the curve which gives the temporal
dependence of the front curvature k on the length of the curve arc measured
from a reference point, usually the end point. The motion of this curve
depends on its normal and tangential propagation velocities linearly on the
form:

V = V0 −D k (A.12)

G = γ (kc − k) (A.13)

being V the normal velocity of any small segment of the front and G the
tangent velocity at its tip (which can be negative if the wave front contracts
or positive if sprouts) and V0, D, γ, and kc kinematic parameters.

The increment d` of the arc length in time dt is given by

d` =
(∫ l

0
kV ds

)
dt + Gdt (A.14)

where the first term describes the elongation of the curve in its normal
expansion and the second accounts for the changes in length due to
tangential motion of the end point of the curve (contraction or expansion).

If G > 0, any initial perturbation of a flat broken front will evolve
to a steadily rotating spiral wave. Invoking the so-called quasistatic
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approximation, the dynamics of a spiral wave can be reduced to the motion
of its tip [20]. If X(t) and Y (t) are the coordinates of the tip of a wave
at a time t, and α(t) is the angle between the tangent to the front at the
end point and the X-axis as plotted in Fig. A.2, the evolution equations for
those coordinates are:

dX

dt
= −V sinα−G cos α (A.15)

dY

dt
= V cos α−G sinα (A.16)

dα

dt
= ω + Gk (A.17)

dk

dt
= − 1

τG
(k − kc) (A.18)

where V and G are given by the Eqs. (A.12)-(A.13) evaluated at the tip.
The third equation defines the evolution of the angle α in terms of rotation
and the changes due to the tangent sprouting (G > 0). The fourth equation
accounts for the relaxation dynamics of the tip curvature to its critical value
kc. In the limit of small curvatures Dk � V0, V can be replaced by V0,
the propagation velocity of uncurved waves. The regime of spiral waves
rigidly rotating can be obtained by placing G = 0, that is, the front neither
grows nor contracts at its tip, and α = ω0t which means that the tip moves
around a circle at a constant rotation frequency ω0. The set of kinematic
equations for this kind of motion reduces to,

dX

dt
= −V0 sinω0t

dY

dt
= V0 cos ω0t (A.19)

So, once the solutions for Eqs. (A.19) and for the natural equation k =
k(l, t) are known1, the Cartesian coordinates of the curve points can be
found as,

1For the case of steady circulation, the natural equation is of the form k = (2R`)−1/2

for large `, which approximates an archimedian spiral with a constant step.
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X(`, t) = Xtip(t) +
∫ l

0
cos(ω0t + α)ds (A.20)

Y (`, t) = Ytip(t) +
∫ l

0
sin(ω0t + α)ds (A.21)

where α is obtained from k = dα
d` .
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Recipes for the Chemistry of
the BZ Reaction

The goal of this Appendix is to describe all the stuff necessary to prepare
the ruthenium-catalyzed BZ reaction in a Lab where the chemicals involved
in can be found. The purpose of doing that is because it is a difficult
task since someone buys the chemical products until everything is ready
to be used. Unfortunately, all the process is not detailed anywhere. In
what follows, it will be described how to prepare the solutions from their
commercial distribution, and finally how to perform the BZ reaction in a
silica gel system.

Besides, at the end of this Appendix, it is included a brief description
of the device used to measure the light intensity in the experiments.

The steps to follow are:

1. Preparation of the Catalyst Solution: Ru(bpy)+2
3 .

2. Determination of the Concentration of the Photosensitive Catalyst
Solution using Spectrophotometrical Techniques.

3. Preparation of the Sodium Silicate Solution (Waterglass).

4. Preparation of the Silica Gel.

5. Recipe and BZ Reaction.
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B.1 Preparation of the Catalyst Solution:
Ru(bpy)+2

3 .

The [Ru(bpy)3]SO4 solution is prepared from a commercial salt of ruthe-
nium complex tris(2,2-bipyridine)-ruthenium(II) chloride (C30H24N6RuCl2,
Pm = 640.5) presented in small red crystals. Nowadays, the ALDRICH
firm sells a hexahydrated salt variant of slightly higher molecular weight
(Pm = 748.63). To free the commercial salt from the chloride ions the next
recipe should be followed:

Recipe:
3 g of Ru(bpy)3Cl2·6H2O dissolved in 40 ml of distilled water
and made up to 100 ml with 5 M H2SO4.

The red solution obtained in this way has to settle two days (preferably in
the dark and at room temperature) in order the [Ru(bpy)3]SO4 precipitates.
After these two days, the precipitate is filtered using a vacuum pump and
a filter paper to gather it. Distilled water should not be used to recover
the rests of precipitate from the bottom of the recipient because it will
dissolve them again. Instead the solution just filtered can help to remove
them from the bottom of the flask. The filter paper with the precipitate
is left to get dried (enough at room temperature and protected from the
light). After that, the filter and the precipitate are put together in 100 ml
of 25 mM H2SO4 (this method allows more concentrated solutions). The
salt is dissolved and the filter is removed from the solution. This should be
filtered again if small pieces of paper are still inside.

B.2 Determination of the Concentration of the
Photosensitive Catalyst Solution using Spec-
trophotometrical Techniques.

The solution obtained in the previous step has a concentration C0 that is
unknown. To determine such concentration, the use of a spectrophotometer
is required. The one employed in our measurements is in the Faculty of
Chemistry and is of the double beam type and scans within the visible light
frequencies range (our solution has an absorption peak centered around 460
nm).

The method used to determine the concentration C0 is the Lambert-Beer
law:

Ci =
1
εd

log
I0

I
(B.1)
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Figure B.1: Example of the
fitting of the absorbances of
samples of different concen-
trations. These samples are
dilutions of the same primary
solution whose concentration
C0 has to be determined from
the slope of the linear fitting of
the points.

being

Ci= sample concentration molarity
ε=13400(M−1 cm−1) extinction constant
d= 1 cm (width of the absorbed light path)

Preparing n different samples by diluting fi times the primary solution of
unknown C0 concentration, and measuring their absorbances, we obtain
n points corresponding to the concentrations Ci and absorbances Ai,
where Ci = C0/fi and Ai is obtained directly from the spectrophotometer
representing the value log I0

I . Fitting the points (1/fi, Ai) to a straight
line, the concentration C0 can be obtained from the slope m = C0εd of
that fit. An example of one of them is shown in Fig. B.1.

B.3 Preparation of the Sodium Silicate Solution
(waterglass).

The solution used to make the silica gels is prepared using sodium silicate
(powder from Riedel-de-Haën) containing 60% SiO2 and 18% Na2O.

Recipe:
15 g of sodium silicate dissolved in distilled water up to 100 ml

The solution is boiled and constantly stirred to favor the complete mixing,
until the solution becomes clear (approximately one day). After cooling
down to room temperature, the solution needs to be filtered and it should
be added the lost water (both by evaporation and filtering).
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B.4 Preparation of the Silica Gel.

The preparation of the silica gel requires everything is ready before mixing
the reagents because the gelification time is short. We need a piece of
glass placed over two lead bars of a specific diameter (which will determine
the thickness of the gel, from 0.3 mm to 1 mm), that in turn are over a
methacrylate surface.

The recipe to make the gel is as follows [81]:

Recipe for 2 ml of gel:
1.333 ml 15% NaSiO3

0.176 ml H2O
0.131 ml 30.62 mM Ru(bpy)+2

3

0.360 ml 1 M H2SO4

Final concentrations in the gel are 0.18 M H2SO4 and 2 mM Ru(bpy)+2
3 .

The use of a magnetic stirrer is essential to keep the mixture continuously
shaken and to prevent it to become gel. In a small glass with a magnetic
bar inside the reagents are added in the same order as they were listed
above. Care should be taken when adding the sulfuric acid, the last one,
because it causes the liquid solution transforms into gel. Before reaching
that state and while it is still liquid, the solution is absorbed with the help
of a pipette and injected between the glass and the methacrylate. After a
while, the solution is gelly and the lead bars can be removed carefully. The
gel is stuck to the glass but not to the methacrylate so it can be slid over
it.

The ruthenium is now immobilized in a silica gel matrix and the rest
of the reagents should be added in order the reaction takes place without
hydrodynamic perturbations.

B.5 Recipe and BZ Reaction.

Grade reagents are commercially available both from the SIGMA and
ALDRICH firms to prepare with distilled water the stock solutions involved
in the BZ reaction, namely: sulfuric acid, sodium bromate, malonic acid
and potasium chloride. Once the silica gel system is ready, a mixture with
the rest of the reactants is prepared in the following way:

Recipe for the aqueous solution mixture:
0.60 ml 6 M H2SO4

2.85 ml 1 M NaBrO3
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0.65 ml 4 M malonic acid
2.05 ml H20
1.35 ml 1 M KBr

When adding the bromide, the solution turns red colored, and after a
while it becomes clear again. The total volume is 7.5 ml and the final
concentrations after completion are: 0.48 M H2SO4, 0.38 M NaBrO3, 0.34
M malonic acid, and 0.18 M KBr. The solution is pored onto the gel+glass
system which was placed inside a Petri dish. The volume of solution should
be enough to cover the gel and to avoid contact with the oxygen. The
experiment is ready to run.

B.6 Photometer.

Light intensity reaching the BZ reaction was measured using a silicon
photodiode (RS stock no. 305-462) with a flat glass window of 3.9 mm
diameter. The photodiode was connected to a battery of 15 V , to a I-V
converter and to a voltimeter as shown in Fig. B.2. The response of the
photodiode is proportional to the light intensity given by the relation:

φ =
V

ReR
(B.2)

where V is the measured output voltage, Re is the responsivity and equal
to 0.7 µA/mW/cm2, and R is an internal resistor chosen to give required
output.

+

-

R=500 kW

LM
307

ID

VOUT

Figure B.2: Photome-
ter circuit consisting in
a photodiode, an opera-
tional amplifier, and a re-
sistor. The output voltage
is equal to V = RID, being
ID the current through the
photodiode, which in turns
depend on the incident
light.





Appendix C

Analytical Approach of the
Return Map for the Front
Positions of a Wave Train in
a Sausage-Like Channel

In this Appendix an analytical approach to the return map for the positions
of a wave train propagating in a sausage-like channel is given. An expansion
to order O(c1/c0) of the Eq. (3.17) will lead us to a return map of the sine
type, which suggests that our system may support more than quasiperiodic
configurations.

From,

2
k
√

c2
0 − c2

1

[arctan f(xn)]xn+1(0)
xn(0) = T (C.1)

where

f(xn) =
√

c0 + c1

c0 − c1
tan

(
kxn

2

)
(C.2)

the following relationship between xn+1 and xn holds,

A arctan
[
B tan

(
kxn+1

2

)]
= T + A arctan

[
B tan

(
kxn

2

)]
(C.3)
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with

A =
2

k
√

c2
0 − c2

1

B =
√

c0 + c1

c0 − c1

Since c0 � c1 we can expand B up to order O(c1/c0) to obtain:

A arctan
[
B tan

(
kxn

2

)]
= A arctan

[
(1 +

c1

c0
) tan

(
kxn

2

)]
(C.4)

Now we need to express the argument of the arctan on the right-hand
side of Eq. (C.4) as tan β, so arctan(tanβ) = β. In order to do that we call

tanβ = tan
(

kxn

2

)
+

c1

c0
tan

(
kxn

2

)
= tanβ0 + b (C.5)

where β0 = kxn
2 and b = c1

c0
tanβ0 � 1.

We suppose that β = β0 + a with a � 1. Developing tan β = tanβ0 +
a sec2 β0+..., and comparing this expansion with the previous one, it results
that a sec2 β0 = b. So, we easily get:

β = β0 + a =
kxn

2
+

c1

2c0
sin(kxn) (C.6)

where 2 sinβ0 cos β0 = sin(2β0) has been used. Evaluating Eq. (C.4) by
using Eq. (C.6),

A

(
kxn+1

2
+

c1

2c0
sin(kxn+1)

)
= T + A

(
kxn

2
+

c1

2c0
sin(kxn)

)
(C.7)

Substituting constants, rearranging terms and also approximating A up
to first order in c1/c0, we end up with:

xn+1 = xn + c0T −
c1

kc0
[sin(kxn+1)− sin(kxn)] (C.8)

If c1 = 0, that is, a channel of uniform width, it results xn+1 = xn +c0T
which is the corresponding linear map for such situation. In order to solve
the difference of sines in Eq. (C.8), we make the approximation xn+1 =
xn + c0T so we have,

sin(kxn+1)− sin(kxn) = sin (kc0T ) cos(kxn)− [1− cos (kc0T )]sin(kxn)
(C.9)
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Making some trigonometrical manipulations,

sin(kxn+1)− sin(kxn) = 2 sinϕ cos ϕ cos(kxn)− 2 sin2 ϕ sin(kxn)

= 2 sinϕ [cos ϕ cos(kxn)− sinϕ sin(kxn)]

= 2 sinϕ cos(kxn + ϕ) (C.10)

being ϕ = kc0T
2 .

So the final expression for the return map of the front positions takes
the form,

xn+1 = xn + c0T − ρ cos(kxn + ϕ) (C.11)

where ρ = 2 c1
kc0

sinϕ is the constant of coupling which accounts for the
amplitude of the nonlinear perturbation, and ϕ a phase lag. If kc0T � 1,
that is, the wavelength of the train in a straight channel is smaller than the
modulation wavelength, the Eq. (C.11) becomes a pure circle map,

xn+1 = xn + c0T − c1T cos kxn (C.12)

If not, the phase lag would explain the observed phase modulation in the
return maps for the front position for the case of strong forcing.
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[67] V. Petrov, V. Gáspár, J. Masere, and K. Showalter, Controlling
Chaos in the Belousov-Zhabotinsky Reaction, Nature 361, 240–243,
1993.

[68] R. H. Simoyi, A. Wolf, and H. L. Swinney, One-Dimensional
Dynamics in a Multicomponent Chemical Reaction, Phys. Rev. Lett.
49 (4), 245–248, 1982.

[69] V. A. Vavilin, A. M. Zhabotinsky, and A. N. Zaikin, Effect
of Ultraviolet Radiation on the Oscillating Oxidation Reaction of
Malonic Acid Derivatives, Russ. J. Phys. Chem. 42, 1649–, 1968.

[70] H. Busse and B. Hess, Information Transmission in a Diffusion-
Coupled Oscillatory Chemical System, Nature 244, 203–205, 1973.
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Muñuzuri, V. Pérez-Villar, D. Vives, F. Sagués, J. Casademunt, J. M.
Sancho, and L. Ramı́rez-Piscina, Effects of a Quenched Disorder on
Wave Propagation in Excitable Media, Int. J. of Bif. and Chaos 9 (2),
2353–2361, 1999.

[132] D. Stauffer and A. Aharony, Introduction to Percolation Theory,
Taylor & Francis, London, 1994.

[133] M. Sahami, Applications of Percolation Theory, Taylor & Francis,
London, 1994.

[134] T. P. Eggarter and M. H. Cohen, Simple Model for Density of States
and Mobility of an Electron in a Gas of Hard-Core Scatterers, Phys.
Rev. Lett. 25 (12), 807–810, 1970.

[135] B. J. Last and D. J. Thouless, Percolation Theory and Electrical
Conductivity, Phys. Rev. Lett. 27 (25), 1719–1721, 1971.

[136] L. B. Kiss, P. Svedlindh, L. Lundgren, J. Hudner, H. Ohlsén, and
L. Stolt, Spontaneous Conductivity Fluctuations in Y-Ba-Cu-O Thin
Films: Scaling of Fluctuations, Experimental Evidence of Percolation
at the Superconducting Transition, Solid State Commun 75 (9), 747–
751, 1990.

[137] P. Jensen, P. Melinon, A. Hoareau, J. X. Hu, B. Cabaud,
M. Treilleux, E. Bernstein, and D. Guillot, Experimental Achievement
of 2D Percolation and Cluster-Cluster Aggregation Models by Cluster
Deposition, Physica A 185, 104–110, 1992.

[138] U. Oxaal, M. Murat, F. Boger, A. Aharony, J. Feder, and T. Jøssang,
Viscous Fingering on Percolation Clusters, Nature 329, 32–37, 1987.

[139] I. Sendiña-Nadal, D. Roncaglia, D. Vives, V. Pérez-Muñuzuri,
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