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� Abstract
Large scale phase-contrast images taken at high resolution through the life of a cultured
neuronal network are analyzed by a graph-based unsupervised segmentation algorithm
with a very low computational cost, scaling linearly with the image size. The processing
automatically retrieves the whole network structure, an object whose mathematical repre-
sentation is a matrix in which nodes are identified neurons or neurons’ clusters, and links
are the reconstructed connections between them. The algorithm is also able to extract
any other relevant morphological information characterizing neurons and neurites. More
importantly, and at variance with other segmentation methods that require fluorescence
imaging from immunocytochemistry techniques, our non invasive measures entitle us to
perform a longitudinal analysis during the maturation of a single culture. Such an analy-
sis furnishes the way of individuating the main physical processes underlying the self-
organization of the neurons’ ensemble into a complex network, and drives the formula-
tion of a phenomenological model yet able to describe qualitatively the overall scenario
observed during the culture growth. VC 2014 International Society for Advancement of Cytometry
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ALONG the past decades, cultured neuronal networks (CNNs) have constituted a

fundamental tool for scientists, as one of the benchmark models for the study of the

central nervous system. They, indeed, allow performing very well controlled labora-

tory experiments, thus providing a systematic way to approach fundamental ques-

tions, as for example, unveiling the principles and mechanisms underlying memory,

connectivity, and even information processing of their in vivo counterparts (1–5).

CNNs have also important practical applications, when computer-connected to

a real or a simulated robot (to create what is called a hybrot (6–8) or an animat

(9,10), respectively), in that scientists are then endowed with the possibility of study-

ing some basic neuronal processes in realistic contexts, such as learning and plastic-

ity. Possibly, the most relevant advantage of CNNs is the unique option they offer of

following the footprints of the self (or induced) organization of the network’s func-

tionality and dynamics (usually by means of a multi-electrode array [MEA] or cal-

cium fluorescence, recording the CNN electrophysiological data, or inducing

electrical stimulations in given spatial positions) together with the monitoring and

tracking of the structural organization of the neurons’ connectivity along the entire

course of the culture’s growth (11–13).

Although culturing neurons on top of a MEA equipped chamber implicates, in

general, only mild constraints, following the development of the culture’s structure is
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a far more delicate issue. Indeed, image-based systems biology

essentially requires to gather sequential imaging of the culture

and its processing to seek the evolution of the main network’s

indicators and measures along the CNN’s maturation

(14–16).

Now, it turns out that the accuracy of the existing image

processing tools [as e.g., NeuronJ (17), NeuriteTracer (18),

NeuronMetrics (19), NeurphologyJ (20), MorphoNeuroNet

(21), HCA-Vision (22), and for a recent review on the subject

consult Ref. (23)] in segmenting neurons and neurons’ con-

nections depends crucially on furnishing, as inputs, pictures

with a high level of contrast. This traditionally led experimen-

talists to rely on immunocytochemistry techniques, which

however implies cell fixation and death.

As a result, while comparing different CNNs at different

stages of their maturation is nowadays a common practice,

tracking variations of the network’s structure on a single CNN

requires a completely novel approach, wherein image process-

ing could analyze non-invasively image acquisitions.

In this article, we describe a novel graph-based segmenta-

tion algorithm which operates on large scale images acquired

by phase-contrast microscopy, and therefore by a fully non

invasive technique, that is, without the need of adding chemi-

cals to the culture. The algorithm accurately identifies the rel-

evant network’s units, and reconstructs the wiring of network

connectivity with an overall computational cost (in terms of

time and memory) which scales linearly with the image size.

We show that we are able to fully track the main parameters

characterizing the morphology and network’s topology of a

single culture during its maturation, and to identify the basic

mechanisms that take place at different stages of the culture

development. Finally, we show how such an information can

be used for the construction of a data driven model of CNN’s

growth which is able, on its turn, to qualitatively reproduce

the whole scenario observed in the experiments.

MATERIALS AND METHODS

Neuronal Cultures and Image Acquisition

Primary neuronal cultures were prepared from the fron-

tal ganglion of adult locusts Schistocerca gregaria. Frontal gan-

glia dissection and dissociation procedures are thoroughly

described in Refs. (14) and (24). In brief, neuronal cells are

isolated (and removed from their original neurites) by enzy-

matic and mechanical dissociation. Cells are then resuspended

in Leibovitz medium (L-15) with L-glutamine (Sigma–

Aldrich, L4386), supplemented with 0.01% penicillin–strepto-

mycin (Biological Industries, Israel), and seeded on a Conca-

navalin A (Sigma–Aldrich, C0412) pre-coated circular area (r

� 2.5 mm) of a 35 mm Petri dish at a density of about 1,500

cells per cm2, and left eventually for 2 h to allow adherence.

Neurons are then incubated with 2 ml conditioned medium

L-15 enriched with 5% locust hemolymph, and cultured in

darkness for 18 days in vitro (DIV) under controlled tempera-

ture (29�C) and humidity (70%).

High-resolution and large scale phase-contrast images

are acquired daily with an inverted microscope (Eclipse Ti-S,

Nikon Instruments) equipped with a motorized XYZ stage

(H117 ProScan, Prior Scientific), and using a charge coupled

device camera (DS-Fi1, Nikon Instruments) with a 103 air

(Achromat, ADL, NA 0.25) objective. The automated control

of the motorized XYZ stage and camera is performed using

the NIS-Elements software (Nikon Instruments Software,

Nikon). Mosaic images with a pixel size of 1.34 mm are cap-

tured with the “large image” method implemented in NIS-

Elements, which does automatic blended stitching with an

overlap of 25%. Therefore, at each day of measurement, the

result is a large high-resolution jp2 image file consisting of an

ensemble of images acquired with 103 magnification in

mosaic (usually 8 3 9 images). An example of a typical acqui-

sition of the whole culture after 7 DIV is shown in Supporting

Information Figure S1, while in the zoomed areas neurons,

ranging from 10 to 50 mm in size, grow neuronal processes

(neurites) trying to target neighboring cells.

Image Segmentation and Analysis

The proposed image-processing pipeline for the detec-

tion and analysis of CNNs comprises eight steps whose work-

flow is outlined in Figure 1. In the first step, the red RGB-

layer of a phase-contrast large image corresponding to a time

point is loaded (Fig. 1A). In the second and third steps (Fig.

1B), the image is segmented and thresholded, respectively, to

separate background (noise, death cells, and cell debris) and

foreground (neurons and neurites). Subsequently, in the

fourth and fifth steps neurons and neurites are detected (Fig.

1C), after which the different components of the CNN are

connected (Fig. 1D) and coded in the adjacency matrix (step

6), which is eventually analyzed to extract and store the mor-

phological and topological properties of the CNN (steps 7 and

8). Background segmentation (second and third steps) is writ-

ten in C11 while the rest of the algorithm is written in MAT-

LAB. Both the MATLAB pipeline and the binary C11 MEX-

file are available as Supporting Information.

Graph-based image segmentation and thresholding (steps 2

and 3). A first action to provide an accurate and fast seg-

mentation of a CNN from phase-contrast illumination images

is to aggregate areas with similar features according to a spe-

cific function along different scales. The implemented algo-

rithm is graph-based (25,26), and it considers an input image

I as an undirected weighted graph G 5 (V, e, w), in which

every pixel of the image is a node in V, and each pair of pixels
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is connected by an edge in e. Given two nodes i and j, the exis-

tence of an edge between them depends on their spatial loca-

tion and its weight wij depends on a similarity function of the

pixel intensities. More precisely, for each node i we consider

its pixel (px) location (xi, yi) in the spatial grid. We then con-

sider the neighborhood N(i) of node i to be formed by its

eight first neighbors in the grid (local neighborhood),

together with the four nodes located at positions (xi 6 100 px,

yi) and (xi, yi 6 100 px) (non-local neighborhood), and

weight each link according to the absolute value of the differ-

ence of the pixel intensities. Local neighborhood attempts to

link those pixels belonging to the same region, while non-

local neighborhood aims for linking those regions with similar

features. In our application, the purpose of the non-local

neighborhood is to allow the segmentation task the merging

of isolated background regions. Notice that, as the graph is

undirected, the calculation of the weights only involves the

half of them. The resulting matrix is then thresholded (adopt-

ing a suitable threshold value, which is then a parameter of

the algorithm) to produce a binary graph, and all its con-

nected components are determined, each one of them being

labeled with the corresponding average intensity. In this way,

all the pixels belonging to the background appear in a histo-

gram grouped in a delta function, while the rest of pixels are

uniformly distributed. Subsequently, a straightforward seg-

mentation is performed with threshold-based segmentation

obtaining two binary masks: one corresponding to those pix-

els belonging to background and the other with those pixels

forming the neuronal network mask (Fig. 1B).

Neuronal cluster detection (step 4). Given the mask con-

sidered as no-background, to segment both isolated and clus-

tered neurons we first distinguish between ROIs (regions of

interest) larger and smaller than 105 pixels, to subsequently

perform selective morphological operations on each class of

ROI, being all of then standard techniques in image process-

ing. On the large ROIs, we performed two consecutive ero-

sions using rectangles as structural elements. After first

Figure 1. Image processing steps. (A) Red RGB-layer of an enlarged area of a culture 11 DIV old. (B) Output of the segmentation algorithm.

The region of interest, where neurons and processes are located, is highlighted in yellow (boundaries are in black). (C) Output of the neuron

and neurite searching algorithm. Identified clusters of neurons are marked in red, neurites in green, and processes’ forks in blue. (D) Graph

representing the network structure where green circles (clusters of neurons) and yellow diamonds (forks and processes’ endings) are the

nodes and blue straight lines (neurites) are the links between nodes whenever there is a process connecting them. Scale bar 500 mm. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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eroding with a 10 3 30 rectangle, regions smaller than 500

pixels are eliminated, and a second erosion is performed using

a rectangle of 30 3 10 pixels. Finally, a dilation is applied

using a disk with radius 10 pixels to smoothen the contours.

The erosion in the smallest ROIs is performed by performing

eight successive linear erosions at 45� from each other. After

that, regions smaller than 100 pixels are eliminated and con-

tours are eventually smoothed by means of a dilation with a 5

pixels disk. The combination of the two resulting ROIs yields

the final neuronal cluster mask.

Neurite detection (step 5). After segmenting the neuronal

clusters, the corresponding mask is subtracted from the neu-

ronal network mask to proceed with the neurite detection. To

that end, we apply a further morphological operation consist-

ing in linearly dilating at (45�, 245�, 30�, 230�) to connect

those areas which were separated due to small errors in the

initial background segmentation, especially relevant in the

case of thinner neurites. The segmentation is then finalized by

performing a dilation with a 5 pixels circular mask, and those

holes of size smaller than 500 pixels are filled in afterwards.

The neurite mask is then generated from the skeletonized

image, after which the neuronal cluster and neurite masks are

combined to produce the CNN mask as shown in Figure 1C,

were branching points and ends of neurites are marked as

blue pixels, neurites as green lines, and neuronal clusters as

red areas.

Adjacency matrix reconstruction and analysis (steps 6–

8). The obtained CNN mask is used in a twofold way: to

extract morphological parameters characterizing both neuro-

nal clusters (number, size, centroid, roundness, etc.) and neu-

rites (length, orientation, etc.), and to extract the actual

adjacency matrix encoding the topology of the neuronal net-

work, as shown in Figure 1D. The adjacency matrix is con-

structed as a binary and undirected graph, whose nodes are

either branching points or cluster centroids, and two nodes

are linked if there is a neurite process connecting them. Treat-

ing all links as identical, that is, ignoring edge length and edge

directionality, such a graph can be described in terms of a

symmetric matrix A whose elements aij are equal to 1 if nodes

i and j are linked, and 0 otherwise.

Our graph is bipartite, as it is made of two types of

nodes. However, we focus on the network statistical properties

at the level of the neuronal clusters, ignoring the dynamics of

both neurite connections and branching points. Therefore, we

ended up with a subgraph defining the connectivity among

the neuronal clusters in such a way that two of them are linked

either directly or through a connected path of branching

points. Such an object allows us to calculate all classical

parameters characterizing the topology of a complex network

(degree distribution, shortest path, node clustering, etc.) (27).

Algorithm Evaluation

To the best of our knowledge, there is no automated soft-

ware dealing with segmentation of large size phase-contrast

images of CNNs to compare with. Therefore, to quantitatively

asses the capability of our proposed algorithm to reconstruct

the CNN, we design a manual and an automated evaluation

procedure. In the former case, we compare the topological

similarity between the manual and algorithm’s graph solutions

while in the latter, segmentation results will be compared to

ground-truth synthetic images whose network structure is

known. To test the robustness of our segmentation algorithm,

different levels of blurring were added to the synthetic images

by applying a Gaussian filter of the same size of the images

(blur kernel from MATLAB) and using the blur metric intro-

duced in Ref. (28).

Manual annotation. Manual evaluation is performed, by

eye inspection, labeling clusters of neurons and neurite’s bifur-

cation points, and connecting those labels to create the graph

representing the network structure. This manual annotation is

done by the same subject by clicking and dragging using

“gaimc” (Graph Algorithms In MATLAB Code) (29), a MAT-

LAB tool modified to show the annotated image as a back-

ground. Because of the tool limitations, the image being

annotated cannot be zoomed in or out causing some subjec-

tive decisions like resolving whether two neurons are in the

same cluster or whether two neurons are connected through a

very thin neurite. Supporting Information Figure S2 illustrates

some of those situations where the user could make a subjec-

tive call. Conversely, if the image size (in pixels) is smaller

than the screen resolution, it can happen that a neurite is pres-

ent but not its origin nor its end and, consequently, that link

is lost in the manual classification. Therefore, we consider

images of size 1,000 3 1,000 pixels and compare the connec-

tivity matrices resulting from the manual annotation and

from applying our segmentation algorithm (see Supporting

Information Fig. S3 for a visual inspection of the manual and

algorithm’s outputs). Finally, to proceed with the comparison

of the two adjacency matrices, the following rules are taken

into account: (i) a node in the manual solution is identified as

the same node in the algorithm’s one if the Euclidean distance

between their positions is below a given threshold and vice

versa; (ii) those nodes not having a reciprocal mapping are

removed from both graphs; (iii) those nodes which are con-

nected through a deleted node become connected through a

direct link. This reduction process avoids the subjective judg-

ments issue as each node has to be detected by the two label-

ing methods and the evaluation will reflect the ability of the

algorithm to find an existing path between two detected

clusters.

Synthetic images database. In the automated evaluation

instead, we create a synthetic database of images emulating

the observed CNN’s. The image database is built using somas

and neurites extracted from real images, and the background

under the same optical conditions as in the experiments when

only the culture medium is present. Eleven different neuron

sizes and shapes (see Supporting Information Fig. S4 for an

illustration) were used to create an artificial neuronal network

as follows. Neurons are arbitrarily chosen from this set and
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randomly placed in a 9,000 3 9,000 pixels square grid, allow-

ing for the formation of larger clusters if neurons intersect.

Next, cluster centroids are computed and a Delaunay triangu-

lation is performed to obtain a connectivity matrix where

some of those connections are randomly removed. Every pair

of linked cluster centroids are physically connected in the

image by placing a neurite whose thickness is randomly scaled

and whose length and orientation are given by the Euclidean

distance and relative angle of the straight line between them.

Finally, the background is added into the image by blurring

the borders between the artificial network and background.

Supporting Information Figure S5 depicts the process to cre-

ate one synthetic neuronal network.

Accuracy analysis. Let A5 aij

� �
be the binary matrix repre-

senting the manual/synthetic graph connectivity and B5 bij

� �

the matrix representing the algorithm’s solution. We define

true positive (TP) as the number of pixels in B such that aij5

bij51 and true negative (TN) if aij5bij50 (that is, in both

cases there is a true segmentation). A false positive (FP) is

defined as those pixels which satisfy aij50 and bij51, while a

false negative (FN) corresponds to aij51 and bij50. The pro-

posed evaluation method is based on the F-measure (30)

defined as F52RP=R1P, where P5TP=ðTP1FPÞ stands for

the Precision or Confidence in retrieving true segmentations,

while R5TP=ðTP1FNÞ represents the Recall or Sensitivity of

the algorithm to return most of the links in A. F-measure is

within the [0, 1] interval, so that 0 states for a bad segmenta-

tion, while on the contrary 1 represents the best segmentation

result. Together with these measures, we also computed the %

of coincidence E between the two matrices.

RESULTS

Neuronal Network Analysis

To automatically analyze the neuronal morphology and

network topology, we have developed a graph-based segmen-

tation algorithm which combines C11 and MATLAB. The

pipeline, thoroughly described in Materials and Methods sec-

tion and illustrated in Figure 1, processes RGB phase-contrast

images of neuronal cultures as large as 20 mm2 at different

stages of the network development. First, it takes the red layer

and clusters nearby pixels with similar features allowing to

separate the background from the foreground containing the

pixels forming the neuronal mask (neurons and neurites).

Second, the algorithm operates in the foreground applying

several morphological operations to segment the neuronal

cluster and neurite masks. During this process, a skeletoniza-

tion of the neurite mask finds the bifurcation points. Finally,

the pipeline analyses and exports multiple morphological and

topological characteristics of the neuronal network. Figure 2

shows an example of the kind of information it can be

extracted. There, the pipeline is applied to images captured at

three different ages of the same culture, 3, 6, and 11 DIV. Pan-

els A–C just show a small area of each image while panels D–F

show, superimposed to the original images, the corresponding

adjacency matrices extracted by the program and capturing

the observed network structure. As already introduced in

Materials and Methods section, we just focused on the net-

work at the level of the neuronal clusters such that two of

them are linked either directly or through a connected path of

branching points. This is illustrated in the inset of Figure 2G,

sketching how a small subgraph with neurons and bifurcation

points, like the one encircled in Figure 2D, it is reduced to a

subgraph whose nodes are only neuronal clusters. Among the

classical measures characterizing the connectivity of a graph is

the degree distribution, P(k) that is the probability of having a

node connected to k neighbors, being k the degree of a node.

A related quantity is the cumulative degree distribution which

refers to the probability of having a node with a degree greater

or equal to k. In panels G–I, we plot the cumulative degree

distributions of the whole networks developed in days 3, 6,

and 11, respectively. We observe that during the culture matu-

ration, degree distributions had a fast decay with a non

monotonous increase in the average connectivity, with most

of the nodes having a similar number of connections and only

a few ones with degrees deviating significantly from such a

number.

Performance

To evaluate the performance of the proposed algorithm

in the analysis of real CNNs, we consider aspects concerning

the computational cost and accuracy.

Computational cost. Figure 3A shows the overall processing

time for each one of the images of the dataset. The height of

the bars accounts for the total time consumed in both the seg-

mentation and analysis tasks (time consumed by specific tasks

are color coded), and is computed assuming that the graph-

based algorithm is implemented in C11 and the rest of the

pipeline uses MATLAB running in a PC computer (Intel Core

i5, 6GB RAM, 3.00 GHz). As it can be observed from the inset

of Figure 3A, background segmentation and adjacency matrix

extraction are the most demanding tasks, consuming, respec-

tively, 30% and 45% of the total computational time. To fur-

ther quantify the computational efficiency of the algorithm,

we plot in Figure 3B the image processing time as a function

of the image size (in pixels). The algorithm is able to manage

images as large as 125 Mpixels in less than 6 min (while the

segmentation task only takes 1.6 min, see inset of Fig. 3B)

without RAM saturation. For larger image sizes, the RAM

becomes saturated and the performance worsens, as the pipe-

line needs the hard drive to caching data. Moreover, a detailed

examination of the code shows that the algorithm performs

linearly with the number of pixels. As shown in the inset, per-

forming time also scales linearly when only the time con-

sumed during just the segmentation task is taken into

account. This is also supported by the linear regressions in

both RAM and hard drive memory usage regions.

Accuracy. As for the algorithm accuracy in reconstructing

the CNN, that is, understanding accuracy as the capability to

properly detect a link, we compare the adjacency matrices

coming from manual annotation or from synthetic images
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whose structure is known (see Algorithm Evaluation in Mate-

rials and Methods section for more details) with the adjacency

matrix resulting from the algorithm’s segmentation.

To this purpose, we applied the algorithm to small size

images (1,000 3 1,000 pixels) of a 6 DIV neuronal culture, and

manually annotated each image as previously described. An

example of such a comparison is shown in the top row of Fig-

ure 4 after an original image (Fig. 4A1) is being manually (Fig.

4A2) and automatically (Fig. 4A3) annotated, where neurons

(green circles), bifurcations (yellow diamonds), and neurites

(blue straight lines) are labeled. The resulting F-score obtained

for 32 images is 73 6 3% (R 5 65 6 4%, P 5 92 6 3%) (6

refer to the standard error of the mean) and the level of coinci-

dence E 5 80 6 2%, indicating that the segmentation algo-

rithm is able to statistically detect, with high precision, most of

the existing links in the manually annotated graph. However,

there are several causes affecting the algorithm’s performance

like the presence of debris or image artifacts (blurriness, illumi-

nation problems, . . .) which makes difficult the segmentation

of thin neurites like the ones marked with black arrows in

Figure 2. Neuronal network analysis. Panels (A)–(C), phase-contrast images at different locations of a self-organizing neuronal culture

from frontal ganglia of locusts after 3, 6, and 11 days of plating, respectively. Panels (D)–(F), the corresponding graph representations of

the neuronal networks extracted using the image segmentation algorithm. In this representation, green circles (clusters of neurons) and

yellow diamonds (forks and processes’ endings) are the nodes of the network, and blue straight lines (neurites) are the links between

nodes whenever there is a process connecting them. Panels (G)–(I) show the cumulative degree distributions of the adjacency matrices

encoding the graphs in panels (D)–(F) when only the network of paths connecting neuronal clusters (green circles) is considered. Inset in

panel (G) shows how that network of neuronal clusters is built. Scale bar 500 mm. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figures 4A2 and 4A3 (a more detailed revision of the problems

affecting the algorithm’s performance can be found in Sup-

porting Information Fig. S6).

In addition to the problems associated with the user bias,

discussed in Materials and Methods section, the manual eval-

uation of the performance restricted to small areas of the cul-

ture, hampers the possibility of evaluating the ability of the

algorithm to detect long-range connections, and, therefore, of

working with a real ground-truth topology to compare with.

To overcome this issue, we devised an automated method of

evaluation based on synthetic images of neuronal networks

whose topology is known. The bottom row of Figure 4 shows

a detail of one artificial network designed as explained in

Materials and Methods section. The underlying network

structure used to create the artificial network image is shown

in Figure 4B2 while Figure 4B3 depicts the graph solution ren-

dered by the algorithm. We use 16 images (9,000 3 9,000 pix-

els) to evaluate the performance with different network

configurations and backgrounds, obtaining an accuracy of

about 80.4 6 0.7% (6 means standard error).

Automatic evaluation gives us the possibility of compar-

ing the neuronal network mask obtained just after the image

segmentation (see Image Segmentation and Analysis in Materi-

als and Methods section) with the exact location of neurons

and neurites used in the synthetic image creation. The syn-

thetic image can be mapped into a 9,000 3 9,000 matrix,

encoding the existence of a neuron or a neurite pixel in the

image if the matrix element equals 1 and 0 otherwise. Taking

this matrix as ground-truth, we evaluated the algorithm’s

capacity for recovering the neuronal network mask (or, equiva-

lently, for distinguishing the background from the foreground)

yielding a 96.6 6 0.3% of F-score. Taking advantage of this

framework, we measured the robustness of the algorithm’s seg-

mentation by blurring the synthetic images with a Gaussian fil-

ter. The blur level was measured as in Ref. (28) and it is within

the interval [0, 1] where 0 means sharp and 1 means blurred.

Figure 5 shows the effect on the accuracy of the segmentation

process as a function of the blur level. Left panels in Figures 5A

and 5B show the synthetic blurred images for two values of

blurring 0.22 and 0.41, respectively, while the right panels

show the differences between the ground-truth (in red) and

the segmented mask (in yellow). The more yellow is the picture

the better is the accuracy (98% in A and 73% in B). In a more

systematic way, Figure 5C quantifies the F-score in the location

of neurons and neurites’ pixels as a function of the blur level,

showing a relatively slow decay up to blur levels of about 0.35,

after which the accuracy no longer sustains. As a matter of

comparison, the graph also shows the usual blurriness value of

a real culture image (0.23 6 0.02), which falls within the region

where the algorithm exhibits a more stable behavior.

Network Development and Topology

Typically, when the evolution of a CNN from an initial

state of dissociated neurons is monitored, one observes that

neurons create a network of synaptic connections from

scratch, and that the growth of the network is more pro-

nounced in the early stages of the culture, until it reaches a

sort of asymptotic state (14–16,31). The tracking of the full

process with our image processing tool allows us to identify

(and, more importantly, to quantify) the different network

stages through which neurons arrange their connectivity until

they reach a functional mature state. In particular, the analysis

of the images suggests that CNNs tend to develop from

Figure 3. Computational cost. (A) Image processing time for

each one of the whole set of images ordered according to their

sizes (from left to right). Each bar is proportionally divided in col-

ored segments (see legend) according to the time each specific

task consumes. (Inset) Task time percentage in relation to the

whole process. (B) Image processing time as a function of the

image size (in pixels). Blue dots account for the processing time

when the RAM is not saturated while red diamonds account for

the processing time when hard drive is used to caching data

(poor performance). Linear regressions show that the algorithm

computational cost scales linearly with the image size, that is

O(n) where n is the image size. (Inset) The same as is in the main

plot but time corresponds only to the time consumed during seg-

mentation. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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random toward small-world (SW) networks (13,14). This is

evidenced in Figure 6A, where we report the simultaneous

increase of the clustering coefficient and decrease in the mean

path length of the network, a clear fingerprint of the onset of

a SW network configuration (32). SW features prominently

manifest at DIV 6, and the resulting graph remains relatively

stable in topology through the rest of the life of the culture.

Furthermore in Ref. (14), we already demonstrated that the

algorithm is also able to extract the most relevant network sta-

tistics at the micro-scale, like degree distribution, degree–

degree correlations, and so forth.

Even more importantly, the unique possibility of tracing

the development of a specific, single, CNN endows us also

with the option of measuring topological changes over differ-

ent days of the culture maturation, and therefore of individu-

ating the main physical processes underlying the culture’s

morphological transformations. On its turn, such a latter

information can be conveyed to engineer a data-driven growth

model, in view of qualitatively reproducing the overall sce-

nario of experimental evidences.

Data-Driven Model

Namely, we now move to show how a relatively simple

growth model can in fact encompass an initial phase of ran-

dom growth that lasts up to a particular critical point, where

optimization processes, such as neuronal clusterization and

neuronal cable minimization driven by tension forces (33),

start to be the dominating mechanisms of the evolution. The

interplay and alternation of these two mechanisms (that were

already taken into account, but separately, in previous studies

(34,35)) are indeed the core of information that is given to us

by the comparative analysis allowed by the algorithm.

We start from a zero-model, previously reported in Ref.

(14) that considers a set of N cells randomly distributed with

a uniform cell density q. Each cell is associated with an inter-

action disk of radius ri(t) with an initial radius a. Whenever

two cell’s disk overlap, a link between them is established,

whose length equals the distance between the centers of the

two cell’s disks. If this distance is less than 2a, then the two

cells are merged into a single cluster. The time evolution of

the growth of each disk depends on the actual connectivity

ki(t) of the cell. At each discrete time step t (here denoting the

sequence of the DIV), the radius ri� a increases by a quantity

driðtÞ which decays as: driðtÞ5V=t ½12ð1=KiÞkiðt21Þ� where

V is the neurite growth velocity (the same for all cells), Ki a

random number in the interval [1, N], and ki the degree of the

node (cell) at the time step t. The term ki/Ki introduces heter-

ogeneity in the cell population, and represents the fraction of

Figure 4. Evaluation of the algorithm’s accuracy using manual annotation (top row) and synthetic images (bottom row). (A1–A3) Phase-

contrast images (1,000 3 1,000 pixels) from a CNN after 6 DIV used to compute the algorithm’s performance (A1), manual labeling of the

image (A2), and the resulting graph proposed by the algorithm (A3). Scale bar 1 mm. (B1–B3) Image segment (1,000 3 1,000 pixels) of an

artificial neuronal network (B1), network structure used to create the synthetic image (B2), and the algorithm’s solution when applied to

the image on the left (B3). In panels (A2-A3) and (B2-B3), green circles (clusters of neurons) and yellow diamonds (forks and processes’

endings) represent the nodes of the network, and blue straight lines (neurites) are the links between nodes whenever there is a process

connecting them. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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links acquired by the cell in the previous steps from the initial

randomly assigned endowment Ki. A very large Ki indicates

that, potentially, a cell is very active and could connect to

many other cells. The wiring process is iterated up to a given

time step Ts, at which the formation of new connections is

stopped.

The only variation that we are here considering with

respect to the original model of Ref. (14) is that now the neu-

rite growth velocity V is no longer isotropic, and rather each

cell disk i has an associated velocity Vij 5 V nij with respect to

cell j, where nij is a random number drawn from a uniform

distribution between 0 and 1. This leads to the fundamental

consequence that two disks initially located very close to each

other do not necessarily establish a connection, but they have

instead an associated probability of linking, as observed in the

experiment.

Furthermore, and following Ref. (14), whenever a new

link is formed between cells i and j, a tension force Tij 5 0.1 is

created along the line connecting them, and it is incremented

in 0.1 force units at each time step. The total force acting on a

Figure 5. Robustness of the algorithm’s segmentation to blur. (A,

B) Left panels show synthetic images with different blur levels (A)

0.22, and 0.41 (B), while the right panels represent the compari-

son between the image segmentation outcome (in yellow) and

the ground truth mask (in red). (C) Algorithm’s accuracy process-

ing synthetic images as a function of the blur level. Green dots

are the F-scores of all the synthetic images analyzed for a given

blur level. Purple solid (dashed) line represents the average

(standard deviations) value. Blue area stands for the usual blurri-

ness values observed in real culture images (0.23 6 0.02). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.] Figure 6. Comparison between model and experiment. (A) Short-

est path L (left vertical axis, orange lines and symbols), normal-

ized by the size of the giant connect component, and clustering

coefficient C (right vertical axis, blue lines and symbols) as a func-

tion of the culture age (DIV) for both experiments (solid curves)

and simulations (dashed lines). (B) Normalized histograms of the

distance between connected clusters in DIV 5 obtained in the

experiments (solid line), and in the simulations using the aniso-

tropic (dashed line) and isotropic (dot-dashed line) versions of

the model. All experimental quantities are averaged for the set of

six cultures at each day of measure (DIV). The simulation parame-

ters are N 5 700, Ts 5 9, and V 5 65, 40 for the anisotropic and iso-

tropic models, respectively, and each point is the ensemble

average over 50 independent runs of the growth algorithm. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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cell or cluster i is given by the vectorial sum of all the tension

forces acting on it. Finally, each cell is “anchored” to the sub-

strate by a force Fa 5 10 force units, and the ith cell can only

be detached if it experiments a net force Fi larger than the

adhesion to the substrate. In the case of a cluster of cells, the

adhesion force to the substrate is considered to be the sum of

the individual adhesions of the cells composing the cluster.

Therefore, cells and clusters move in a certain direction in all

circumstances in which the net force acting on them over-

comes the adhesion force, and an equilibrium point is reached

at a new position in which the new net force balances (or is

smaller) than the adhesion to the substrate.

To validate our model, we ran a large number of simula-

tions for different values of the model parameters N, V, and

Ts. Remarkably, when comparing the statistical topological

features of the simulated networks to those measured from

the experiments, we found that high correlation values exist

only in a very narrow window of V and Ts. For instance, the

parameter values which better fit the experimental observa-

tions for N 5 700 neurons, are V 5 65 6 5 and Ts 5 9 6 1.

Precisely, Figure 6A reports the comparison of the time

evolution of the clustering coefficient C and of the shortest

path L (normalized by the size of the giant connected compo-

nent of the network) for both experiments (continuous lines)

and simulations (dashed lines), and the agreement is good,

indicating that the model is able to capture the main mecha-

nisms leading the culture to organize into a small-world struc-

ture. The new version of the model also outperforms the

previous one reported in Ref. (14) regarding the evolution of

the morphological properties of the culture, as it is the case of

the neurite length distribution. Figure 6B shows the compari-

son between the normalized histograms of the average distance

between connected clusters typically observed in the DIV 5 of

the culture both in experiments and simulations. There, it is

clear that the anisotropic growth of the disks makes the model

to better fit the trend measured in the experiments, as this

modification allows the connection of more distant neurons,

giving rise to a not so sharp fall in the tail of the distribution as

observed in the isotropic version of the model.

DISCUSSION

Despite the existence of some functional studies of CNNs

(36,37) and also of a few theoretical–numerical attempts to

model the relationships between CNNs’ structure and func-

tion (38), no experimental verifications are available so far of

such a connection, basically due to the lack of tools allowing a

simultaneous tracking of the culture’s dynamical activity and

morphological/topological changes.

To cater for this need, we developed an algorithm and a

set of tools to enable automatic location of neurons and tracing

of neurites in non-invasive phase-contrast images, which can

be acquired simultaneously with electrophysiological measures

(with e.g., multi-electrode arrays), hence potentially allowing

for a combined study of network structure and dynamics.

The relevance and value of our work is then to make a

first step in the direction of unveiling and uncovering struc-

ture/function relationships during the evolution of a CNN.

In particular, in this report we operated a fully longitudinal

inspection of a single culture’s life and maturation process, in

which some aspects of the topological and functional organiza-

tion can be compared (39). The accuracy of the proposed algo-

rithm (in comparison to the manual and automated evaluations)

is very good, and the computational demand is rather low.

It is worth saying that one way to improve the validation

of our algorithm would have been the use of green fluorescent

protein (GFP) transfection or simply anti-horseradish peroxi-

dase (HRP) staining. These tools label the connections and

would therefore provide precise information on the physio-

logical, ground-truth topology of the network. Although these

labelling techniques are difficult to combine (the former) or

incompatible (the latter) with a continuous monitoring of the

culture maturation, their availability at a particular age of the

culture would have allow the access to other neuronal tracing

automated software to compare with and to produce ground

truths with most of the inter-neuronal connectivity. Apart

from quality image issues, a potential bottleneck of our algo-

rithm is working with high dense neuronal networks as the

extraction of the network structure could be compromised

mainly due to neurite crossing or high interconnectedness.

More importantly, the possibility of pursuing the foot-

prints of the different mechanisms at the basis of the culture’s

morphological changes allowed us to set up and assemble a

fully data-driven growth model, whereby the observed phe-

nomenology can be qualitatively reproduced to a large extent.

As a perspective work, the algorithm can be easily custom-

ized (and its parameters conveniently tuned) to study the spon-

taneously emerging morphology and organization in cultures

of dissociated neurons of other animals, and in particular of

vertebrates (rats and mice) given the current level of attention

and their vast use in a series of other experiments with CNNs.
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