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Effects of degree correlations on the explosive synchronization of scale-free networks
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We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free
topologies in the presence of a positive correlation between the oscillators’ natural frequencies and the
network’s degrees. Under those circumstances, abrupt transitions to synchronization are known to occur
in growing scale-free networks, while the transition has a completely different nature for static random
configurations preserving the same structure-dynamics correlation. We show that the further presence of
degree-degree correlations in the network structure has important consequences on the nature of the phase
transition characterizing the passage from the phase-incoherent to the phase-coherent network state. While high
levels of positive and negative mixing consistently induce a second-order phase transition, moderate values of
assortative mixing, such as those ubiquitously characterizing social networks in the real world, greatly enhance
the irreversible nature of explosive synchronization in scale-free networks. The latter effect corresponds to a
maximization of the area and of the width of the hysteretic loop that differentiates the forward and backward
transitions to synchronization.
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I. INTRODUCTION

During the last 15 years, network theory has successfully
portrayed the interaction among the constituents of a variety
of natural and man-made systems [1,2]. It was shown that
the complexity of most real-world networks (RWNs) can
be reproduced, in fact, by a growth process that eventually
shapes a highly heterogeneous [scale-free (SF)] topology in the
graph’s connectivity pattern [3]. Furthermore, such a SF degree
distribution affects, in its turn, in a non-negligible way almost
all the dynamical processes taking place over RWNs [1].

Actually, and distinct from the degree distribution, many
other important properties account for the fine details of the
structure of any RWN, mostly due to particular forms of
correlation (or mixing) among the network vertices [4]. The
simplest case is the degree correlation [5], in which the network
constituents tend to interact according to their respective de-
grees. Remarkably, nontrivial forms of degree correlation have
been (experimentally and ubiquitously) detected in RWNs,
with social networks displaying typically an assortative mixing
(i.e., a situation in which each network’s unit is more likely to
connect to other nodes with approximately the same degree),
while technological and biological networks exhibiting a
disassortative mixing (which takes place when connections
are more frequent between vertices of fairly different degrees).
Both the assortative and disassortative mixing properties are
known to considerably affect the organization of the network
into collective dynamics, such as synchronization [6–8],
epidemic spreading [9], and network controllability [10].

*Corresponding author: irene.sendina@urjc.es

Possibly the most studied emerging collective dynamics
in SF networks is synchronization [1,11], as such a state
plays a crucial role in many relevant phenomena like, for
instance, the emergence of coherent global behaviors in both
normal and abnormal brain functions [12], the food web
dynamics in ecological systems [13], or the stable operation of
electric power grids [14–16]. In particular, it has been recently
shown that the transition to the graph’s synchronous evolution
may have either a reversible or an irreversible discontinuous
nature. The former case is what is traditionally investigated
in coupled oscillators, where a second-order phase transition
characterizes the continuous passage from the incoherent to
the coherent state of the network [17,18]. The latter, instead,
corresponds to a discontinuous transition, called explosive syn-
chronization (ES) [19,20]. ES based on Kuramoto oscillators
has rapidly become a subject of enormous interest [19–28].
While originally it was suggested that ES was due to a positive
correlation between the natural frequencies of oscillators and
the degrees of nodes [20], more recent studies have proposed
the unifying framework of a mean field, where the effective
couplings are conveniently weighted [22,27,29]. Yet only
preliminary studies exist on the effect of degree mixing on
ES [30–33], and their evidence is still not conclusive and
sometimes also conflicting.

In this paper, we focus on ES of coupled phase oscillators
in two different models of SF networks, in the presence
of a positive correlation between the node’s degree and its
associated oscillator’s natural frequency, and show that the
degree mixing has important effects on the nature of the
phase transition characterizing the passage from the phase-
incoherent to the phase-coherent network state. In particular,
we will first show that growing and static SF networks having
the same degree distribution display in fact different explosive
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transitions and, second, we hypothesize that this dissimilarity
is due to the presence of some sort of degree mixing. Actually,
our evidence is that there is an optimal level of assortativity for
which the width and area of the hysteretic region associated
with ES is maximal, thus magnifying the irreversible nature of
that transition.

II. THE MODEL

To this purpose, let us start by considering a network of
N coupled phase oscillators whose phases θi (i = 1, . . . ,N)
evolve according to the Kuramoto model [17]:

dθi

dt
= ωi + σ

N∑

i=1

aij sin(θj − θi), (1)

where ωi is the natural frequency of the ith oscillator. Oscilla-
tors interact through the sine of their phase difference, and are
coupled according to the elements of the network’s adjacency
matrix aij , with aij = 1 if oscillators i and j are coupled, and
aij = 0 otherwise. The strength of the coupling is controlled
by the parameter σ , by increasing which one eventually (i.e.,
above a critical value of the coupling) promotes the transition
to the coherent state, where all phases evolve in a synchronous
way [17,34].

Following the changes in the level of synchronization
among oscillators as the coupling strength increases is tan-
tamount to monitoring the classical order parameter s(t) =
1
N

| ∑N
j=1 eiθj (t)| [17]. Indeed, the time average of s(t), S =

〈s(t)〉T , over a large time span T assumes values ranging from
S ∼ 0 (when all phases evolve independently) to S ∼ 1 (when
oscillators are phase synchronized).

Typically, Eq. (1) give rise to a second-order phase
transition from S � 0 to S � 1 for a unimodal and even
frequency distribution g(ω), with a critical coupling at σc = 2/

[πg(ω = 0)] for the case of all-to-all connected oscillators [35],
and σ ′

c = σc
〈k〉
〈k2〉 for the case of a complex network with first

and second moments of the degree distribution 〈k〉 and 〈k2〉,
respectively [11]. However, in the last few years it was pointed
out that a different scenario (ES) can arise, featuring an abrupt,
first-order-like transition to synchronization, and associated
with the presence of a hysteretic loop [19–23]. In this latter
case, the forward (from S � 0 to S � 1) and backward (from
S � 1 to S � 0) transitions occur in a discontinuous way
and for different values of the coupling strength, in this way
marking an irreversible character of the phase transition, which
is of particular interest at the moment of engineering (or
controlling) magneticlike states of synchronization [23].

III. EXPLOSIVE SYNCHRONIZATION DEPENDENCE
ON THE SF MODEL

We concentrate on ES in growing and static SF networks,
when a microscopic relationship between the structure and the
dynamical properties of the system is imposed. In particular,
and following the approach of Ref. [20], we will choose a
direct proportionality between the frequency and the degree
distribution [g(ω) = P (k)], implying that each network’s
oscillator is assigned a natural frequency equal to its degree,

ωi = ki , where ki = ∑
j aij is the number of neighbors of the

oscillator i in the network.
As for the stipulations followed in our simulations, SF

growing networks are constructed following the procedure
introduced in Ref. [36]. Such a technique, indeed, allows
construction of graphs with the same average connectivity
〈k〉, and grants one the option of continuously interpolating
from Erdős-Rènyi (ER) [37] to Barabàsi-Albert (BA) [3] SF
topologies, by tuning a single parameter 0 � α � 1. With this
method, networks are grown from an initial small clique of
size N0 > m, by sequentially adding nodes, up to the desired
graph size N . Each newly added node then establishes m new
links, having a probability α of forming them randomly with
already existing vertices, and a probability 1 − α of following
a preferential attachment (PA) rule for the selection of its
connection. When the latter happens, a generalization of the
original PA rule [3] is used that includes an initial and constant
attractiveness A for each of the network’s sites, so that the
attractiveness of node i (the probability that such a node has
to receive a connection) is Ai = A + ki [38]. The result of the
above procedure is that the limit α = 1 induces an ER config-
uration, whereas the limit α = 0 corresponds to a SF network
with degree distribution P (k) ∼ k−γ , with γ = 2 + A/m

(when A = m, γ = 3, and the BA model is recovered).
With the aim of inspecting whether ES depends on

the chosen SF network model, we further comparatively
consider ensembles of networks displaying the very same
SF distributions as those obtained with the PA algorithm
described above (α = 0) but this time we construct the SF
topology by means of the so called configuration model
(CM) [39,40], a randomized realization of a given network
where the node degree distribution remains intact. In both
cases, we set N = 103, 〈k〉 = 6, and distribute the oscillators’
frequencies so as to determine a direct correlation with the
node degree (ωi = ki) and, therefore, both network models
display identical frequency distributions.

The results are shown in Fig. 1, and reveal a dramatic
dependence of the ES behavior on the underlying SF network
model used, despite both having exactly the same P (k). In
particular, the top row of Fig. 1 reports the order parameter S

when σ is gradually increased in steps of δσ (forward tuning,
solid line), and also in the reverse way, i.e., departing from
a network state where S = 1 and gradually decreasing the
coupling by δσ at each step (backward tuning, dashed line).
The different areas of hysteresis displayed by the PA (left
panel) and CM (right panel) networks seem to indicate that
a crucial condition to obtain a strong irreversibility in ES
is having an underlying growth process through which the
SF topology is shaped. In order to statistically characterize
such critical behavior, the bottom panels of Fig. 1 account
for the probability density functions of the area of hysteresis
(left panel) and the largest difference in S(σ ) (right panel) for
both SF models. Averages are obtained from the simulation
of 400 PA networks (and their corresponding CM network
realizations). The values of the hysteretic areas are much larger
for PA than for CM networks up to the point that the ES for the
latter is almost absent (the most likely values for the hysteresis
area and 	Smax are very small).

As a first conclusion, we can affirm that, despite having the
same P (k) and therefore the same g(ω), the two classes of
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FIG. 1. (Color online) Comparative results on ES between SF
networks belonging to two different ensembles: preferential attach-
ment (PA) and configuration model (CM). Top row: Forward (solid
lines) and backward (dashed lines) synchronization curves for PA
(left panel) and CM (right panel) SF networks with exactly the same
degree distribution. The area of the hysteresis is depicted as a blue
shaded area in the PA-SF network while the synchronization jumps
are marked in both cases. Bottom row: Probability density functions
of the area of hysteresis (left panel) and of the synchronization jumps
(right panel) for 400 PA (CM) network realizations. In all cases,
N = 103, 〈k〉 = 6, γ = 2.4, and natural frequencies ωi = ki . The
CM network realizations are constructed using the degree sequences
of the PA networks.

SF networks exhibit a different explosive behavior. Supported
by the evidence provided in Fig. 1, we hypothesize that
this difference is related to the presence of two-point degree
correlations P (k,k′). One customary way to quantify the
amount of degree correlation with a single parameter is by
using the Pearson correlation coefficient r between the degrees
of all nodes at either ends of a link, which can be calculated
as in Ref. [4]:

r = L−1 ∑
i jiki − [

L−1 ∑
i

1
2 (ji + ki)

]2

L−1
∑

i
1
2

(
j 2
i + k2

i

) − [
L−1

∑
i

1
2 (ji + ki)

]2 ,

where ji and ki are the degrees of the nodes at the ends of the
ith link, with i = 1, . . . ,L. Actually, one has that −1 � r � 1,
with positive (negative) values of r quantifying the level of
assortative (disassortative) mixing of the network. We recall
here that the BA model does not exhibit any form of mixing in
the thermodynamic limit [r → 0 as (log2 N )/N for N → ∞
[4,41] and that a random CM produces networks that are highly
disassortative.

IV. THE EFFECT OF THE DEGREE MIXING

In the following, we study the impact of increasing or
decreasing the assortativity mixing on a network with a given
degree sequence {ki} from a power-law distribution k−γ .
In order to generate SF networks with given and tunable
levels of degree mixing, we follow an adjusted version of

the degree-preserving [42] rewiring algorithm of Xulvi-Brunet
and Sokolov [43], but similar and fully consistent results are
obtained using other procedures to impose degree mixing, such
as simulated annealing [44] or with prescribed correlations [4].
For each one of the growing and static SF networks, we choose
a pair of links at random and monitor the degrees of the four
nodes at the ends of such links. The links are then rewired in
such a way that the two largest- and the two smallest-degree
nodes become connected provided that none of those links
already exist in the network (in which case the rewiring step
is aborted and a new pair of links is selected). Repeating such
a procedure iteratively results in progressively increasing the
assortativity of the network, in that more and more connected
nodes of the network will display a similar degree. Conversely,
if the rewiring is operated in a way to determine that the
largest- (second-largest-) and the smallest- (second-smallest-)
degree nodes are connected, the resulting network becomes
progressively dissasortative.

In this way, we first generate a PA network of size
N = 5×103 with a given mean degree 〈k〉 = 2m and slope
γ as previously described, and produce the corresponding
random CM network realization. Then we check whether those
networks are uncorrelated, that is, whether r = 0. If not (which
is always the case due to finite-size effects), we perform the link
rewiring procedure until the networks are neutral (i.e., with no
degree correlations). Finally, we take these resulting configu-
rations as our PA and CM reference networks, and further per-
form on them the link rewiring procedure in order to produce an
ensemble of networks, all of them having the same degree dis-
tribution, but different values of the assortativity coefficient r .

Figure 2 illustrates the effect of the imposed degree
mixing on ES. Extensive numerical simulations of Eq. (1)
were performed at various values of r , and for SF networks
with different slopes γ ranging from 2.4 to 3.0, and the
same mean degree 〈k〉 = 6. The most relevant result is that,
regardless of the specific SF network model, the hysteresis
of the phase transition is highly enhanced (weakened) for
positive (negative) values of the assortative mixing parameter,
and that there is an optimal positive value of r where the
irreversibility of the phase transition is maximum. Notice that
the enhancement is far more pronounced in PA (left panel)
than in CM (right panel) netoworks. Moreover, as the slope
of the power law of the degree distribution becomes steeper
(large values of γ ), the enhancement produced by a positive
degree mixing gradually vanishes and the optimum point
slightly shifts to higher values of r . Notice, finally, that null
values of the hysteretic area indicate that the transition has
lost its irreversible character, so that degree mixing can turn
an explosive irreversible phase transition into a second-order,
reversible one.

The nonmonotonic behavior of the area of hysteresis is
further exemplified by looking at the synchronization curves
S shown in the bottom panels of Fig. 2. The left (right) panel
shows the forward and backward synchronization transitions
for three values of the assortative (disassortative) mixing.
From the results shown in the right panel it is evident that an
increasing level of disassortative mixing reduces the threshold
of the forward transition (which is consistent with the gene-
ral claims of Refs. [6–8] that disassortativity favors the
network’s synchronizability), but it progressively reduces
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FIG. 2. (Color online) ES as a function of the degree mixing.
Top row: Area of the hysteretic region delimited by the forward
and backward synchronization curves vs the Pearson correlation
coefficient r for PA (left panel) and CM (right panel) networks
with different values (reported in the legend) of the exponent γ of
the degree distribution P (k) ∼ k−γ . Each point is an average over
ten different simulations. Bottom row: Forward (solid lines) and
backward (dashed lines) synchronization curves for PA networks
(γ = 2.4) displaying different levels of assortative (left panel) and
disassortative (right panel) mixing. Curves are coded accordingly to
the specific value of the parameter r (reported in the legend of each
panel). In all cases, networks are SF with N = 5 × 103, 〈k〉 = 6, and
ωi = ki .

the hysteretic area associated with ES, until eventually a
second-order reversible transition is recovered. In contrast, the
effects of assortativity (left panel) are seemingly nontrivial: the
threshold for the forward synchronization has an increasing
trend with r > 0, but the area of hysteresis appears to widen
for intermediate values of r .

Further information can be gathered from inspection of
Fig. 3, where we illustrate the effect of varying the mean
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FIG. 3. (Color online) Area of hysteresis as a function of r for
PA networks with different amounts of heterogeneity. In the left
panel, the different curves correspond to different values of the mean
degree 〈k〉 (reported in the legend), while in the right panel 〈k〉 = 6
and the network heterogeneity is varied by means of increasing the
parameter α (see the legend for the color and symbol code of the
different reported curves), from pure SF (α = 0) to α = 0.3 (α = 1
corresponds to a pure ER network). In all cases, N = 103, γ = 2.4,
and ωi = ki , and each point is an average of ten simulations.

degree 〈k〉 (left panel), and the level of heterogeneity α (right
panel) in PA networks of smaller size (N = 103). In the
left panel it is observed that already at r = 0 (uncorrelated
networks), increasing the mean degree results in narrowing
the area of hysteresis, with the consequence that the phase
transition becomes smoother and smoother, until eventually
ES is lost. For generic values of r , as 〈k〉 increases, the curves
of the area of hysteresis are attenuated and shifted to higher
values of r . Regarding the effect of the heterogeneity in the
network’s connectivity (right panel), moving from pure PA
networks (α = 0) to slightly larger values of α causes rapid
deterioration of the enhancement of hysteresis. However, a
positive degree mixing can still turn a second-order phase
transition (for r = 0) into an abrupt and irreversible one at a
value of r ∼ 0.1 when α = 0.2.

V. DISCUSSION

From the results reported in the top row of Fig. 2 one clearly
sees how growing PA networks present a larger hysteresis
area than static CM networks for any value of r , although
both classes of network models display an enhancement of
irreversibility in connection with an increase in the degree-
degree correlation. Figure 4 provides further evidence of how
ES is achieved for a particular value of γ in terms of the
maximum gap in the order parameter 	Smax (left panel) and
the critical coupling strengths σ

f w
c and σbk

c (right panel) mark-
ing, respectively, the forward (solid symbols) and backward
(hollow symbols) transition points. As a function of the degree
mixing, the curves obtained for growing PA (red circles) and
static CM (blue triangles) SF networks have slightly different
trends. This figure makes it more apparent that the critical
coupling for the forward transition decreases almost linearly
as the mixing increases in the region r < 0 [6–8], while for
r > 0, the dependence of σ

f w
c on r is clearly nonlinear. This

suggests that specific pronounced topological mesoscales arise
at those values of r which influence the forward transition,
having the effect of obstructing the otherwise increasing trend
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FIG. 4. (Color online) Behavior of the critical parameters char-
acterizing the synchronization transition. Critical coupling strengths
(left panel) and synchronization jumps 	Smax of the order parameter
(right panel) at the synchronization transitions during the forward
(solid symbols) and backward (hollow symbols) continuations for
growing PA (◦) and static CM (
) SF networks as a function of the
degree mixing r . In all cases, N = 5 × 103, 〈k〉 = 6, and γ = 2.4.
The vertical dashed line marks r = 0. The inset of the left panel
reports the corresponding width of the hysteresis curves, calculated
as 	σc = |σf w

c − σ bk
c | for PA (◦) and CM (
) SF networks, with

“fw” and “bk” indicating “forward” and “backward,” respectively.
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of σ
f w
c . In contrast, in the backward continuations (hollow

symbols) the relationship between σc and r exhibits a change
of slope only at r = 0. The inset in the left panel of Fig. 4
reports the corresponding widths of the hysteresis curves,
calculated as 	σc = |σf w

c − σbk
c |, and underlines once again

the existence of a maximum for 	σc(r), in correspondence
with the maximum in the area of the hysteresis reported in
Fig. 2. Regarding the behavior of the maximum gap of the
order parameter at the forward transition (right panel of Fig. 4),
it displays a plateau at large values within the interval of r

where the ES still holds, and the abruptness of the transition
deteriorates for large values of |r|.

Figure 4 then clarifies that the enhancement of the hysteresis
is associated with a moderate increase in the degree-degree
correlation, recovering a second-order transition for large
values of positive and negative r . This nontrivial effect can
be understood by examining the inner mechanism of the
frequency-degree correlation. Explosive transitions result from
a frustration in the path to synchronization [45]. In the case of
ER networks, where the path to synchronization starts from
multiple seeds homogeneously distributed in the network,
this frustration can be induced by imposing a gap in the
frequency differences of each pair of nodes. The larger is
the gap frequency, the higher is the frustration (explosivity)
of the system, which shows a positive correlation between
the explosive character of the system and the width of the
hysteresis [23]. In the case of general SF networks, this
path starts from the hubs, leading to the synchronization of
the system by progressively recruiting nodes [46]. However,
under positive frequency-degree correlations this frustration
is induced by an emergent frequency gap existing between
hubs and their neighbors. Therefore, frustrating the path to
synchronization in SF networks is tantamount to isolating
the influence of the hubs in the system. In this way,
the more connected the network is through the hubs, the
more explosive the transition becomes once the hubs are
isolated.

The above arguments can be quantified by evaluating the
node betweenness centrality, which computes the fraction of
all shortest paths passing through each node of the network.
Figure 5 shows the mean betweenness (left panel) for the
core made of the set of the first three higher-degree nodes
(for the remaining nodes the betweenness does not change
significantly) and the mean distance from the hub to the rest of
the network (right panel), for both PA (red and solid symbols)
and CM (blue and hollow symbols) networks. PA networks
are comparatively more connected through the hubs than CM
static networks within the region of degree-degree correlation
where explosive behavior is observed. Therefore, in the case of
the CM there are more paths connecting the network that do not
necessarily pass through the hubs, allowing progressive local
synchronization and thus reducing the explosive character of
the transition and the associated hysteresis width. This is of
course due to the specific characteristics of the hubs in each
network model. While a growing PA network starts from an all-
to-all connected seed, for the static CM network the hubs are
randomly distributed in the network, as their natural degree-
degree correlations reveal: r � 0 for growing PA networks and
r = −0.19 for the CM networks.
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FIG. 5. (Color online) Dependence of the network structural
properties on the degree mixing. Betweenness centrality of the first
three higher-degree hubs (left panel) and mean network distance of
the hub of the network (right panel) as a function of the Pearson
correlation coefficient r for PA (red and solid symbols) and CM
(blue and hollow symbols) SF networks with different values of the
exponent γ of the degree distribution P (k) ∼ k−γ as indicated in the
legend. Each point is the average of ten network realizations with
N = 5 × 103 and 〈k〉 = 6.

According to Ref. [25], σc increases with the degree of the
main hub for uncorrelated SF networks in the limit of small
mean degree networks, where the role of the hubs is certainly
dominant. Therefore, we suggest that a small increase in the
degree-degree correlation promotes the connectivity of the
hubs, leading to the emergence of a core with a larger effective
degree, which increases the hysteresis width accordingly.
However, further increase of the assortativity or dissassorta-
tivity enhances the modularity of the network, thus breaking
the dominant role of hubs by over- or underconnecting them.
This is reflected by the decrease of the core’s betweenness for
large positive and negative values of r for both growing and
static networks (see again Fig. 5).

VI. SUMMARY

In summary, we have reported simulations of the dynamics
of networked ensembles of phase oscillators whose interac-
tions are mediated by a scale-free topology of connections,
and for which a positive correlation exists between each
oscillator’s natural frequency and the corresponding node
degree. Our results allow us to conclude that the further
presence of degree-degree mixing in the network structure
has crucial consequences for the nature of the phase transition
accompanying the emergence of the phase-coherent state of the
network. In particular, we have shown that high levels of both
positive and negative mixings consistently produce a second-
order phase transition, whereas moderate values of assortative
mixing magnify the irreversible nature of ES in both static and
growing SF networks. When related to the fact that nontrivial
forms of degree correlation indeed ubiquitously characterize
the structure of real-world SF networks, our results may be
of relevance for understanding why real-world biological and
technological networks organize themselves on topological
structures that tend to avoid explosive synchronization phe-
nomena (which are there usually associated with pathological
states of the networks), whereas social network topologies
actually favor the explosive and irreversible emergence of
synchronous states.
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