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We investigate how hubs of functional brain networks are modified as a result of mild cognitive
impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which
sometimes precedes the onset of Alzheimer’s disease. We used magnetoencephalography (MEG)
to investigate the functional brain networks of a group of patients suffering from MCI and a
control group of healthy subjects, during the execution of a short-term memory task. Couplings
between brain sites were evaluated using synchronization likelihood, from which a network of
functional interdependencies was constructed and the centrality, i.e. importance, of their nodes
was quantified. The results showed that, with respect to healthy controls, MCI patients were
associated with decreases and increases in hub centrality respectively in occipital and central
scalp regions, supporting the hypothesis that MCI modifies functional brain network topology,
leading to more random structures.

Keywords : Functional brain networks; synchronization likelihood; centrality; hub characteriza-
tion; mild cognitive impairment.
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1. Introduction

Characterizing how the brain organizes its activity
to carry out complex cognitive tasks is a highly
nontrivial pursuit. While early neuroimaging stud-
ies typically aimed at identifying patches of task-
specific activation or local time-varying patterns of
activity, it is now recognized that both at rest and
during behavior, that brain activity is character-
ized by the formation and dissolution of function-
ally meaningful integrated activity [Breakspear &
Terry, 2002].

Over the last ten years, functional activity has
started being investigated using a statistical physics
understanding of a very old branch of pure mathe-
matics: graph theory. This approach has extensively
been applied to complex physical and biological
systems [Newman, 2003; Boccaletti et al., 2006;
Albert & Barabási, 2007], and represents a shift
from a parallel distributed, computer-like to a com-
plex system vision of the brain. In this approach,
functional activity is thought of as a network. A
network consists of a number of units (nodes) inter-
acting by links. The specific pattern of connections
between the nodes defines the network’s topology.
Network theory provides suitable descriptors at
all scales from local microscopic, to mesoscopic,
to global macroscopic ones. Models to reproduce
global topological properties of natural systems e.g.
the “small-world” [Watts & Strogatz, 1998] and
“scale-free” [Barabási & Albert, 1999] properties,
and measures to properly quantify these and other
observed features have been proposed [Boccaletti
et al., 2006]. The existence of central regions in
brain functional networks and the way of quan-
tifying their importance in the network structure
has been the object of numerous studies [Sporns
et al., 2007; Achard et al., 2006; Buckner et al.,
2009; Zamora-López et al., 2010; Joyce et al., 2010;
Lohmann et al., 2010; Hwang et al., 2012; Kuhn-
ert et al., 2012]. The centrality (i.e. importance)
of a node i can prima facie be measured by the
number of connections K(i) (degree) in the func-
tional network, indicating how many regions are
coordinated with it during a certain task. Once
the amount of synchrony is quantified, a weighted
network of connections can be constructed. In this
case, the node strength S(i), i.e. the sum of the
weights of its links, becomes a more accurate indi-
cator of the importance of a node in the network.
Nevertheless, both the degree and the strength are
local measures, which do not take into account

the global topology of the functional network. To
overcome this issue, global measures of centrality
have been proposed. Node closeness C(i), takes
into account the number of steps that we have
to do to go from one to another: the lower num-
ber of steps, the higher closeness a node has. The
eigenvector centrality E(i), is another indicator
of the global relevance of a node and it is mea-
sured by computing the eigenvector v1 associated to
the first eigenvalue of the connectivity matrix (i.e.
the matrix of interactions between nodes). A more
intuitive measure is represented by node between-
ness B(i), which quantifies the number of short-
est paths (minimum number of steps between two
nodes) that cross a certain node, thus reflecting
its importance in the transmission of information
in the whole network. Closeness, eigenvector cen-
trality and betweenness, make use of information
about the structure of the whole network, never-
theless node centrality could be restricted solely
to a certain region or community. To measure the
community importance of nodes, Guimerà et al.
[Guimerà & Amaral, 2005] introduced two indi-
cators, the within-module-degree zi and the par-
ticipation coefficient pi. The combination of both
parameters not only measures the importance of a
node inside its community but allows classifying the
role played by the central nodes (hubs) in the overall
community structure.

The application of these measures to functional
brain networks may help in quantifying how rele-
vant nodes are impaired by the emergence of differ-
ent brain diseases. Here, we analyze the alteration
of functional networks’ hubs caused by mild cogni-
tive impairment (MCI), a brain syndrome involv-
ing cognitive impairments beyond those expected
based on the age and education of the individual
often representing a transitional stage between nor-
mal aging and dementia. The progressive accumula-
tion of the beta amyloid protein and the loss of cells
and synapses along the Alzheimer’s disease (AD)
continuum impair cognitive function as a reflection
of network malfunctioning. Thus, although hubs
organization has been studied for fully-fledged AD
[Buckner et al., 2009; Stam et al., 2009; de Haan
et al., 2012], whether hub organization impairment
occurs at the early stages of the disease such as
in MCI is to be observed. The MEG signal of
17 patients suffering from MCI and 17 control
patients, was recorded during the execution of a
memory task (see [Buldú et al., 2011] for details).
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Next, we measured the synchronization likelihood
(SL) between all pairs of nodes, and obtained
a weighted correlation matrix that was analyzed
by using Complex Networks Theory methods. In
[Buldú et al., 2011], the attention was devoted to
the global properties of the functional networks.
Nevertheless, how hub organization is affected by
the disease was not considered. In the present work,
we focus on how the role of the hubs is distorted
by MCI. Our hub characterization relies on var-
ious parameters, but we show how the eigenvec-
tor centrality E(i) of the nodes, a global measure
which quantifies the importance of a node in the
whole structure of the network, is the more ade-
quate indicator, in contrast with local measures
such as degree or strength centrality. Therefore, we
use this measure of centrality to identify (and quan-
tify) network hubs. Eigenvector centrality allows
detecting the dominant regions in the functional
connectivity network and, next, how these regions
are affected by the disease. Our results show that
the leading role played by network hubs is atten-
uated by MCI, which transforms the network into
a more homogeneous one. These results are consis-
tent with previously reported analyses showing that
MCI increases the randomness of the global struc-
ture of the functional network [Buldú et al., 2011],
thus, leading to a more homogeneous connectivity
network.

The manuscript is organized as follows: in Sec. 2
we explain the methodology followed to obtain
functional networks from magnetoencephalography
measurements. Section 3 includes all information
related with the experimental procedure. Section 4
contains a detailed explanation of the different cen-
trality measures used in this work together with the
main results. Finally, in Sec. 5, we discuss the impli-
cations of the results obtained and the relation with
other studies of hub characterization in functional
brain networks.

2. Obtaining Functional Networks

Functional brain networks rely on the coordinated
activity between brain regions, which requires to
quantify the synchronization of each pair of regions,
i.e. nodes, within the network. There exist a number
of different measures of synchronization [Boccaletti
et al., 2002; Pereda et al., 2005] that can be applied
to the recorded time series of each node (see Sec. 3
for details on how the dynamics of the nodes are

obtained). Among them, we have chosen Synchro-
nization Likelihood (SL) [Stam & van Dijk, 2002],
a nonlinear measure of the synchronized activity
that has been proven to be a suitable quantifier for
datasets obtained from magnetoencephalographic
recordings [Stam et al., 2006; Buldú et al., 2011].
This index, which is closely related to the concept of
generalized mutual information [Buzug et al., 1994],
relies on the detection of simultaneously occurring
patterns, which can be complex and widely differ-
ent for every pair of signals (see the example of
Fig. 1). Let X denote the matrix containing all
the M signals (one per each channel that measures
a certain cortical region) of n time steps, and let
Xn = [xn, yn, . . . , zn], where X1,n = xn, X2,n = yn

and so on. In the time series of a given channel,
for each time step n, we define the probability that
embedded vectors are closer to each other than a
distance ε:

P ε
n(X) =

1
2(w2 − w1)

×
N∑

m=1
w1<|n−m|<w2

θ(ε − |xn − xm|) (1)

where | · | is the Euclidean distance and θ is the
Heaviside step function, with θ(x) = 0 if x ≤ 0
and θ(x) = 1 for x > 0. Here w1 and w2 are two
windows: w1 is the Theiler correction for autocor-
relation effects and should be at least of the order
of the autocorrelation time; w2 is a window that
sharpens the time resolution of the synchronization
measure and is chosen such that w1 � w2 � N .

Now, for each signal and each time n, the crit-
ical distance εn is determined for which P ε

n(x) =
pref , where pref � 1. We can determine for each dis-
crete time pair (n,m) within our considered window
(w1 < |n − m| < w2) the number of channels Hn,m

where the embedded vectors xk,n and xk,m will be
closer together than this critical distance εk,i:

Hn,m =
M∑

k=1

θ(εk,n − |xk,n − xk,m|). (2)

This number lies in a range between 0 and
M , and reflects how many of the embedded signals
“resemble” each other.

We can now define a synchronization likelihood
SLn,m(X) for each channel k and each discrete time
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Fig. 1. Synchronization likelihood (SL) between two brain regions. Time series correspond to the recorded electromagnetic
field of two brain sites. The SL algorithm detects windows of repeated patterns within the time series of channel A and, next,
checks whether channel B also shows a repeated pattern at the same time windows, no matter if it is the same or different to
that observed in channel A. Values of SL close to one (zero), indicate a high (low) correlation.

pair (n,m) as:

if |xn − xm| < εn : SLn,m(X) =
Hn,m − 1
M − 1

,

if |xn − xm| ≥ εn : SLn,m(X) = 0.
(3)

By averaging over all m, we finally obtain the
synchronization likelihood, SLn(X):

SLn(X) =
1

2(w2 − w1)

N∑

m=1
w1<|n−m|<w2

SLn,m(X).

(4)

Synchronization likelihood SLn(X) describes
how strongly channel x at time n is synchronized
to all the other M − 1 channels. The range of val-
ues of SL is 0 ≤ SL ≤ 1, being (pref) when all M
time series are uncorrelated, and 1 for maximal syn-
chronization of all M time series. The value of pref

can be set at an arbitrarily low level, and does not
depend on the properties of the time series, nor is
it influenced by the embedding parameters [Stam &
van Dijk, 2002].

The SL yields a symmetric and weighted cor-
relation matrix wij , which can be analyzed using
Complex Networks metrics [Boccaletti et al., 2006].
Before computing their network parameters, we fol-
low the normalization technique proposed in [Buldú
et al., 2011] in order to avoid intrinsic differences
from different individuals. The off-diagonal weights

46

108

44

112

67 90 129

69
49

88

147

63

14283

41

120
138

136
59118

37
20

99

140

2131

77
132

51

3

116

33 16 4 13
113

Fig. 2. Averaged functional network of the control group.
Only 5% of the links with higher weights have been plotted.
Colors indicate the lobe that a node belongs to: frontal-left
(blue), frontal-right (light green), central (dark green), tem-
poral left (red), temporal-right (light orange) and occipital
(dark gray). Node size is proportional to the node strength
S(i). Note the higher density of connections at the occipital
and frontal lobes. Node number is indicated for those nodes
with higher strength.
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in the correlation matrices are rescaled to the inter-
val [0, 1] by means of

SLij =
wij − min(wij)

max(wij) − min(wij)
(5)

while the diagonal is set to zero after normaliza-
tion. Figure 2 shows an example of a functional
brain network obtained from a control group of 17
healthy individuals (see Sec. 3 for details). The nor-
malized weighted correlation matrix Wij leads to
a fully connected network (since all pair of nodes
have a SL ≥ 0), so only 5% of the links with higher
weights (i.e. SL) have been plotted to ease visu-
alization of the network. The size of a node i is
proportional to its strength S(i), defined as the
sum of the weights of all its connections. We can
observe how the density of connections is higher at
the peripheral regions and, specially, at the occipi-
tal lobe, while the central cortical region is sparsely
connected (note that we are only considering the
links with higher correlations). Interestingly, nodes
with higher strengths, i.e. the network hubs, are
mainly localized in the occipital lobe.

3. Materials and Methods

The magnetoencephalographic (MEG) signal was
recorded with a 256 Hz sampling frequency and
a band pass of [0.5, 50] Hz, using a 148-channel
whole-head magnetometer (MAGNES c©2500 WH,
4D Neuroimaging) confined in a magnetically
shielded room. Seventeen MCI patients and 17
healthy volunteers were recorded during a Stern-
berg’s letter-probe task [deToledo-Morrell et al.,
1991; Maestu et al., 2001].

MCI diagnosis was established according to the
criteria proposed by Petersen et al. [Grundman
et al., 2004; Petersen, 2004]. Thus, MCI patients
fulfilled the following criteria: (1) cognitive com-
plaint corroborated by an informant (a person who
stays with the patient at least for half a day at
least four days a week); (2) objective cognitive
impairment, documented by delayed recall in the
logical memory II subtest of the revised Wechsler
Memory Scale (score ≤ 16/50 for patients with
more than 15 years of education; score ≤ 8/50 for
patients with 8–15 years of education); (3) normal
general cognitive function, as assessed by a clini-
cian during a structured interview with the patient
and an informant and, additionally, a mini mental
state examination (MMSE) score greater than 24;

(4) relatively preserved daily living activities as
measured by the Lawton scale; (5) not sufficiently
impaired, cognitively and functionally to meet cri-
teria for dementia. Age and years of education were
matched to the SMC group. According to their
clinical and neuropsychological profile, all patients
in this group were considered multidomain MCI
patients (see [Petersen, 2004]). As for the geriatric
depression scale, none of the MCI showed depres-
sion (score lower than 9) [Yesavage & Brooks, 1991].

In the Sternberg’s letter-probe task [deToledo-
Morrell et al., 1991; Maestu et al., 2001] a set of five
letters was presented and participants were asked
to keep the letters in mind. A series of single letters
(1 sec in duration with a random ISI between 2
and 3 sec) was then introduced one at a time, and
participants were asked to press a button with their
right hand when a member of the previous set was
detected.

Thereafter, single trial epochs were visually
inspected by an experienced investigator, and
epochs containing visible blinks, eye movements
or muscular artifacts were excluded from further
analysis. Thirty-five epochs corresponding to each
subject were used in order to calculate the func-
tional connectivity values (i.e. their synchronization
likelihood). This lower bound was determined by
the participant with least epochs. To have an equal
number of epochs across participants, thirty-five
epochs were randomly chosen from each of the other
participants. The effect of plasticity in the evalua-
tion of network synchronization is not dealt with in
this work, although it could be a subject of analysis
in future ones.

Before the MEG recordings, all participants or
legal representatives gave written consent to partic-
ipate in the study, which was approved by the local
ethics committee of the Hospital Cĺınico San Carlos
(Madrid, Spain).

4. Measuring Node Centrality

The emergence and evolution of MCI has been stud-
ied extensively during the last years [Petersen, 2004;
Dickerson et al., 2005; Babiloni et al., 2006; Scheff
et al., 2007; Scheneider et al., 2009; Bajo et al.,
2010] since it is known to be related to prodromal
Alzheimer’s disease (AD). Neuropathological stud-
ies indicate that MCI patients have clear patho-
physiological characteristics, such as the presence
of neurofibrillary tangles, loss of dendritic spines
and the accumulation of beta-amyloid protein in
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the associative cortex [Markesbery, 2010]. From the
point of view of brain connectivity, MEG record-
ings of patients suffering from MCI revealed an
enhancement of the synchronization between cor-
tical regions when memory tasks were performed
[Bajo et al., 2010]. The increase of the synchronized
behavior was accompanied with a change of the
topological structure of the associated functional
network, which turned into more random config-
urations [Buldú et al., 2011]. A reduction of the
modular behavior of the network together with an
increase of the long-range functional connections
has also been associated with the appearance of
MCI [Buldú et al., 2011].

Nevertheless, how functional hubs are affected
by the disease is still unclear. It is known that
network hubs are strongly affected by brain dis-
eases like schizophrenia [Basset et al., 2008] or
Alzheimer’s disease [Buckner et al., 2009; Stam
et al., 2009; de Haan et al., 2012]. This is bad news,
since the targeted attack to leading nodes leads to a
fast damage of the whole network properties [Albert
et al., 2000] and, eventually, to cascading failures
[Motter & Lai, 2002].

We used four different centrality measures from
complex weighted-network theory to detect net-
work hubs and to evaluate how their topological
roles are affected by the disease. These measures

were computed over the matrices obtained from the
patients and control individuals.

The most straightforward centrality measure is
the strength of nodes, S(i), defined as the sum of
the weights of the links to all neighbors of a node i.
If a node has strong connections with its neighbors,
it will have higher influence on the functional net-
work, i.e. it will be more central. S(i) can be easily
obtained as:

S(i) =
∑

j∈N(i)

Wij (6)

where N(i) is the set of neighbors of i, in our case,
all nodes of the network, since W matrices are fully
connected. Figure 3(a) shows the strength S(i) of
both control and MCI groups, averaged over the
whole groups. Network hubs can be easily identified
as those with higher network strength, while the
influence of the disease in the hubs is directly the
difference of S(i) between both groups. We observe
that strength of the network hubs (highest peaks of
the S(i) distribution) is not specially altered, while
from node 1 to 40 (localized at the central lobe)
there is a significant increase of strength, although
they are not hubs of the network. Therefore, node
strength seems to indicate that MCI is not specially
severe with the hubs.
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Fig. 3. Averaged centrality measures for the control (black) and MCI (red) groups. Specifically, we calculate (a) the node
strength S(i), (b) node closeness C(i), (c) node betweenness B(i) and (d) node eigenvector centrality E(i). All measures have
been calculated and averaged over each epoch and for each subject of both groups. Note that E(i) is the measure that better
captures the differences between groups in those nodes with higher centrality. See Fig. 2 to locate the position of the hubs.
The periodicity reported in the four figures is only a consequence of the node numbering. See Fig. 2 for details on where nodes
are placed in the Euclidean space.
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Nevertheless, network strength S(i) is a local
measure and does not account for correlations of
link strength or specific structural distributions of
the weights in the network. To overcome this issue,
two measures of centrality have been applied, with
the aim of including the influence of the network
structure from a point of view of information trans-
fer: the node closeness C(i) and the node between-
ness B(i). Both measures are based on the geodesic
distance from node to node dij , which is obtained
as the shortest distance to arrive from one node
i to any other (j) by jumping through nodes of
the network. At each jump, the traveled distance
is increased by the inverse of the weight of the link
that is used to pass from one node to the other
(e.g. when jumping from node k to node l the trav-
eled distance increases ∆d(kl) = 1/wkl). Finally,
the mean geodesic distance of a node i, is defined
as li = 1

n

∑
j dij . If the mean of geodesic paths of

vertex i is low, it means that this vertex can inter-
change information faster and farther within the
network. Closeness centrality C(i) is then defined
as the inverse of the mean geodesic path,

C(i) =
1
li

=
n∑

j

dij

. (7)

A closely related, but not equal, measure of
node importance is the betweenness centrality B(i),
which measures the ability of a node to act as trans-
mitter of information through the network. B(i) is
defined as

B(i) =
∑

j �=k �=i

ni
jk

gjk
(8)

where ni
jk accounts for the number of shortest paths

between every pair of nodes j and k that pass
through node i, properly normalized by the total
number of geodesic paths gjk from j to k.

In Figs. 3(b) and 3(c) we plot the average val-
ues of C(i) and B(i) for control and MCI groups.
While both measures have their proper character-
istics, a common behavior appears in the high cor-
relation present among the centralities of control
and MCI for all nodes. The position of the net-
work hubs perfectly matches when comparing the
local measure of centrality S(i) with C(i), while
B(i) seems to suggest the existence of hubs but with
a more noisy distribution. Interestingly, the peaks
reported in the three distributions correspond to
nodes placed at the occipital lobe (see node number

in Fig. 2). Again, there are no significant differences
in the centrality of the network hubs, and the most
clear signature of MCI is an increase of centrality
in the nodes belonging to the central lobe (from 1
to 40). This alteration is not captured by B(i), thus
indicating that it is not the most suitable measure
to evaluate changes in network centrality.

It is worth noting that although C(i) and
B(i) contain information about how weights are
distributed within the network, they only refer
to shortest paths distribution and disregard other
structural properties of the network. To overcome
this issue, we compute the eigenvector centrality
E(i) of the nodes. E(i) is a measure obtained from
the spectral analysis of the connectivity matrix W.
Specifically, it is calculated as the eigenvector v1 of
the first eigenvalue of the matrix W. Note that any
modification of the weight of the links, will result
in a change of the matrix W and, therefore, will
be reflected in the value of the eigenvector central-
ity E(i). On the contrary, if an alteration of a link
does not imply any modification in the distribution
of shortest paths, it will not be captured by C(i)
or B(i) centralities. The mathematical definition of
the eigenvector centrality is related to an iterative
process where the centrality of a node i is calculated
as the sum of the centralities of its neighbors:

E(i) = λ−1
∑

j

WijE(j), (9)

where λ is a constant, E(j) is the eigenvector cen-
trality of node j, with j a neighbor of i and Wij

are the components of the connectivity matrix W.
In matrix notation, Eq. (9) reads λE = WE so
that E can be expressed as a linear combination
of the eigenvectors vi of the adjacency matrix. Since
the final value of E(i) is obtained when t → ∞,
the value of E(∞) is equal to the eigenvector v1

associated to the dominant eigenvalue λ1. There-
fore, the eigenvector centrality E(i) is equal to
the eigenvector v1(i) of the connectivity matrix W
[Newman, 2004].

Figure 3(d) shows the eigenvector centrality
E(i) for both groups. It detects the position of
the network hubs which, as in S(i) and C(i), are
mainly placed at the occipital lobe. Interestingly,
this measure captures a clear decay in the central-
ity of the hubs, as indicated by the decrease of
the peaks height. The consequence of this decrease
is a network where the hubs play a less relevant
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role. In Fig. 4 we plot how the variation of the
eigenvector centrality ∆E(i) due to MCI is related
with the initial centrality of the nodes. We observe
a negative correlation, indicating that those nodes
with higher centrality are, in turn, the nodes that
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Fig. 5. Distribution of the variation of eigenvector central-
ity E(i). The size of the nodes is proportional to |∆E(i)| =
|E(i)MCI−E(i)control|, while node color indicates an increase
(green) or decrease (red) in the node centrality. Node number
is indicated for those nodes with high |∆E(i)|.

decrease its importance the most. It is also interest-
ing to see what is the position of the nodes in the
whole network. Figure 5 shows the increase (green)
and decrease (red) of eigenvector centrality with the
node size proportional to the value of |∆E(i)|. It
is the occipital lobe that is mostly affected by the
decrease of centrality, while the central lobe takes
advantage of this reduction.

5. Conclusions

The analysis of functional and anatomical brain
networks using complex networks analysis have
revealed interesting information about how these
networks are organized [Bullmore & Sporns, 2009].
All studies agree on the fact that brain networks
are highly heterogeneous, giving rise to the exis-
tence of hubs, i.e. leading nodes from the point of
view of the network structure. In this manuscript
we have shown a detailed analysis of how the impor-
tance of network hubs in a functional network asso-
ciated with the execution of a memory task is
affected by the emergence of MCI. We report how
the disease particularly affects network hubs, reduc-
ing their importance in the network. This reduction
is captured by all different measures of centrality,
independently of whether they rely on the local or
global properties of the network. Among all cen-
trality measures, eigenvector centrality E(i) is the
one that better captures the effect of the disease
on the network hubs. The occipital region, contain-
ing the majority of the hubs in the case of healthy
individuals, is the region where centrality decreased
the most, while nodes belonging to the central
lobe benefit from the hub deterioration. Interest-
ingly, anatomical networks of patients suffering
from schizophrenia also show a reduction of the
hub importance, together with a dispersion in the
location of network hubs [Basset et al., 2008]. This
reduction of hub centrality can be used as a signa-
ture of the existence of pathology since it is known
that the hub structure is quite stable in healthy
adult individuals [Hwang et al., 2012; Zuo et al.,
2012]. In addition, it reinforces the hypothesis that
MCI increases the randomness and homogeneity of
the functional network [Buldú et al., 2011], since the
reduction of hub importance leads to more homo-
geneous networks. The implications of hub deterio-
ration are still unclear. For example, in Alzheimer’s
disease, it has been shown that amyloid-beta depo-
sition in the locations of cortical hubs could act
critically in the severity of the disease [Buckner
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et al., 2009]. In the case of anatomical networks
in schizophrenia, the reduction of centrality of the
frontal hubs has been related to the disorganization
of the anatomical network. The reduction in hub
centrality in posterior scalp regions could be related
to the high levels of beta amyloid accumulation in
those regions found in MCI and Alzheimer’s dis-
ease. Conversely, the increased hub centrality found
for anterior sensors could reflect enhanced engage-
ment of frontal regions compensating for decreased
capacity to tackle the demands of the memory task
(see [Bajo et al., 2010] for a similar interpretation).
We believe that our work will shed some light on
the role played by hubs in brain networks, which
may have strong influence on the network robust-
ness [Albert et al., 2000], cascading processes [Mot-
ter & Lai, 2002] and network controllability [Tang
et al., 2012]. Similar studies could be carried out
in other neurodegenerative diseases where the exis-
tence of functional hubs has been reported.
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Leyva, I., Gil, P., Sendiña-Nadal, I., Almendral, J.
A., Nevado, A., del-Pozo, F. & Boccaletti, S. [2011]
“Reorganization of functional networks in mild cogni-
tive impairment,” PLoS ONE 6, e19584.

Bullmore, E. & Sporns, O. [2009] “Complex brain net-
works: Graph theoretical analysis of structural and
functional systems,” Nat. Rev. Neurosci. 10, 186–198.

Buzug, Th., Pawelzik, K., von Stamm, J. & Pfister, G.
[1994] “Mutual information and global strange attrac-
tors in Taylor–Couette flow,” Physica D 72, 343–350.

de Haan, W., Mott, K., van Straaten, E. C., Scheltens,
P. & Stam, C. J. [2012] “Activity dependent degen-
eration explains hub vulnerability in Alzheimer’s dis-
ease,” PLoS Comput. Biol. 8, e1002582.

deToledo-Morrell, L., Evers, S., Hoeppner, T. J., Morrell,
F., Garron, D. C. & Fox, J. H. [1991] “A ‘stress’ test
for memory dysfunction. Electrophysiologic manifes-
tations of early Alzheimer’s disease,” Arch. Neurol.
48, 605–609.

Dickerson, B. C., Salat, D. H., Greve, D. N., Chua,
E. F., Rand-Giovannetti, E. et al. [2005] “Increased
hippocampal activation in mild cognitive impairment
compared to normal aging and AD,” Neurology 65,
404–411.

Grundman, M., Petersen, R. C., Ferris, S. H., Thomas,
R. G., Aisen, P. S., Bennett, D. A. et al. [2004]
“Mild cognitive impairment can be distinguished from
Alzheimer disease and normal aging for clinical tri-
als,” Arch. Neurol. 61, 59–66.

1550034-9



March 26, 2015 12:20 WSPC/S0218-1274 1550034

A. Navas et al.
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