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We report on a generic procedure to steer (target) a network’s dynamics towards a given, desired evolution.
The problem is here tackled through a Master Stability Function approach, assessing the stability of the
aimed dynamics, and through a selection of nodes to be targeted. We show that the degree of a node is a
crucial element in this selection process, and that the targeting mechanism is most effective in heterogeneous
scale-free architectures. This makes the proposed approach applicable to the large majority of natural and
man-made networked systems.

C
omplex networks are mathematical objects with the ability to neatly encode relevant information on the
irregular structure of interactions among coupled dynamical units, thus serving as useful models of large-
scale systems of biological, physical and social interest1. For a given coupling scheme, an issue of the

utmost importance is how to make the network abandon its current time evolution (as defined by its equations of
motion and initial condition) and approach a goal dynamics. Traditionally, this has been the subject of the theory
of chaos control and targeting of dynamical systems, whose methods have laid the basis for a judicious manip-
ulation of a nonlinear dynamics, cleverly directing it towards a desired one. The idea behind control2 is that of
stabilizing one of the infinite number of unstable orbits embedded in chaotic attractors by the application of small
time-dependent perturbations. The targeting procedure3–6, instead, seeks to steer the dynamics of the system in
the shortest possible time towards another trajectory fully compatible with the equations of motion of the system,
but originating from a different initial condition.

There is, therefore, a subtle and yet deep difference between the two processes. While control aims to stabilize
an otherwise unreachable trajectory, targeting allows to pursue a goal dynamics out of the set of those achievable
by the natural evolution of the system from the attractor basin, and, as such, it can be interpreted as forcing the
system to forget its initial condition.

While applications of both procedures to low dimensional chaotic (and spatially extended7–9) systems have
been one of the fields of major interest within the last 20 years10, only recently has the issue of network controll-
ability been approached11–14. Imagine a network of N m-dimensional units, such that a generic trajectory mean-
ders in an m 3 N-dimensional phase space. When the goal is having the network realize a desired evolution
g tð Þ [ Rm|N , then tertium non datur: either i) one has to set the network to the initial condition producing g(t), or
ii) one has to target a generic initial condition towards g(t). Clearly, the first case is fully impracticable: the
extremely high dimensionality (linearly growing with the network size) of the phase space renders the selection of
the specific initial state almost impossible, especially in those applications where noise or any kind of other
disturbance are present. Here, we address the as yet unexplored issue of targeting the dynamics of a complex
network.

Results
The feasibility of targeting a general goal dynamics g(t), compatible with the natural evolution of the graph, is
tantamount to demonstrating that a suitable perturbation may have a network leaving its current state, and
attaining another one that would be naturally produced by a different initial condition. Therefore, the effect of the
perturbation can be understood as removing the sensitivity of the network to the initial condition. A way of
engineering such a perturbation is to consider two identical networks (configured in a master-slave scheme), and
specify when they identically synchronize15,16, when starting from different initial conditions. Therefore, our
approach consists in: i) considering two identical graphs, both producing a turbulent regime (i.e., a generic
dynamics not showing any particular global or local order), but starting from different initial conditions [a
master network (MN) providing us the specific g(t), and a slave network (SN)], and ii) properly engineering a
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unidirectional pinning action from MN to SN, as shown in Fig. 1,
which ultimately leads to the synchronization of their dynamics.

We analytically assess the stability of the solution corresponding
to the synchronization between the two networks, as unidirectional
links are sequentially created from nodes in MN to their images in
SN. To do so, we introduce the associated Master Stability Function
(MSF)17 (see the Methods Section), giving the maximum Lyapunov
exponent (MLE) for each pinning configuration (PC) between the
two networks. Eventually, after a given fraction of nodes has been
pinned, we show that the MLE becomes negative, indicating that SN
attained the goal dynamics g(t). Notice that the MLE is an ensemble
average over all possible attractor’s trajectories, and therefore, asses-
sing synchronizability by the negativity of MLE independently of the
initial state for a given sequence of pinned nodes corresponds to
addressing the targetability of the slave network into one of its pos-
sible natural evolutions.

A relevant issue is optimizing the search of the best PC, i.e., that PC
requiring the minimal number of pinning actions from the MN to the
SN. It is evident that, as the network size grows, the problem becomes
intractable. This is because one would have to apply the MSF
approach (equation (5) in Methods Section) to all possible N! per-
muting sequences of nodes susceptible to be pinned, and look for the
shortest one that renders the MLE negative. Here we pursue a sub-
optimal solution, provided by the outcome of a greedy algorithm that
sequentially selects the best pinning action (i.e. the one minimizing
the MLE) at each step.

For a given PC, the changes in the MLE brought about by tem-
porarily establishing an additional link from the MN to the SN are
exhaustively explored. The best link at decreasing the MLE is even-
tually created. When iterated (see Methods section), the procedure
leads to a specific targeting sequence, or node ranking, which we call
suboptimal ranking.

For very large networks, however, this suboptimal strategy can
also be computationally demanding. To overcome this limitation,
we extend recent results on criticality of network resilience to per-
turbations on the highly connected nodes11,18. Namely, we show that
the node pinning sequence minimizing the MSF largely coincides
with the sequence of decreasing degrees for small size networks (and
can therefore be replaced to a good approximation by such a
sequence), thus allowing for the use of the MSF approach also for
very large graphs, and compare different graph structures in terms of
their targetability.

As an illustration of both the greedy search procedure and the
correlation with the node degree, we consider a network made of
N 5 50 Rössler oscillators19 (see the Methods Section). It is important
to remark that the MSF approach is in principle applicable to any
continuous time dynamics, and not necessarily limited to a specific
kind of oscillator (like the Rössler case we are here considering), nor
to a specific dimension of the phase space containing the dynamics’
attractor of each network’s unit. As for the network structure, we use
the topology resulting from a realization of the configuration model20

based on a degree sequence taken from a random generation of N
integers uniformly distributed between 5 and 45. This will provide us
with a suitable statistics to compare our suboptimal sequence with
the degree sequence of the graph. In Fig. 2 we report lmax (the MLE,
as obtained from the MSF), when starting from disconnected MN
and SN, until the case where they are fully (unidirectionally) coupled,
each step following the suboptimal ranking procedure (blue circles).
It can be seen that each additional targeting action results in about
the same decrease of lmax, and that the targeting of 12 nodes is
enough to reach a negative lmax, indicating the achievement of the
goal dynamics g(t).

The degree of the nodes in the suboptimal ranking is shown in the
inset of Fig. 2. There is a striking correlation between such a ranking
and the inverse of the degree sequence. Indeed, the values of lmax

obtained with a targeting based on the degree ranking are also shown
in Fig. 2 (red continuous line), and are almost identical to those
obtained with the suboptimal ranking. This raises the possibility that
a targeting procedure based on the degree ranking produces quite
similar results in a much shorter computation time (N vs. N(N 1 1)/2
computations), thus allowing for the application of our MSF
approach to networks of considerably greater size. Qualitatively
identical results were obtained by varying the initial conditions
and configuration model realization, as well as with more familiar
topologies (Erdös-Rényi (ER) random graphs21, or Barabási-Albert
scale-free (SF) networks22) of N 5 50. Nevertheless, we remark that
our results, though obtained with a somewhat uncommon topology,
are the ones that best illustrate the correlation between suboptimal
and degree ranking (due to their including nodes of almost all pos-
sible degrees). Indeed, for the specific network size used, both the SF
and the ER topologies result in a less precise correspondence of
degree and suboptimal ranking, due to the strongly reduced degree
variability.

The ability to study large-sized networks opens up the way for an
exploration of different topological ensembles, and a quantification
of their propensity to be targeted. On the other hand, it is still an open
question how different the results would be if based on a less judi-

Figure 1 | The targeting procedure. The MN and SN are initially

disconnected. Each targeting step establishes a new unidirectional

connection between both networks. At the current step, a subgraph of the

MN is connected to its counterpart in the SN (see gray continuous line).

The searching step establishes a further connection via that node (see gray

dotted line) that minimizes the associated MSF.

Figure 2 | Suboptimal vs. degree ranking. Targeting procedure applied to

a N 5 50 network of Rössler oscillators (see the main text and the Methods

section for details on the graph construction and on the ranking

procedure). lmax extracted from the MSF as a function of the targeting

step, for the suboptimal sequence (blue open circles), and with the node

degree sequence (red continuous line). The inset shows the degree k of each

pinned node in the suboptimal sequence, vs. the targeting step.
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cious ranking, such as a random ranking, or, generically, a ranking
not aiming at reaching the imposition of the MN’s dynamics upon
SN.

To address both issues, we apply the targeting procedure to a
network of N 5 500 Rössler oscillators (see, again the Methods
Section), with Erdös-Rényi (ER)21 and Barabási-Albert scale-free
(SF)22 topologies. In Figure 3 (top and middle panels) we show the
results of the first 200 targeting steps [sufficient, in all cases, for the
attainment of g(t)]. Both the degree ranking (the solution proven to
greatly approximate the suboptimal ranking) and a random ranking
(in which the order of appearance of each node is fully random) are
inspected, thus allowing a comparison between both ends of the
spectrum of possible targeting strategies. The results are ensemble
averages over 40 different graph realizations, and over 40 different
ranking realizations for the random ranking case. Aside from lmax,
we also report the synchronization error (see the Methods Section),
which vanishes for the same targeting step at which lmax gets slightly
negative. Notice, indeed, that the negativity of the MLE is a necessary,
but not sufficient condition for synchronization, as the MLE is by
definition an ensemble average over all the attractor’s trajectories. In

our case, the dynamics g(t) is a turbulent one, and as such it is
spanning the entire phase space. As a result, having a negative (yet
very small in absolute value) MLE does not prevent that, in some
areas of the phase space, expanding events will take place that will
locally separate the trajectories of the two networks. This, in its turn is
reflected in a not perfectly vanishing value of the time averaged
synchronization error, which will instead vanish perfectly when
the negative MLE will have a sufficiently high absolute value to
warrant contraction in the whole phase space.

While in the top and middle panels of Fig. 3 it is evident that, in all
cases, the degree ranking leads to a much better targeting, as com-
pared to the random scheme, there is an additional feature that
deserves the utmost attention: the relative improvement in SF net-
works results to be much more evident than that of the ER case,
indicating that the dynamics of heterogeneous structures, like the
ones encountered in real world networks, are much easier to be
manipulated and targeted. Regarding the application of the method
to real networks, one should prove the robustness of the degree
sequence criterion in cases where only partial information on the
network is available. To this purpose, we have considered the same
scale-free topology of the top and middle panels of Fig.3, and arti-
ficially screened out the information on the degree of a higher and
higher percentage of randomly selected nodes in the network. We
then took the remaining nodes (whose degree is supposed to be
known), and constructed the corresponding degree sequences to be
used for the targeting. This process is equivalent to a mixed-strategy,
in which part of the information on the network degree is lost in favor
of a random selection of nodes. The bottom panel of Fig. 3 reports
lmax vs. the targeting steps for the cases in which the percentage of
nodes with available degree is 80%, 60% and 40%. For comparison,
the same panel contains also the two curves already shown in the top
panel of the same Figure, and referring to the pure degree and ran-
dom rankings. It is evident that, while the targeting procedure is
still effective and robust for a relatively high fraction of nodes with
unknown degrees (the curves labeled with 80% and 60% are still
very close to that of the pure degree ranking), as the uncertainty is
further increased, the lmax curve approaches that of the pure random
ranking.

Discussion
While a relevant part of the research on complex networks concen-
trated on their response (as, e.g. vulnerability) to various types of
external interference, recently the attention has shifted towards
methods for engineering a set of perturbations for a network to
feature a particular behavior. In this paper, we have shown the feas-
ibility of targeting a general goal dynamics g(t) compatible with the
natural evolution of a network, and we have given a rigorous treat-
ment of the necessary conditions for attaining such a dynamics by
just pinning a limited number of nodes in the graph. By further
comparing the targetability of different topological structures, we
demonstrated that the dynamics exhibited by heterogeneous topol-
ogies are easier to be targeted. Our conclusion is, therefore, that the
vast majority of real world networks are easily manageable from a
targeting point of view with our approach, as most of them (from
transportation networks in technology, to networks of acquaintances
in social science, to metabolic and genetic networks in biology) dis-
play a scale free topology, with some nodes concentrating most of the
connections.

Methods
Master stability function approach. We consider a master network (MN) composed
of N identical diffusively coupled chaotic units, and we call xM

i [ Rm the vector state of
the ith node. The MN evolution is ruled by:

M
i ~f xM

i

� �
{s1

XN

j~1

Lij h1 xM
j

� �
ð1Þ

Figure 3 | Targetability of different topologies. (Top and middle panels)

Targeting scheme for ER and BA networks of size N 5 500. lmax (top

panel) and synchronization error (middle panel, see Methods Section for

definition) as functions of the targeting step, for the degree and random

rankings. The legend applies to both panels, and contains the symbol codes

for the specific topologies considered, as well as for the specific ranking

used for the targeting. The vertical dashed lines originating in the middle

panel mark the targeting step at which the synchronization error vanishes.

The inset of the top panel is a zoom around lmax 5 0. The horizontal

dashed line in the inset of the top panel marks the negative value at which

the vertical lines intersect the lmax curves. (Bottom panel) Robustness of

the targeting strategy against networks’ uncertainties. The panel reports

the lmax curves vs. the targeting step for the BA network used in the top and

middle panels. The different curves refer to the degree ranking (empty

circles), the random ranking (full circles with the darkest blue intensity),

and a degree ranking based on the knowledge of the degrees of only 80%,

60% and 40% of randomly selected nodes in the network. These latter three

curves are coded as full circles with increasing blue intensities.
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where f xð Þ : Rm?Rm and h1 xð Þ : Rm?Rm are, respectively, a local evolution and an
output vectorial function. s1 is a coupling strength, and Lij are the elements of the
corresponding zero row-sum Laplacian matrix of the interaction network. f and h1 are
chosen such that the networked units are of class I, with a monotonically increasing
trend of the master stability function associated to the synchronous state
xM

1 ~xM
2 ~ � � �~xM

N ~xsync
1, which is, therefore, always unstable, regardless of the

choice of s1.
Let now

S
i ~f xS

i

� �
{s1

XN

j~1

Lij h1 xS
j

� �
ð2Þ

be the slave network (SN), obtained as a copy of the MN.
As long as both networks remain uncoupled and start from different initial con-

ditions, each one will sustain a different turbulent state, such that
XS tð Þ: xS

1 tð Þ, . . . ,xS
N tð Þ

� �
=XM tð Þ: xM

1 tð Þ, . . . ,xM
N tð Þ

� �
~g tð Þ, and the SN will

never realize the desired goal dynamics. At this stage, we implement a pinning
strategy to target g(t), that consists in sequentially establishing unidirectional links
between nodes in the MN and their copies in the SN. The dynamical evolution of the
SN is now described by:

S
i ~f xS

i

� �
{s2xih2 xS

i {xM
i

� �
{s1

XN

j~1

Lij h1 xS
j

� �
, ð3Þ

where h2 : Rm?Rm is the coupling function between MN and SN [with the condition
that h2(0) 5 0], and xi encodes the pinning procedure, i.e. xi 5 1 if there is a link from
the ith node of the MN to the ith node of the SN, and 0 otherwise. Furthermore, s2 is
the parameter ruling the inter-network link strength (see Fig. 1).

It follows that the equation for the vector describing the difference between the
networks’ dynamics dX~XS{XM: dx1, . . . ,dxNð Þ can be written (in terms of its
components dxi) as

d i~f xS
i

� �
{f xM

i

� �
{s1

XN

j~1

Lij h1 xS
j

� �
{h1 xM

j

� �h i

{s2xih2 xS
i {xM

i

� �
:

ð4Þ

A stable fixed point of Eqs. (4) at dX 5 0 is a necessary condition for networks (1) and
(3) to display the synchronized state XM 5 XS. The synchronization error is then

defined as limT?? 1=Tð Þ
Ð T

0 dX tð Þk kdt.
The linear stability of this solution can be assessed rigorously by the analysis of the

linearized system for small dX, which reads:

d i~ Df xM
i

� �
{s2xiDh2 xM

i

� �� �
dxi

{s1

XN

j~1

LijDh1 xM
j

� �
dxj

ð5Þ

being Df, Dh1, and Dh2 the Jacobian functions, and XM 5 g(t) the MN state to be
targeted. This equation represents the master stability function (MSF) for the stability
of the solution corresponding to the identical synchronization between MN and SN.
Each of the linear equations (5), solved in parallel to the N nonlinear equations for the
MN defined in (1), corresponds to a set of m conditional Lyapunov exponents at each
pinning configuration (PC). Therefore, each peculiar PC that renders negative the
largest of all such exponents makes the synchronous state XM 5 XS stable.

Targeting procedure. Unidirectional MN-to-SN links are always established
between analogous nodes, so it is natural to denote them by the label i of the
corresponding node in both networks (2, in the example of Fig. 1). To refer to a
generic link established at a given step t, we use nt (evidently, ;t,
nt[N: 1, 2, . . . , Nf g, but also t[N , as there are as many possible steps as nodes in
the networks). At the targeting step t, we suppose to have already established a PC
represented by the sequence of links T t~ n1, n2, . . . , nt{1f g, where ni ? nj, and we
seek to identify the next pair of MN-SN nodes to be pinned, i.e., the specific integer nt.
Obviously, at t 5 1 we start from the scenario where MN and SN are disconnected,
and thus T 1~w, and the issue is to identify n1, whereas at t 5 N, the only
disconnected pair of nodes is eventually coupled by the link nN.

As for the sequence search, we use the following procedure. At step t, we go through
all possible PC comprising T t and one extra link between the not yet connected pairs.
Denoting each configuration by T o

t ~ n1, n2, . . . , nt{1, nof g (where o g {1, 2, …, N
2 (t 2 1)} and no[N \T t ) and calling lo

t the maximum Lyapunov exponent (MLE)
associated with the corresponding MSF, we choose nt to be the specific no that
corresponds to the smallest lo

t , and include it in T tz1 for the next step. A typical
computation of the MLE for a given configuration includes the integration of the full
system from a random initial condition across a time window of 50,000 time units
(about 7,960 cycles of the Rössler oscillator). As the system is integrated, the MLE
value is updated and saved once every 5 time units. At the end of the entire simulation,
we ended up with a sequence of 10,000 MLE estimations, which is generically
observed to converge to an asymptotic value with very small fluctuations. The MLE
values reported in the text correspond to the average taken across the second half

(5,000 estimations) of this sequence. Repeated tests with several hundreds of such
computations show that the standard deviations (the absolute error in the evaluation
of the MLE) are always between 1025 and 1024, the largest value ever observed being
4.87 3 1024.

Network model. The equations of the network of Rössler oscillators that are
considered in the main text, written for simplicity in their scalar form, are:

_xM
i ~{yM

i {zM
i ,

_yM
i ~xM

i z0:2 yM
i ,

_zM
i ~0:2zzM

i xM
i {7:0

� �
zs1

P
j[N i

zM
j {zM

i

� �
,

8>><
>>:

_xS
i ~{yS

i {zS
i ,

_yS
i ~xS

i z0:2 yS
i zs2xi yM

i {yS
i

� �
,

_zS
i ~0:2zzS

i xS
i {7:0

� �
zs1

P
j[N i

zS
j {zS

i

� �
,

8>><
>>:

where, at targeting step t, xi 5 1 if i[T t and 0 otherwise. This corresponds, in our
notations, to xM ; (xM, yM, zM), xS ; (xS, yS, zS), h1(x) 5 (0, 0, z), h2(x) 5 (0, y, 0), f 5

[2y 2 z, x 1 0.2y, 0.2 1 z(x 2 7.0)], and withN i being the set of neighbors of node i.
All our results refer to the case s1 5 s2 5 1.
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