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Computation as an emergent feature of adaptive synchronization
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We report on the spontaneous emergence of computation from adaptive synchronization of networked
dynamical systems. The fundamentals are nonlinear elements, interacting in a directed graph via a coupling that
adapts itself to the synchronization level between two input signals. These units can emulate different Boolean
logics, and perform any computational task in a Turing sense, each specific operation being associated with a
given network’s motif. The resilience of the computation against noise is proven, and the general applicability is
demonstrated with regard to periodic and chaotic oscillators, and excitable systems mimicking neural dynamics.
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Synchronization of networked units [1] is ubiquitously ob-
served in natural systems [2]. Most of the studies on the subject
have revealed the mechanisms for the self-organization of the
interacting nodes in an either synchronous or asynchronous
state [3]. However, neither state in isolation is sufficient to carry
out a computational task, as a certain degree of heterogeneity
is required on information processing networks. On the other
hand, as far as bridging dynamics and computation are
concerned, examples of information processing were provided
with cellular automata [4], lattices of coupled chaotic maps [5],
or by creating chemical and neuronal diodes with excitable
fields [6] and patterned neuronal cultures [7]. Undoubtedly
chaos computing, i.e., designing Boolean gates based on
chaotic systems, has been the most successful approach so
far. However, all related studies [8] rely on the common
requirement of an external nonfeedback control, as (e.g.) the
use of a threshold on a state variable, or the selection of specific
values for the system’s parameters, in order to confine the
dynamics into a desired state.

In this Rapid Communication, we introduce a paradigm
where, instead, computation emerges spontaneously from the
balanced alternation of synchronization and desynchronization
in an adaptive, directed, network; and we show how different
network motifs [9] can be associated to specific computational
tasks.

A basic requirement is to have a reliable representation for
storing, processing, and retrieving information from memory.
Here, we use the well-known Boolean logic, and we binary
code the information on the level of synchronization of
each network’s unit with two signals, S(t) and R(t). The
fundamental element of computation is sketched in Fig. 1, and
consists of a dynamical system [in the following, the cases
of a Kuramoto phase oscillator, a chaotic Rössler oscillator,
and a Hodgkin-Huxley (H-H) neuron in an excitable regime
will be separately considered], and two input ports (A and B).
The assumption is that almost all networked units are subjected
to the same external source (a synchronizing signal in the
Kuramoto and Rössler cases, and a Gaussian white noise
in the case of H-H), in a way that their dynamics (in the
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absence of any further interaction) would result in a time series
synchronous with S(t) (which, from here on, will be taken as
the 0-state of the computation). We also assume that a second
reference signal R(t), constituting the 1-state, is present in the
network, as produced by the evolution, for instance, of at least
one unit that is not suffering the effect of the common forcing.

The computational capability is warranted by a second
coupling mechanism, represented by an input signal entering
port A, and associated with an adaptively regulated strength
that tends to zero when the input VA of port A is synchronized
with that of port B (VB), and to a positive value otherwise.
Specifically, the general form of the equations describing the
computational unit is

θ̇i = f (θi,p) + Ccom(t) + Wi(t)h(θi,VA(t)), (1)

where θi is the vector state of the ith unit of the graph, f

is a local evolution function, p is a set of control parameters,
Ccom(t) represents the common forcing, Wi(t) is the strength of
the coupling with the signal VA(t), and h(. . . , . . .) is a coupling
function, to be later specified. As for the evolution of Wi(t),
we consider the following adaptive dynamics:

Ẇi = −Wi(Wi − w1)(Wi − w2) + k(χ (VAi
,VBi

) − τ ), (2)

with w1 and w2 being suitable constants. Notice that, when
w1 = 0.5 and w2 = 1.0, the first right-hand-side (rhs) term
of Eq. (2) creates three equilibrium points, two of them
being stable (W = 0 and W = 1). The second rhs term is
instead responsible for driving Wi to one of the two above
values. Moreover, χ (VA,VB) is a function that quantifies the
synchronization error between the signals entering ports A

and B, k > 0 is a parameter defining the time scale of the
adaptation, and τ is a threshold needed to filter out small
synchronization errors that may be due to noise. All parameters
and functions are here set in a way that, as χ (VA,VB) > τ , Wi

is forced to the value Wi = 1, so that the unit synchronizes
with VA(t). When, instead, χ (VA,VB ) < τ , Wi vanishes (thus
decoupling the unit from the input of port A), and the system
follows the guidance of Ccom(t), generating the pattern S(t)
(see the truth table in Fig. 1).

We now show how the applicability of the proposed
paradigm is general. To this end, we start by implementing the
simplest logical gate, e.g., the unary NOT gate, whose output
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FIG. 1. Schematic representation of the basic computational unit.
Left: The core is a dynamical system (depicted as a loop) whose
state θi is forced by two signals, Ccom(t), and VA(t). The latter is
multiplied by a coupling strength Wi that adaptively depends on the
synchronization error χ (VA,VB ) between the signals entering ports A

and B. Right: Output of the unit as a function of χ (VA,VB ).

is 0 (1) when its single input is 1 (0). Figure 2(a) shows the
needed configuration to recover the gate: The input signal I (t)
is plugged as VB(t), while VA(t) = R(t). Following Eqs. (1)
and (2), when I (t) is synchronized with R(t) (i.e., the entrance
is a 1 bit), χ (VA,VB) is close to zero, and the output O(t)
of the unit will produce the dynamics S(t) (the 0 bit); on the
contrary, as the 0 bit is presented to port B, χ (VA,VB) will be
positive, and O(t) will synchronize with R(t), thus returning
a 1 output. Such an emergent computation can be verified in
the three following cases:

(i) When the dynamical systems are Kuramoto phase
oscillators [10] [Fig. 2(b)], i.e., when θ is a phase variable
evolving as

θ̇i = ω + 0.1 sin(θp − θi) + Wi(t) sin[θ (VA(t)) − θi],

where θp = ωpt , θ (VA(t)) is the phase of VA, and Wi(t) evolves
according to Eq. (2) [with χ (θA,θB) = ( θA−θB

2π
)mod1]. In this

case S(t) [R(t)] is sin(θp) [sin(ωRt)], with ω = 1150 Hz, ωp =
500 Hz, and ωR = 1600 Hz.

(ii) When the systems are chaotic Rössler oscillators [11]
[Fig. 2(c)], i.e., for θi = (θX

i ,θY
i ,θZ

i ),

θ̇X
i = −θY

i − θZ
i + 0.25

(
S(t) − θX

i

) + Wi(t)
(
VA(t) − θX

i

)
,

θ̇ Y
i = θX

i + 0.165θY
i ,

θ̇Z
i = 0.2 + θZ

i

(
θX
i − 10

)
.

Wi evolves following Eq. (2). Here, χ (VA,VB) = 1 for r < 0,
and χ (VA,VB) = 1 − r for r � 0 (with r being the Pearson’s
correlation coefficient [12]), and R(t) is the x component of a
network’s unit (uncoupled with the rest of the graph) for which
Ccom(t) = 0.

(iii) When the units are under the form of an excitable
Hodgkin-Huxley neuron [13] [Fig. 2(d)], defined by

Cm

dV

dt
= Il − INa − IK − Ccom(t) − W (V − VA),

where θ is identified with the membrane voltage V , Cm is
the membrane capacitance, Il = gl(V − Vl) is a passive leak
current, and INa and IK represent simplified depolarizing
and repolarizing currents, respectively (see Ref. [13] for all
other relevant definitions). Here, a well-known phenomenon
is that of noise-induced synchronization, which drives the
unit’s output dynamics into a synchronous spike pattern in
the presence of a same noise source [14]. Therefore, the
0-state dynamics S(t) is here created by a Gaussian noise
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FIG. 2. (Color online) Diagram (a) and numerical simulations of
the unary NOT gate, obtained by feeding the input signal inside port
B, and R(t) into port A. (b), (c), and (d) correspond, respectively,
to the cases of Kuramoto oscillators, Rössler chaotic oscillator, and
Hodgkin-Huxley neuron. See text for all stipulations and parameters
used in each case. In all cases, the signal R(t) (in blue/dark gray), the
signal S(t) (in red/gray), the input signal, and the processed output
are reported. In the bottom panels, lines mark the changes in the input
and output from the bit 0 to 1 and vice versa (for the sake of a better
visualization of the grayscale version of the figure), and the light gray
code of O(t) is used for the transient periods needed to efficiently
respond to such input changes.

term Ccom(t) = ξn, and χ (VA,VB) is defined as the proportion
of spikes in the signals from both ports (A or B) that do not
coincide with a spike in the signal of the other.

Figure 2 shows that the NOT operation is correctly per-
formed in all three cases, and the unit’s output O(t) converges
to the prescribed dynamics, after a small transient (colored in
light gray) is elapsed, whose average duration depends on the
specific case.
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FIG. 3. Top: Network motifs associated to the NAND, XOR, and
reference change gates. Continue (dashed) lines indicates the signals
entering port B (A). Center: The associated truth table for the three
computational tasks. Bottom: Numerical representations of the two
inputs and of the output of the H-H unit, reported in terms of the
corresponding synchronization levels with the reference signal R(t).

By further embedding the computational unit into a directed
network, more complex logical gates can be constructed. The
output of a unit can feed the input(s) of one (or multiple) other
unit(s), and each unit may receive information from several
other sources within a motif architecture. While the same
generalities apply for all logical gates that will be described,
from here on we will focus on the H-H case, as the results
there would be of relevance in neuroscience, because of the
parallelism with the experimentally observed transient pair-
wise synchronized neuron’s dynamics [15].

By summing two input signals, and feeding the result into
port B [while port A still receives the reference signal R(t)],
a NAND gate is implemented (Fig. 3, top), which returns 0
only when its two inputs have a value of 1. NAND gates are
of particular importance, in that they are universal Boolean
gates, i.e., any other Boolean logic can be constructed by
properly combining different NAND gates, and a universal
Turing machine can be constructed [16]. In particular, by
assembling four NAND gates, it is possible to build a XOR

gate, which returns 1 only when its two inputs have opposite
values. Notice that the proposed paradigm offers an even more
efficient solution, in which the same gate is obtained with
only a computational unit, by feeding the two inputs inside
port A, and the second input inside port B. The signal O(t)
outcoming from this motif, yet, encodes the 1 bit with a signal

FIG. 4. (Color online) Top: Motif associated to the morphing
gate, where the weights of the links depend on the parameter a,
defined in [−1,1]. Bottom: Outputs of numerical experiments with
the H-H system [represented in terms of their synchronization levels
with S(t) (red/gray lines) and R(t) (blue/dark gray lines)] vs a, for
the four possible combinations of the two inputs (reported on top of
the corresponding panels).

that is the sum of R(t) and S(t) (Fig. 3, center and bottom).
Though such an output can be used as a different reference
R∗(t) by other computation units, it can also be converted back
to R(t) by plugging it in a reference change gate (Fig. 3, top
right-hand side). These last two examples prove the flexibility
of the proposed paradigm, as it is possible to design far more
efficient circuits by means of specific motifs of the network.
Moreover, the computation is not limited to the two standard
Boolean states (0 and 1), as more than one reference signal
can be used to encode the bit 1, thus expanding the graph’s
computational options.

Furthermore, when different operations are to be executed,
the approach is to create circuits that can switch between
different single-purpose gates. One of the most promising
features of computation outside the digital realm is, indeed,
the possibility of creating morphing gates that can change
the operation executed by means of tuning a parameter, this
way reducing the number of needed computing elements. The
solution here involves the option of tuning the weights at the
entrance of the ports A and B by a parameter a. Figure 4
shows the motif for a such element that is able to execute
three different tasks. When a is set to 1, the circuit acts as a
NAND gate (see Fig. 3). When a = 0, the second input I2(t)
is disregarded, and the signal O(t) is the output of a unary
NOT gate. Finally, when a = −1, the resulting operation is
known as the “I1 is implied by I2” Boolean algebraic function,
which returns 0 only if I1 = 0 and I2 = 1. The outcomes of
these three operations are reported in the bottomg of Fig. 4,
where each plot represents the synchronization level of O(t)
with R(t) and S(t), for the four possible inputs combinations
([0,0], [1,0], [0,1], and [1,1]).
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FIG. 5. Top: Motif associated to the set reset flip-flop memory
circuit. Bottom: Numerical simulations of the flip-flop circuit with the
H-H model. The signals are represented with the same stipulations as
in the caption of Fig. 3.

So far we have focused on static Boolean gates, where
outputs only depend on the inputs at the same time. Figure 5
shows instead a dynamic gate, the flip-flop gate, whose output
Q changes to 0 (1) when the Reset (Set) input is set to 0, and
is maintained until a different input is activated. This circuit
is therefore a memory that stores a bit of information until
another input is presented to its ports. The dynamics of Q is
shown in the bottom of Fig. 5, together with that of Q̄, the other
output of the circuit that is always the opposite of Q (except
for an initial period in which the circuit is not fed by inputs).
The associated motif (Fig. 5, top) includes two computational

units and a double feedback: The output of each unit is sent
to the port B of the other unit. Notably, such feedback loops
represent a striking challenge for any circuit, as small errors
in the output of one unit may disturb the computation of the
second unit, whose output will contain higher levels of noise,
and so forth; therefore, a small noise might be amplified in the
loop, and eventually lead to meaningless computations. For
the loop to be stable, each computational unit should be able
to perform the requested computation even in the presence
of noise, and therefore provide a noise-free output signal. In
order to assess the robustness of the single unit’s computation,
we have considered a Rössler NOT gate (the one shown in the
bottom left-hand side of Fig. 2) subjected to different levels
of Gaussian noise added to both signals VA and VB , and the
percentage of wrong outputs has been monitored. For noise
amplitudes of 20%, 15%, and 10% of that of θX

i , the measured
success rates are, respectively, of 75%, 93.6%, and more than
99.5%, calling for a highly resilient computation even for large
external perturbations.

In conclusion, we introduced a computational paradigm,
where the coding and processing of information emerge
from adaptive synchronization processes. We demonstrated
the efficacy, scalability, robustness, and resilience of such a
paradigm in performing single-input (NOT) gates, multiple-
input (NAND, XOR, and morphing) gates, as well as dynamical
(flip-flop memory) gates, with three totally different nonlinear
systems: a phase oscillator, a chaotic oscillator, and a spiking
neuron. Our results are of relevance in enlightening possible
biological mechanisms at the basis of the processing and
integration of information across distributed neural systems,
where neural assemblies are known to organize their dynamics
in a balance between synchronization and desynchronization
[15], with modifications associated with a number of neu-
rological illnesses, including schizophrenia and Alzheimer’s
disease [17].
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