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Integration Versus Segregation in Functional
Brain Networks
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Abstract—We propose a new methodology to evaluate the bal-
ance between segregation and integration in functional brain net-
works by using singular value decomposition techniques. By means
of magnetoencephalography, we obtain the brain activity of a con-
trol group of 19 individuals during a memory task. Next, we project
the node-to-node correlations into a complex network that is ana-
lyzed from the perspective of its modular structure encoded in the
contribution matrix. In this way, we are able to study the role that
nodes play I/O its community and to identify connector and local
hubs. At the mesoscale level, the analysis of the contribution matrix
allows us to measure the degree of overlapping between commu-
nities and quantify how far the functional networks are from the
configuration that better balances the integrated and segregated
activity.

Index Terms—Complex Networks, functional brain networks,
magnetoencephalography, singular value decomposition (SVD).

I. INTRODUCTION

FROM technological to biological systems, complex net-
works theory has been applied to a huge diversity of real

data coming from the most different fields [1]. This method-
ology have also dealt with the brain, which is probably the
most challenging system that we are facing in a biological con-
text. The last years of studies have given us some hints about its
anatomical structure [2]–[4], but we are still far from a complete
knowledge. Studies in animal species such as C. Elegans [5], [6],
cats, or macaques [7], [8], have revealed common topological
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properties, such as high clustering and short topological distance
between nodes, i.e., the fingerprint of a small-world (SW) net-
work architecture [5]. With regard to the human brain, MRI [2],
[9] and diffusion spectrum imaging [4] have been used in order
to obtain the pathways between cortical regions. Up to now, we
know that the SW property is also present in the human brain
together with exponential or truncated power-law decay in the
degree distribution and the existence of certain communities in-
side the network [3], [4]. Several techniques as functional MRI,
EEG, and magnetoencephalography (MEG) have revealed the
functional properties of the brain. These methods have shown
that, although the anatomical structure is strongly correlated
with the functional brain network in the resting state [10], very
different functional networks arise depending on the task that
the brain is performing [11]. There being important differences
in the spatial and temporal resolutions of these methods, all
of them have shown the SW property also in the functional
networks [12]. Small-worldness seems to play a crucial role in
complex dynamical processes such as information transmission,
pattern recognition, or learning [13], but is not the only issue.
Other studies have gone beyond the SW configuration and have
quantified the importance of overconnected nodes [14] (known
as hubs), unveiled the existence of characteristic network mo-
tifs [15], and also detected the appearance of community struc-
tures [16], which are related to the segregated organization of
the brain.

In this paper, we are interested in how the existence of com-
munities inside functional networks is related with the subtle
balance between segregation and integration processes in the
brain [17]. Traditionally, this problem has been treated in the
context of anatomical networks and it has been related to the si-
multaneous presence of modules and their interconnections [18],
[19]. Up to now, the analysis of modularity in functional brain
networks have mainly focused in the detection of community
structure or the characterization of the role played by the nodes
inside their communities [16]. Nevertheless, less attention has
been paid to the study of how the communities interact with
each other due, in part, to the difficulty in evaluating the overlap
between modules. Here, we apply a recently proposed method
to evaluate the modular structure of complex networks by us-
ing singular value decomposition (SVD) [20]. The information
given by this technique is twofold: on one hand, it allows us to
detect the role played by brain regions at the local and long-range
scope, on the other, it quantifies the integration/segregation bal-
ance given by the functional communities and to evaluate how
far it is from the optimal configuration. Although our sam-
ple study is based on MEG results obtained from a healthy
control group during a memory task, the proposed method
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could be applied to any dataset from healthy or impaired brain
networks.

II. METHODS

A. Subjects: Data Acquisition and Node-to-Node Correlations

Nineteen right-handed, age-matched, healthy elderly volun-
teers, without memory complaints participated in this study. The
group was chosen with an average number of 11 years of educa-
tion. Individuals underwent a neuropsychological assessment,
in order to establish their cognitive status in multiple cognitive
functions. Next, a modified version of Sternberg’s letter-probe
task [21] was used as the memory test. After memorizing a set
of five letters, a series of single letters (500 ms in duration with
a random ISI between 2–3 s) was presented, and the participants
were asked to press a button with their right hand when a letter of
the previous set was detected. During this task, the MEG signal
was recorded with a 254-Hz sampling frequency and a band pass
of 0.5 to 50 Hz, using a 148-channel whole-head magnetometer.
After applying a noise reduction algorithm, trials containing vis-
ible blinks, eye movements, or muscular artifacts were excluded.
Only hits (successful recognition of the letter) were considered
since we were interested in evaluating the functional connectiv-
ity patterns that support recognition success. Next, we calculate
the synchronization likelihood (SL) [22] between all pairs of
nodes of each individual, being N = 148 the total number of
nodes (electrodes). Subsequently, SL was calculated for each of
the thirty-five 1-s epochs of the (148 × 147)/2 channel pairs,
for the full-band signal (i.e., without band filtering), and for
each subject. Finally, we obtained one N × N synchronization
matrix W for each individual, where each component wij was
the average of the SL between nodes i and j. Finally, all results
were the average over the values obtained for each of the 19
individuals.

B. Projection of the Modular Structure

We use the traditional partition into lobes as the commu-
nity structure of the functional network. In this way, each node
belongs to one of the M = 6 brain lobes: central (C), frontal
left (FL), frontal right (FR), temporal left (TL), temporal right
(TR), and occipital (O). As proposed in [20], we use the SVD
approach [23] in order to analyze the structure of the N × M
contribution matrix C. The elements Ciα are the weights of the
links of node i that fall into community α, Ciα =

∑N
j=1 wijSjα ,

where wij is the SL between nodes i and j and S is the partition
matrix, where Sjα = 1 if the node j belongs to community α,
and Sjα = 0 otherwise.

Next, we analyze C by using SVD [23] that consists on its
factorization as C = UΣV†, where U is a unitary N × N ma-
trix and Σ is a diagonal N × M matrix whose elements are
the singular values σi , which satisfy that σ1 > σ2 > . . . > σM .
Finally, V† is the conjugate transpose of the M × M unitary
matrix V. By truncating the SVD, we can obtain a least squares
optimal reduced matrix Cr of order r as Cr = UΣrV†. This
can be done by considering only the r highest values of σi and
resetting the others to zero. If we chose r = 2, we are projecting

Fig. 1. Example scheme of the SVD (r = 2) for the top right network with
two modules. (Left) The contribution of each node ñi is represented by a vector
in the corresponding module color. All internal nodes, 1 and 2 in the blue module
(5 and 6 in the red module), lie along the corresponding intramodular projection
ẽb (ẽr ). The modular projection m̃b (m̃r ) is computed as the vector sum of all
the ñi belonging to the blue (red) module. The relative distance of node 3 from
its module is given by the angle φ and ñ3 , which can be expressed as the sum of
its components Rint and Rext . (Bottom right) Map of the node contributions
to the intramodular projection directions in polar coordinates R − θ, where Ri

is the norm of ñi , and θi the angle between ñi and the horizontal axis. Dashed
lines mark the directions of the intramodular projections of each module.

all the information contained in the contribution matrix into a 2-
D space U2 formed by the two left singular vectors of matrix U.
In this space, it is easy to plot and analyze the projection of the
contribution of nodes to a certain partition ni =

∑M
α=1 Ciαeα ,

being eα = (0, . . . ., 0, 1, 0, . . . 0) (a vector whose αth compo-
nent is 1 and the rest are 0). We denote the projected contribution
of the ith node as ñi (see Fig. 1) and it is obtained as

ñi = Σ−1
2 V†ni (1)

where Σ−1
2 denotes the pseudoinverse of the diagonal rectangu-

lar matrix Σ2 , which only keeps the two largest singular values.
At the community level, we can calculate for each module α

the line of the projections of its internal nodes (like the nodes 1
and 2 in Fig. 1). This direction ẽα , called intramodular projec-
tion, gives the intrinsic direction that the community α has in
the projection space U2 and it is obtained as follows:

ẽα = Σ−1
2 V†eα . (2)

Note that, the contribution of each node in the projection space
U2 can be expressed, using (1) and (2), as a linear combination
of intramodular projections, ñi =

∑M
α=1 Ciα ẽα .

Finally, every module α has a characteristic direction, the
modular projection m̃α , computed as the vector sum of all the
projections of node contributions ñi , for those nodes belonging
to module α, i.e.

m̃α =
N∑

i=1

Siα ñi . (3)

Summarizing, the truncation of order two of the SVD leads to
a vector associated to each node ñi , and two vectors related
with each community α: one that takes into account the contri-
bution of all nodes of the community m̃α and other that only
accounts for the internal weights ẽα , the latest giving the intrin-
sic direction of the community α. Fig. 1 shows an schematic
representation of the vectors ñi , m̃α , and ẽα for a test net-
work. We can observe how every node with all links inside its
community has a contribution vector ñi in the direction of the
intramodular community vector ẽα . On the contrary, the more
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Fig. 2. (Top) Box-and-whisker plots of Rint and Rext . Lobes are sorted
according to medians in increasing order. In each lobe, only outliers (defined as
having a value more than 1.5 times the interquartile range IQR lower than the
first quartile or 1.5 times IQR higher than the third quartile) and the node with the
largest value are labeled. (Bottom) Outline of the group of 148 sensors overlying
the cortex. Position of the three nodes with the highest internal contributions
(left) and external contributions (right) are marked in each lobe. For the latter
case, each highlighted node is connected to the 15 most synchronized neighbors.

a node deviates from ẽα , the higher the participation in other
communities.

III. RESULTS

A. Community Roles

In order to unveil the role of the nodes in the structure of the
modules (here taken as the brain lobes) of the recorded func-
tional networks, we apply the proposed mapping (the loss of
information associated with the 2-D projection is 18.2%) and
calculate for each node Rint = R cos φ and Rext = R sinφ, be-
ing φ the absolute distance in angle between ñi and the in-
tramodular projection ẽα (see Fig. 1). While the distribution of
Rint for each module informs about the amount of the contri-
bution of nodes comprising their own modules, Rext accounts
for the heterogeneity in the connectivity with other lobes. In
Fig. 2, we show the box-and-whisker plots of Rint and Rext
marking those nodes more capable to support the internal struc-
ture of the lobes (high Rint) and also to communicate them
(high Rext). We observe that, in this optimal mapping for Rint ,
all lobes have similar medians, while the occipital lobe has a
median larger than the percentiles-75 of the rest, indicating that
this lobe is highly functional cohesive. Regarding the interlobe
communication, the similarity in range and medians reveals the
homogeneity of the mesoscale, being the occipital lobe the one
with highest value. Nevertheless, the role played by the two
temporal and central lobes is still very significant because of
their high outliers. In the bottom plots of Fig. 2, we show the
position of the local hubs, i.e., those nodes with higher Rint at
their lobes, and the connector hubs, which are those nodes with
higher Rext .

Fig. 3. Segregation and integration balance as a function of the μ dependent
ratio between the external and internal weights per link. Blue circles represent
the modular segregation MS . Red squares provide the modular integration MI

and black triangles are the modular balance MB , the product of both quantities.
Dashed line indicates the value in the real functional networks (μ = 1). There
is an optimal ratio between internal and external weights for which the balance
between integration and segregation is maximal (μ = 1.8).

B. Integration Versus Segregation

Next, we are concerned about the mesoscopic interac-
tions inside the network, i.e., how lobes overlap with each
other and their implications in the integrated/segregated ac-
tivity of the functional network. With this aim, we mea-
sure the segregated activity of all modules as MS =
(1/M)

∑
α (ẽα/‖ẽα‖)(m̃α/‖m̃α‖) Note that the lower the

connectivity of a lobe α with the rest of the lobes, the closer
the vectors ẽα and m̃α , leading to a value of MSα close to
one. In the absence of interlobe connections, ẽα = m̃α and
MSα = 1. At the same time, we measure the overlap be-
tween lobes as their difference in their community vectors.
The indicator of the modular integration is obtained as MI =
1/(M(M − 1))

∑
α �=β (m̃α/‖m̃α‖)(m̃β /‖m̃β‖). Finally, we

introduce the modular balance MB as the product of the mod-
ular integration and the modular segregation MB = MI · MS .
To understand how optimal is the real configuration of the func-
tional brain networks, we tune (by multiplying) the weight of the
interlobe connections by a parameter μ. In this way, when μ = 0
all interlobe connections are deleted, giving rise to a network
broken into six lobes. When μ = 1, we recover the real values of
the interlobe connections, while for μ = 2 the interlobe weights
are doubled. In Fig. 3, we show the variation of MI , MS , and
MB as a function 〈w〉out/〈w〉in , being 〈w〉in and 〈w〉out the
average weight of the intralobe and interlobe links, respectively,
the latter depending on the value of μ. From now on, all pa-
rameters are calculated for r = 6. We observe that modular
segregation MS (blue circles) is a monotonous decreasing func-
tion while the modular integration MI (red squares) increases
from 0 to a constant value. Interestingly, there exists an optimal
balance between these two quantities as reflected by the maxi-
mum present in the modular balance MB (black triangles). The
dashed line of Fig. 3 shows the value of the modular quantities
for μ = 1, i.e., the real values of the functional networks. It is
clear that the real modular balance MB is close, but not equal,
to the maximum observed when interlobe connections are mod-
ified. This optimal configuration, which maximizes the balance
between segregation and integration, is obtained for μ = 1.8,
indicating that a further increase of the interlobe connections
would lead to a more balanced structural configuration.
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Fig. 4. Overlap matrices O between lobes. Each matrix corresponds to the
normalized scalar product of the individual modular projections m̃α obtained
by tuning the weight of the external links with a factor μ. From top to bottom
and from left to right: μ = 1 (real network), μ = 1.8 (optimal value of MB ),
μ = 0.2 (low interlobe connectivity), and μ = 5 (high interlobe connectivity).

Finally, in Fig. 4, we plot the overlap matrix O between lobe
regions, whose components are obtained from the scalar product
of the modular projections Oαβ = (m̃α/‖m̃α )‖(m̃β /‖m̃β‖).
In the real functional networks, we observe a maximum overlap
between the frontal left (FL) and frontal right (FR) lobes, fol-
lowed by the overlap of the Central (C) lobe with the FL (top
left panel). Interestingly, the FL–FR and C–FL overlap are also
the ones with higher values in the optimal configuration (top
right panel). Nevertheless, this overlap structure is lost both
when decreasing (bottom left) or increasing (bottom right) the
strength of the interlobe connections. Despite not being optimal,
those regions with higher overlap in the real functional networks
coincide with those predicted by the optimal configuration.

IV. CONCLUSION

We have used the SVD for the analysis of the modular
structure of functional brain networks obtained by magne-
toencephalography during a memory task. With this method,
we have quantified the contribution of brain areas to the in-
tralobe/interlobe activity and we have detected those regions
having the leading role inside each lobe and those being the
main channels of interlobe communication. Next, we have mea-
sured the amount of overlap between lobes, and we have studied
how the variation of the interlobe communication would mod-
ify the balance between segregation and integration. Finally, we
have seen that the modular structure of the functional networks
analyzed here is close to the optimal configuration. We believe
that this kind of analysis could be applied to further works com-
paring healthy individuals with patients suffering from different
brain diseases.
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