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The influence of spatiotemporal colored noise on wave train propagation in nonexcitable media
is investigated. This study has been performed within the framework of the Oregonator model
in terms of the characteristic noise parameters. Some features seen in single front propagation,
like noise induced propagation facilitation for an optimal level of the noise intensity, are also
found for periodic wave trains. The main new effect is, however, an enhancement of propagation
for correlation times of the noise of the order of the period of the wave train.

1. Introduction

Recently, several publications have come up re-
garding the effects that noise induces on spatial
structures in dynamical systems [Jung et al., 1998;
Pérez-Muñuzuri et al., 2000; Sendiña-Nadal et al.,
1998, 1999, 2000; Kádár et al., 1998; Wang et al.,
1999]. Most of them have dealt with single front
propagation in subcritical conditions, which is en-
hanced or supported when an optimal level of noise
is added to the system. This phenomenon raises in-
terest from both the biological and physical parts,
since it implies that noisy backgrounds would fa-
vor weak signal transmission through neural fibers
[Wiesenfeld & Moss, 1995; Moss et al., 1994] or
arrays of electronic circuits [Löcher et al., 1998;
Lindner et al., 1998]. The phenomenon lying behind
these examples is what has been called “stochastic
resonance” [Gammaitoni et al., 1998]. Nowadays,
this concept is much wider than initially and not
all the usual ingredients (a bistable system period-
ically forced in the presence of noise) are essential.

In 1998, Kádár et al. described noise-supported
traveling waves in two-dimensional subexcitable

media. Spatiotemporal noise was applied to a pho-
tosensitive chemical medium for different pixel sizes
and updated using a Gaussian noise at regular time
intervals. An optimal noise level was found at which
the relative signal strength became maximal. They
also suggested the existence of an optimal noise
timescale supporting propagation. In subcritical
conditions of excitability, there are two different
modes of propagation: subexcitable [Kádár et al.,
1998; Wang et al., 1999; Sendiña-Nadal et al., 2000]
and unexcitable. In the subexcitable regime, wave
segments with free ends contract tangentially and
may eventually disappear, depending on their size
and shape. In the unexcitable one, any initial per-
turbation decays in amplitude until it eventually
disappears. This last scenario is more dramatic
since even unbounded waves disappear.

We study the propagation of a one-dimensional
train of wave fronts in the unexcitable regime
under a spatiotemporal noise forcing. Because
of the one-dimensional situation we are consider-
ing, only transitions from excitable to unexcitable
regimes are possible. This is shown in Fig. 1 where
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Fig. 1. (Left) Excitable versus (right) unexcitable behavior. In the rightmost figure a wave transmission failure is shown
where the traveling pulse decreases in amplitude to the point of extinction.

propagation failure occurs when the control param-
eter is below some excitability threshold.

The consideration of a time periodic structure
introduces a new feature: the possibility of inter-
action between consecutive fronts. We have found
different rates of supported transmission depending
on the period of the wave train and on the corre-
lation time of the noise. In this paper, we study
a new phenomenon related to stochastic resonance
consisting in the enhancement of the propagation of
a periodic wave train through an unexcitable chan-
nel, as a consequence of the time-correlation of spa-
tiotemporal noise. An overall enhancement of wave
propagation in these conditions is achieved for an
optimal combination of noise intensity, correlation
time and correlation length.

2. Numerical Model

Numerical studies were performed using a two-
variable Oregonator model in one dimension

∂u

∂t
=

1

ε

{
u− u2 − [fv + φ(x, t)]

u− q
u+ q

}
+Du

∂2u

∂x2

∂v

∂t
= u− v

(1)

where u is the activator and v the inhibitor. Du is
a diffusion coefficient, and f , q and ε are parame-
ters related to the Belousov–Zhabotinsky (BZ) ki-
netics. Equations (1) were numerically integrated
using an Euler method [Sancho et al., 1982] with a
time step of 10−3 t.u. and a grid size of 0.15 s.u. in
an array of N = 1000 points. Zero flux boundary

conditions were considered at the end of the system
x = N . The spatiotemporal fluctuations were intro-
duced through the light intensity parameter φ, that
accounts for the photosensitivity of the BZ reaction
catalyzed by ruthenium [Krug et al., 1990]. Un-
der homogeneous illumination, the system becomes
unexcitable for φ > 0.02. Pulses of constant ampli-
tude A = 0.2 and width δt = 0.1 t.u. (equal to 100
time steps) were periodically delivered at x = 0,
in order to obtain a wave train with constant pe-
riod T . Waves develop and travel through an ex-
citable medium (its properties being determined by
the value of φe0 = 0.002) of size Nu = 600 points
before entering the unexcitable region, consisting
of an array of independent fluctuating cells of size `
lattice units, with average light intensity φu0 = 0.025
(see Fig. 2). The expression for the fluctuating field
as a function of the position is thus

φ(x, t) =


φe0 0 < x < Nu

φu0 +
nl∑
i=1

ξi(t)Θi(x) Nu ≤ x ≤ N
(2)

where i is the discrete coordinate of a noise cell
ranging from 1 to nl = (N − Nu)/` and Θi(x) is
a shorthand for Θi(x) = Θ(x − (i − 1)`) Θ(i` − x),
Θ being the Heaviside function. ξi(t) stands for
an Ornstein–Uhlenbeck process at cell i, namely
a Gaussian process with zero mean and a correla-
tion function 〈ξi(t)ξl(t′)〉 = σ2 exp(−|t − t′|/τ)δil
[Garćıa-Ojalvo & Sancho, 1999]. τ denotes its
correlation time and σ2 is the noise variance. The
parameter ` fixes the characteristic length of the in-
homogeneous fluctuating excitability. In the limit
τ → 0 the white-noise limit ξw(t) is recovered if



Noise-Enhanced Wave Train Propagation in Unexcitable Media 2839

Fig. 2. Simulated medium with the excitability represented in a eight-bit gray scale. Nu denotes the boundary between the
excitable region on the left, where the wave train is created and propagates, and the spatial distribution of cells of size ` that
fluctuate independently of one another around a mean value φu0 in the inhibition region.

σ2τ is finite. For τ → ∞ the frozen or static
Gaussian distributed noise is obtained. Numerical
simulations have been carried out by varying the
noise dispersion σ, the correlation time τ and the
noise pixel size `. Noise was solved using an inte-
gral algorithm described in [Fox et al., 1988] and
the Gaussian random number generator proposed
by [Toral & Chakrabarti, 1993] was used in the
simulations. Different control points were equally
distributed (each 25 lattice units) along the unex-
citable channel, and another one was placed in the
excitable zone (x = 500). Measurements of the
ratio between the number of wave fronts reaching
each control point and that of those exiting the
excitable region were performed and averaged over
five realizations.

3. Results

Without noise (σ = 0) waves entering the subex-
citable region immediately die out, while depending
on the noise parameters waves can travel longer dis-
tances. This distance depends as well on the wave
train period T . Figure 3 shows the percentage of
wave fronts reaching each control point beyond the
border between the excitable and the unexcitable
regions with and without noise. Note the exponen-
tial decay with x (x > Nu) when noise is present,
compared to the abrupt (linear) fall when it is ab-
sent, indicating that a few fronts are able to survive
and do indeed reach very far. On the other hand,
it seems that more spaced fronts (T > 5) are more
vulnerable to noise, since the distance to which all
of them arrive is drastically reduced.

The main results of the numerical simulations
performed varying the different noise parameters
are summarized in Fig. 4 for a constant value of
T = 5 t.u. A colormap plot represents the percent-

age of wave fronts reaching the control point situ-
ated at 175 points beyond the border (Nu = 600) as
a function of the noise dispersion σ and the corre-
lation time τ , for three different values of the noise
pixel size `. From the figures it is evident that
wave propagation depends on the spatial correlation
of the noise. As ` is increased, the percentage of
wave fronts reaching the control position increases
as well (note the different scales on the colorbars)
and they reach a maximum for higher values of the
correlation time.

• For ` = 10, the noise pixel size is slightly smaller
than the front width (≈ 20 lattice spacings) and
there is no noise level or time scale for the noise
that appears to be optimal. Instead, up to a crit-
ical value of the noise intensity (below which the
transmission rate is zero) there is a sharp increase
that saturates for high values of σ. No clear de-
pendence on the correlation time is observed.
• For ` = 100 there are large highly correlated

regions, in such a way that each front propa-
gates under almost pure temporal noise. So for
low correlation times, temporal fluctuations oc-
cur so frequently that they are averaged out by
the medium. On the other hand, for τ > T the
noise varies slowly and there are fluctuations that
allow a more lasting propagation.
• Only for ` = 40 there is a compromise between

noise intensity and noise correlation time, giving
rise to a tiny improvement on wave propagation
for intermediate values of σ and for correlation
times of the order of the period of the wave train
T = 5.

The global effect of increasing the spatial correla-
tion is thus a shift to the right of the maximum for
the transmission rate, here shown as a red area in
Fig. 4.
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Fig. 3. Percentage of wave fronts reaching the different control points placed along the unexcitable region (x > Nu), (bottom)
with and (top) without noise, for several periods of the wave train. Numerical parameters: ε = 0.05, f = 3, q = 0.002, Du = 1.
Noise parameters: σ = 0.001, log10 τ = −0.75, ` = 40 points.

Fig. 4. Colormap plots of the percentage of wave fronts reaching the control position at x = Nu + 175, as a function of the
noise dispersion σ and correlation time τ for three different noise pixel sizes `. Note the different scales on the percentage of
wave fronts of the colorbars. Numerical parameters: ε = 0.05, f = 3, q = 0.002, Du = 1 and T = 5.
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For ` = 40 and a constant value of τ (≈ 1)
there occurs stochastic resonance as a function of
the noise amplitude. A better perspective of the
phenomenon is given in Fig. 5, for T = 20 t.u. and at
different control points. Close to the boundary Nu

the transmission rate decreases as σ increases, see
Fig. 5(a). But far away from the extinction point

for the deterministic unexcitable system (x > 125)
the rate of wave fronts that reach distant positions
exhibits a peak as a function of the noise variance σ2

(the signature of a stochastic resonance) Fig. 5(b).
A resonance-like behavior is also observed with

respect to the correlation time. Figure 6 shows
the percentage of wave fronts versus τ for different

(a) (b)

Fig. 5. Percentage of wave fronts reaching the positions indicated as labels superimposed to the graphs, as a function of the
noise dispersion σ, for T = 20 t.u., ` = 40 and log(τ ) = −0.75. (b) Corresponds to a magnification of (a).

(a) (b)

Fig. 6. Percentage of wave fronts reaching the positions indicated as labels superimposed to the graphs, as a function of the
correlation time τ , for T = 5 t.u., ` = 40 and σ = 0.001. (b) Corresponds to a magnification of (a).
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Fig. 7. Behavior of the rate of collected wave fronts reach-
ing position x = Nu + 175 as a function of the correlation
time τ , for two different periods of the wave train T . Noise
parameters: σ = 0.001 and ` = 40.

control positions at constant noise intensity σ. As
in the previous case, a local maximum develops as
τ increases [Fig. 6(b)], while for τ → 0 the medium
averages fluctuations and for τ →∞ the wave train
has to overcome a static structured noise.

In order to gain an insight into the meaning
of this last behavior, we have represented the per-
centage of wave fronts reaching a fixed position
(x = Nu + 175) for two different delivering frequen-
cies of the pulses, as a function of τ . The result is
plot in Fig. 7. It can be observed that the maxi-
mum rate occurs at different values of τ and more-
over that this value is of the order of the period of
the wave train.

Summing up, we have investigated the effect of
spatiotemporal fluctuations on a wave train prop-
agating in an unexcitable regime and shown that
stochastic resonance occurs not only for an opti-
mal intensity of the noise but also for a correla-
tion time that matches the characteristic time of
the periodic structure. Globally, the introduction
of noise extends the propagation length. This is in
agreement with other studies in noisy overdamped
bistable oscillators [Lindner et al., 1998; Perazzo
et al., 2000; Garćıa-Ojalvo et al., 2000] where the in-
terplay among noise, nonlinearity and forcing gives
rise to an enhancement of propagation.
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Pérez-Muñuzuri, V., Sagués, F. & Sancho, J. M. [2000]
“Lifetime enhancement of scroll rings by spatio-
temporal fluctuations,” Phys. Rev. E62, 94–99.

Sancho, J. M., San Miguel, M., Katz, S. L. & Gunton,
J. D. [1982] “Analytical and numerical studies of mul-
tiplicative noise,” Phys. Rev. A26, 1589–1609.
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