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The behavior of autowaves under the effect of a quenched disorder is studied in the framework of
the light-sensitive Belousov–Zhabotinsky reaction. This allows us to introduce spatial disorder
on the excitability by projecting patterns of light transmittance. In particular, we have selected
a dichotomic random distribution of levels of transmittance. If the two values of transmittance
are equally probable and allows wave propagation without breaking the waves, we find an
opposite effect on the wave front velocity and shape depending on the considered dimension.
On the other hand, if one of the two values of the transmittance distribution is set on the
nonexcitable region, percolation phenomena can arise by changing the number of excitable sites.
The different addressed situations are analytically interpreted giving theoretical predictions for
the experimental and numerical results.

1. Introduction

Wave propagation in homogeneous excitable
media has been the focus of study in the last years
[Tyson & Keener, 1988; Meron, 1992]. Propaga-
tion of excitable waves through nonhomogeneous
media has also been extremely treated; the inter-
action of waves and inert obstacles giving rise to
anchoring [Allesie et al., 1973; Spach et al., 1981;
Muñuzuri et al., 1998] or breaking of planar fronts
[Karma, 1993; Agladze et al., 1994; Gómez-Gesteira
et al., 1994; Starobin & Starmer, 1996]. Nowadays,
the current interest has changed to the understand-
ing of spatio-temporal structures in modulated

media [Sendiña-Nadal et al., 1997; Armero et al.,
1996, 1997] and fluctuating media [Maselko &
Showalter, 1991; Jung, 1993; Jung & Mayer-Kress,
1995; Sendiña-Nadal et al., 1998a, 1998b; Kádár
et al., 1998; Wang et al., 1999].

The influence of fluctuations on nonlinear
systems has been the subject of intense experi-
mental and theoretical investigations from different
points of view, i.e. stochastic resonance [Wiesenfeld
& Moss, 1995; Gammaitoni et al., 1998] and noise-
induced transitions [Horsthemke & Lefever, 1984].
On the other hand, front roughness induced by fluc-
tuations has received increasing attention [Family
& Vicsek, 1991; Zhang et al., 1992; Barabasi &
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Stanley, 1995]. In particular, the quenched ver-
sions of both Edwards–Wilkinson (EW) [1982] and
Kardar–Parisi–Zhang equations [1986] have been
analyzed when applied to kinetic roughening in-
duced by time-independent disorder [Natternman
et al., 1992; Amaral et al., 1994].

Here, we consider time-independent random
spatial fluctuations of the excitability in the BZ
reaction. Their effects on wave propagation are dis-
cussed. In Sec. 2 are introduced the experimen-
tal and numerical setup. Section 3 is devoted to
a particular case of random fluctuations, namely, a
dichotomic distribution of the excitability. 1D and
2D propagation cases are treated separately as they
are affected by spatial fluctuations in a different
way. In Sec. 4, a particular case of Sec. 3 is consid-
ered where one of the values of our two-state model
prevents wave propagation giving rise to percolation
phenomena.

2. Experimental and Numerical Setup

Experiments were performed by using the photo-
sensitive version of the Belousov–Zhabotinsky (BZ)

reaction. In this reaction–diffusion system, the
catalyst ruthenium bipyridil (Ru(bby)3) presents
two states of oxidation that, in the redox pro-
cess, promote either the production of the activa-
tor (HBrO2) or the inhibitor (Br−) species. In
the illuminated BZ reaction, the Ru+2 is excited,

Fig. 1. Experimental setup. (1) Video Projector. (2) Milky
glass. (3) Reaction. (4) Filter at 450 nm. (5) CCD camera.
(6) Video. (7) PC.

Fig. 2. Wave front propagation on a light-sensitive medium with a dichotomic random distribution of levels of transmittance.
The images present the characteristic yellow color of the catalyst. Left: 1D setup. An initial flat front (t0) splits into two,
and were represented at three different times. The front which propagates through the inhomogeneous part undergoes an
appreciable delay with respect to the other one (t3). Sripe width in the direction of propagation l = 1.1 cm. Right: 2D setup.
An initial flat front (ti) gets rough in the randomly illuminated zone and goes faster than in the homogeneous part (tf );
Square size l = 2.3 mm and size of the medium in the transversal direction to the propagation 5.4 mm. Bottom: a sample of
the light transmittances used in the patterns with the corresponding wave velocities.
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Fig. 3. Four different snapshots of the propagation of a wave front through a medium consisting of a random distribution of
excitable squares (dark yellow) in a nonexcitable medium (light yellow). Propagation is only permitted through the excitable
sites. An initial planar front (first panel) begins to propagate upwards. The wave breaks up into several parts which propagate
through the lattice. The second panel corresponds to a moment where only two segments are present. Only one segment
reaches the upper side first (third panel), whereas the others wander around the lattice until they disappear (last panel).
Arrows indicate the time evolution corresponding to times: 0 s, 778 s, 1068 s, 1405 s. Proportion of excitable squares p = 0.5;
size of squares, 3 mm; medium size, 4.5 cm×6 cm; light intensity through dark squares, 250 µW/cm2, and through light ones,
750 µW/cm2). Next to this time evolution is plotted schematically the two types of connectivity between cells. The first one
takes place in the experiment shown in the figure on the left.

producing extra Br− which decreases the excitabil-
ity of the system and, consequently, the propagation
velocity of the autowaves [Muñuzuri et al., 1996;
Ram-Reddy et al., 1994]. In this way, it is possi-
ble to control the local excitability of the system
by changing the intensity of the applied illumina-
tion. The Ru complex was immobilized in a silica-
gel matrix (using a solution of 15% sodium silicate,
0.71 mM Ru(bpy)2+

3 and 0.18 M H2SO4; prepara-
tion as in [Yamaguchi et al., 1991] in a Petri dish
(diameter, 14 cm; thickness, 1 mm). The solution
(initial concentrations: 0.18 M KBr, 0.33 M mal-
onic acid, 0.39 M NaBrO3 and 0.69 M H2SO4) was
poured onto the gel. The temperature was kept con-
stant at 25±1◦C. The different parts of the setup are
shown in Fig. 1. The reaction was exposed (from be-
low) to spatially inhomogeneous light transmitted
from a video projector, marked (1) in Fig. 1. The
beam passed first a diffusion screen (2), then the
Petri dish (3), the interference filter (4) (450.6 nm;
transmission 56%), and, finally, a CCD (Charge
Coupled Devide) camera (5) for image recording
(6) [Muñuzuri et al., 1996b, 1997]. The images were
digitized by an image-acquisition card and analyzed
on a PC (7).

In order to introduce a spatial variation on
the wave propagation conditions of the inhomoge-
neous medium, a transmission function T (x, y) on
an eight-bit gray-scale between 0 and 255 was gen-
erated in the PC and then transmitted through
the video projector. The distribution function
T (x, y) directly fixes the light intensity reaching the
medium (medium excitability decreases as light in-
tensity increases [Sendiña et al., 1997; Ram-Reddy
et al., 1994].

Depending on the considered nonuniform sit-
uations, T (x, y) exhibits different configurations
and patterns. Figure 2 shows wave propagation
through a medium with a random dichotomous
distribution of the excitability. For this configu-
ration, we considered two different scenarios. In
both cases, the medium was split in two parts, the
leftmost homogeneous and the rightmost nonhomo-
geneous, separated by a vertical, completely unex-
citable, strip with higher illumination. In the quasi-
one-dimensional configuration, horizontal stripes of
random dichotomic illumination, with the same
average light intensity as in the homogeneous part,
introduced the disorder. The two-dimensional setup
was prepared similarly, now randomly distributed
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squares of two possible light intensities are pro-
jected. The transmission function is given by,

T (x, y)=


T0 homogeneous medium

0 central strip

T0 + δT · η(x, y) inhomogeneous medium

where x is the transversal direction to front propa-
gation, T0 is the mean transmittance, and η(x, y) =
±1 is a two-valued random number of zero spa-
tial average. Below Fig. 2 is shown the color scale
of the light transmittances used with the corre-
sponding velocities. When a medium with nonex-
citable clusters is considered, T (x, y) reproduces a
two-dimensional dichotomous random distribution
of dark and light squares (black and white from
now on) of transmittances Tb and Tw, respectively,
chosen in such a way that the wave cannot propa-
gate through the white squares (the lighter ones in
Fig. 3). Opposite to the other situation, the prob-
ability of one type of squares is permitted to vary
from 0 to 1. Next to this figure two different types
of connection between cells are shown for our two-
dimensional square lattice. By changing the value
of Tb we can select the actual connectivity of the
lattice. For low values (low transmittance, upper
connection), waves can propagate from a black site
to both the nearest black site (through the common
side) and to next-nearest black neighbors (through
the vertex in common). For high values (high trans-
mittance, lower connection), waves can only transit
between black sites with a common side.

The typical experimental procedure consisted
in generating a planar wave front at the bottom-side
of the medium and observing its upward evolution
along the vertical axis.

Numerical simulations were performed with a
two-variable Oregonator model adapted to our pho-
tosensitive medium [Krug et al., 1990] which in
dimensionless form reads

∂u

∂t
=

1

ε

(
u− u2 − (fv + φ(x, y))

u− q
u+ q

)
+Du∇2u

∂v

∂t
= (u− v) +Dv∇2v (1)

where u, respectively v, describe HBrO2, respec-
tively catalyst, concentrations. Du and Dv are
the diffusion coefficients of both variables. f , q
and ε are parameters related to the kinetics of
the Belousov–Zhabotinsky reaction. φ(x, y) repre-
sents the light-induced flow of Br− and it is directly
proportional to T (x, y). We employed an explicit

finite-difference scheme with mesh size 0.3 and time
step 0.001 and no-flux boundary conditions. Due
to finite-size effect limitations results were averaged
over 10 runs for each value of the probability p of
black squares.

3. Random Dichotomous
Distribution of the Excitability

Typical experimental observations are shown in
Fig. 2. For the two different scenarios, two non-
interacting wave fronts propagate from an initially
planar wave (at times t0 and ti). In the quasi-1D
arrangement [Fig. 2(a)], the planar front emerg-
ing from the inhomogeneous part (at time t2) is
observed to move slower, in average, than the
one which propagates under uniform illumination
corresponding to the spatial average of the inho-
mogeneous region. Contrarily, in 2D [Fig. 2(b)],
distorted, although still well-defined wave front,
propagates faster (time tf ).

3.1. Theoretical approach

In order to establish our theoretical scenario it is
needed to state clearly the conditions with which
our experimental and numerical study must comply.
This will allow us to interpret the observed results
in terms of generic kinematic arguments widening in
this way the scope of our study beyond the partic-
ular randomness realization analyzed here. Listing
them separately:

(i) We restrict ourselves to thin fronts measured
on the length scale introduced by the disorder.

(ii) The autowave speed adapts quasi-adiabatically
to the local illuminating conditions, both
experimentally and numerically,

(iii) We assume that the disorder amplitude, i.e. a
measure of the dispersion of local velocities in
our two-state model, is small.

In a 1D situation, and invoking conditions (i)
and (ii) above, the propagating interface can be
viewed as a point-like object which follows instan-
taneously a spatial profile of velocity v(y) = v0 +
δv(y), which is two-valued and characterized by:

〈v(y)〉 = 0

〈v(y)〉2 = (δv)2 (2)

If L is large enough compared to the spatial
correlations of the disorder and under self-averaging
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conditions, it is possible to relate v̄ to an ensemble
average in each point, that is,

1

v̄
=

〈
1

v(y)

〉
(3)

Substitution of v(y) and taking as a common
factor v0 results in:〈

1

v(y)

〉
=

1

v0

〈
1

1 +
δv

v0

〉
(4)

Considering δv(y) to be bounded by |δv(y)| <
v0, the Taylor series expansion of the right part of
this equation is,〈

1

v(y)

〉
=

1

v0

∞∑
n=0

(−1)n
〈(

δv

v0

)n〉
(5)

which can be computed exactly for the two-state
model considered here with δv ≡ ±∆v〈

1

v(y)

〉
=

1

v0

∞∑
n=0

(
∆v

v0

)2n

(6)

It immediately follows from this Taylor series,

〈
1

v(y)

〉
=

1

v0

 1

1−
(
δv

v0

)2

 . (7)

So, we have just related the time-averaged
velocity to the statistical moments of the disorder
giving a reduced velocity,

v̄ − v0

v0
= −

(
∆v

v0

)2

(8)

For the 2D case, under the above conditions of
our theoretical scenario, the use of the linear speed-
curvature relation is justified, also well-known as
first-order eikonal equation [Zykov, 1980; Pertsov
et al., 1997; Wellner & Pertsov, 1997]. This equa-
tion gives the normal velocity of the autowave in
terms of its local plane-wave value corrected by a
curvature term. Besides, by invoking condition (ii),
the local velocity is assumed to be at any time fixed
by the space-dependent illumination, so translating
such a relation into Cartesian coordinates for the
position of the front, denoted y = h(x, t), we have

ht = v(x, h)
√

1 + (hx)2 +D
hxx

1 + (hx)2
(9)

where D is an effective diffusion coefficient and, in
general, a function of diffusion coefficients of the
species involved in the front propagation. Devel-
oping the eikonal equation under a small-gradient
aproximation and noting that v(x, h) = v0 +
δv(x, h) we have

ht = v0 +
v0

2
(hx)2 +Dhxx + δv(x, h) (10)

where only the leading nonlinear term h2
x

was retained and an extra multiplicative term
(hx)2δv(x, h) was neglected for weak enough dis-
order amplitudes. Notice that, written in this way
and after some trivial reparametrization to get rid
of the trivial v0 term, this equation strongly resem-
bles the well-known KPZ model for the propagation
of random interfaces [Kádár et al., 1986]. [Kerstein
& Ashurst, 1992] dealt with interfaces propagating
in randomly advected media. They focussed their
scaling analysis on the limit of frozen flows, which
is completely equivalent to our scenario of quenched
disorder. Under these conditions their main re-
sult reads S = 1 + βQ4/3 [Kerstein & Ashurst,
1992]. Where S is the relative wave velocity and
Q represents a relative measure of the randomness
in the medium. In our notation S ≡ v/v0 and
Q ≡ |∆v|/v0 the above expression becomes

v̄ − v0

v0
= β

[(
∆v

v0

)2
]2/3

(11)

3.2. Results

The theoretical predictions, represented respec-
tively by Eqs. (8) and (11), are compared with
the numerical and experimental results in Fig. 4.
For the 1D case, [Fig. 4(a)], the theoretical
prediction is the continuous line of slope −1.
Numerical results approach better to this predic-
tion whereas experimental ones deviate more as the
amplitude of disorder increases. This is due to
unavoidable experimental limitations in light
dispersion and intrinsic innacuracies in velocity
measurements. The effect of light dispersion is
associated to the production of inhibitor which is
continuously produced in the brighter squares and
tends to invade the darker ones, thus, increasing the
effective value of the transmittance there. This
effect becomes more important as the amplitude of
the disorder increases. Therefore, the correspond-
ing mean value T0 of the transmission function
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Fig. 4. Dependence of the relative variation in wave velocity versus amplitude disorder both numerically (φ0 = 0.01) and
experimentally (T0 = 3.55 W/m2). (a) One-dimensional system. Continuous line (slope −1) represents the theoretical
prediction of Eq. (8). Numerical points (�) were simulated with stripes of width 10 space units and the best linear fit
corresponds to a slope of −0.93; experimental data (+) were obtained with squares of length of 1.1 cm and adjusted to a
line of slope −1.42. (b) Two-dimensional system. Numerically: for a medium width of 160 space units and noise squares of
side length 10 (•), 20 (+) and 40 (�). Continuous lines represent nonlinear fits of Eq. (11), with β = 0.831, 1.04 and 1.35,
respectively. The typical front width is about 2.5 s.u. Experimental results are shown for a medium width of 5.4 cm and
l = 2.3 mm (×), and for 6 cm and l = 2.7 mm (4), with β = 1.59 and 2.89, respectively. Model parameters: f = 3, q = 0.002,
ε = 0.05, Du = 1, Dg = 0, φ0 = 0.01.

T (x, y) in Sec. II varies slightly with the disor-
der amplitude. In Fig. 4(b) the 2D situation
is plotted. The observed power laws and corre-
sponding exponent are certainly consistent with
the theoretical prediction, whereas the prefactor
β in Eq. (11) is clearly seen to depend on the
length scale of the spatial inhomogeneities. In any
case, the distinctive behaviors depending on the
dimension considered are clearly exhibited in the
experiments.

4. Random Dichotomic Distribution
of the Excitability with
Nonexcitable Clusters

When one of the two values of the previous
dichotomic distribution is set in the nonexcitable
region, percolation phenomena can arise if the num-
ber of excitable sites is allowed to vary. In Fig. 3,
the time evolution of a single experiment for a given
proportion of dark squares (excitable) p is shown.
Arrows indicate time evolution. In the first panel,
the planar front is initiated at the bottom of the
medium. The front breaks up into several parts that
propagate along the lattice (second panel). And
finally, only one of them reaches the upper side first
(third panel), whereas the others wander around the
lattice until their total annhilation (last panel).

4.1. Percolation phenomena

The motion of the wave front described above has
the same features as in the typical models in per-
colation of forest fires or disordered semiconductors
[Stauffer & Aharony, 1994; Sahimi, 1994; Last &
Thouless, 1971]. Namely, no successful wave prop-
agation is found below a critical value pc which de-
pends on the connectivity of the lattice: pc = 0.4072
when a wave front can propagate from a excitable
site to the next neighbor (through the sides in com-
mon) and to the next-nearest neighbor (through the
vertex in common), and pc = 0.5928 when only
propagation through excitable squares with a com-
mon side is possible. In both cases, for p below
pc there is no path of excitable squares connecting
the bottom and top edges of the pattern. For p
above pc most of the black sites belong to the infi-
nite cluster, and the wave velocity is approximately
constant. And, just at the percolation threshold, pc,
a fractal path of neighboring black squares appears
which connects bottom and top of the medium for
the first time, either through the corners or com-
mon sides, pc ≈ 0.4, or only through the common
sides, pc ≈ 0.6. The transit time (the time the wave
takes to reach the upper side of the medium first) is
larger than the one measured for values of p above
pc (as the percolating cluster is very different from
a straight line).
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Fig. 5. Inverse of the transit time between both edges of the
experimental system as a function of the probability of dark
sites p. Continuous lines are nonlinear fits to Eq. (12) for p
above the percolation threshold for two different geometries:
(�) cells connected by common sides, (4) cells connected by
common sides and corners. Parameters of the fitting curves
are: (4) α = 0.1, pc = 0.4. (�) α = 0.08, pc = 0.6.

4.2. Results

Transit and termination times were measured for
different values of the proportion p of squares with
a given transmittance. Owing to the fact that the
medium is finite, and in order to compare the results
with theoretical predictions, five experiments were
carried out for each value of p. The inverse of the
transit time was plotted in Fig. 5 for the two spa-
tial geometries. The experimental results for p > pc
were fitted to a power law, typical of critical phe-
nomena, with the critical exponent of β = 5/36 for a
two-dimensional lattice [Stauffer & Aharony, 1994],

τ−1 = α(p− pc)β . (12)

Zero values of the inverse of such an elapsed time
naturally correspond to unsuccessful propagation.

The extinction time (the elapsed time until
there is no wave activity in the medium) was
calculated both experimentally (Fig. 6 top) and
numerically (Fig. 6 bottom) as a function of p.
Lifetimes of autowaves show a peak near p ≈ 0.5
for the first geometry and at p ≈ 0.6 for the sec-
ond one. Note that, for p ≈ 0.6, extinction times
are larger than at p ≈ 0.5 because light transmit-
tance is higher, thus decreasing the wave velocity.
The peaks are associated to the fractal properties
of the connecting cluster at p = pc whose length is
no longer linearly proportional to the length of the

Fig. 6. Extinction time as a function of p, top: experimen-
tally, bottom: numerically, for the two different lattice ge-
ometries (symbols have the same meaning as in Fig. 5). Solid
lines are spline interpolations of the experimental and numer-
ical data. (a) Experiments: Maxima located at (4) pc ≈ 0.5,
(�) pc = 0.6. Parameters as in Fig. 1. (b) Simulations:
Maxima located at (4) pc ≈ 0.45, (�) pc = 0.6. Model pa-
rameters: f = 3, q = 0.002, ε = 0.05, Du = 1, Dv = 0,
φb = 0.01(0.015) φw = 0.04(0.04) to reproduce pc ≈ 0.45,
(pc = 0.6).

lattice. Due to finite-size effects the peaks appear
as being of finite height and with rounded shape. In
fact, the value of p ≈ 0.5 does not match exactly the
threshold pc = 0.4072 predicted by the theory. This
is improved in numerical simulations where lattice
sizes were larger. The critical values approach bet-
ter to the expected values and the peaks are more
pronounced.

5. Conclusions

Wave propagation through a two-dimensional
medium with a static disordered excitability is ob-
served to be distorted. Wave velocity is greater than
the one corresponding to wave propagation through
a medium with the equivalent mean excitability.
From the eikonal equation modified with the fluc-
tuating field of velocity a power-law dependence for
the relative change of the propagation speed on the
disorder amplitude is derived, which is verified both
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experimentally and numerically. The opposite be-
havior is found when the wave fronts propagate in
one dimension due to the lack of curvature effects.
For this case, results are interpreted using simple
kinematic arguments. With respect to the other
considered situation, namely, wave propagation on
a lattice of excitable and nonexcitable clusters, the
effective wave front velocity is observed to jump
from zero to finite values at a threshold p = pc
(very close to the percolation thresholds expected
for a square lattice). This occurs when, as pre-
dicted by the classical percolation theory, a cluster
of sites with the same excitabiliy spans the medium.
These thresholds depend on the number of effective
neighbors.
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Gómez-Gesteira, M., del Castillo, J. L., Vázquez-Iglesias,
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