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The behavior of chemical waves advancing through a disordered excitable medium is investigated in terms
of percolation theory and autowave properties in the framework of the light-sensitive Belousov-Zhabotinsky
reaction. By controlling the number of sites with a given illumination, different percolation thresholds for
propagation are observed, which depend on the relative wave transmittances of the two-state medium consid-
ered.�S1063-651X�98�51008-2�

PACS number�s�: 05.70.Ln, 03.40.Kf

Percolation theory allows us to interpret many physical
experiments where connectivity plays a fundamental role
�for a review, see Ref.�1��. Representative examples are
electrical conductivity in disordered semiconductors�2,3�,
percolation at the superconducting transition in Y-Ba-Cu-O
thin films �4�, two-dimensional percolation in cluster deposi-
tion �5�, and fingering phenomena�6�.

Considered in its original version, percolation is astatic
geometric tool relating accessibility properties within a lat-
tice and the eventual crossing of it to the occupancy prob-
ability of its constituent sites. In this sense, percolation
theory establishes the existence of a threshold or critical
value pc , below which only finite�nonconnecting� clusters
are present, whereas an infinitely connected path is generated
at pc . In addition to the examples cited above, there are
well-known situations, such as fluid displacement in oil
fields or forest fire spreading, where percolation ideas, even
at their most simple and intuitive level, have been fruitfully
used�1�. However, as far as we know percolation concepts
have never been systematically addressed before in connec-
tion with autowave propagation in chemical media. This is
quite surprising if one considers the apparent similarities be-
tween some of these situations and the invasion of a nonex-
cited medium by an excited front.

On the other hand, the role of excitation inhomogeneities
has been an issue of great interest in the last few years both
theoretically and experimentally. In this respect, wave front
propagation in nonhomogeneous media has been studied
from different points of view: the interaction of waves and
inert obstacles�which is especially relevant in cardiology,
since reentries can be anchored�7–9� or planar fronts broken
�10–13�� or by the role of modulations�14,15� and fluctua-
tions on patterns of distributed excitability�16–19�.

In this paper, we study both experimentally and numeri-
cally the propagation of a wave front on a medium consisting

of clusters of two excitabilities. Waves can only propagate
through one kind of cluster, which reminds us of the situa-
tion found in experiments of disordered semiconductors
�2,3�. Characteristic times are studied as a function of the
relative excitability levels, and interpretations are given in
terms of the classical percolation theory.

Experiments were performed with the Belousov-
Zhabotinsky reagent catalyzed by the ruthenium bipyridyl
complex Ru�bpy�, which is sensitive to visible light, thus
allowing experimental control of the excitability of the sys-
tem �20–24�. The Ru complex was immobilized in a silica-
gel matrix �using a solution of 15% sodium silicate,
0.71 mM Ru(bpy)3

2� and 0.18M H2SO4; preparation is
the same as in�25�� in a Petri dish�diameter, 14 cm; thick-
ness, 1 mm�. The solution�initial concentrations:0.18M
KBr, 0.33M malonic acid, 0.39M NaBrO3, and
0.69M H2SO4) was poured onto the gel. The temperature
was kept constant at 25�1 °C. White light 190 W halogen
lamp� first passed a diffusion screen, then the Petri dish, the
interference filter�450.6 nm; transmission 56%�, and, finally,
video equipment for image recording�26,27�.

In order to introduce a spatial variation on the wave
propagation conditions of the inhomogeneous medium, a
transmission functionT(x,y) was printed out on a transpar-
ency, which was placed between the light source and the
Petri dish �14,19�. The prescribed distributionT(x,y) di-
rectly fixes the light intensity reaching the medium�medium
excitability decreases as light intensity increases�14,28��. In
the situation considered here,T(x,y) reproduces a dichoto-
mous random distribution of squares. The size of the squares
was larger than the characteristic width of the front.

The typical experimental procedure consisted in generat-
ing a planar wave front at the bottom side of the medium and
monitoring its evolution until it either reached the top side or
it disappeared. Figure 1 shows the time evolution of a single
experiment for a given proportion of dark squares. In Fig.
1�a� the planar front was initiated at the bottom of the me-
dium. The front breaks up into several parts that propagate
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along the lattice, as shown in Figs. 1�b�–1�c�. Only one of
them reaches the upper side first, whereas the others wander
around the lattice until their total annhilation�Fig. 1�d��.

The experimental measurements of transit and termination
times were done for different values of the proportionp of
squares with a given transmittance�excitability�. Owing to
the fact that the medium is finite, and in order to compare the
results with theoretical predictions, five experiments were
carried out for each value ofp. Each realization corresponds
to a different inhomogenous pattern ofn�n randomly dis-
tributed dark and light squares�black and white from now
on� of transmittancesTb and Tw , respectively, chosen in
such a way that the wave cannot propagate through the white
squares. This favors the breaking up of the front into several
small fronts that move independently through the lattice. In
order to change the actual connectivity of the two-
dimensional lattice, two light intensities from the light source
were used. With the lowest light intensity, waves can propa-
gate both from a black site to the nearest neighbor black
squares�squares with one side in common� and to the next-
nearest black neighbors�squares with one vertex in com-
mon�. With the highest light intensity, waves can only transit
between two black sites with a common side.

Numerical simulations were performed with a two-
variable Oregonator model modified to include light-induced
bromide production�29�, which in dimensionless form reads

�u

�t
�

1

�� u�u2�� f v���x,y ��
u�q

u�q ��Du�2u,

�v
�t

��u�v ��Dv�2v, �1�

whereu andv describe HBrO2 and catalyst concentrations,
respectively.Du andDv are the diffusion coefficients of both
variables.f , q, and� are parameters related to the kinetics
of the Belousov-Zhabotinsky reaction.�(x,y) represents the
light-induced flow of Br� and it is assumed to be directly
proportional toT(x,y). The system was composed of 40
�40 square cells, each one of�dimensionless� length ten,
and periodic boundary conditions in the lateral direction
were imposed. We employed an explicit finite-difference
scheme with mesh size 0.3 and time step 0.001. To reduce
finite-size statistical dispersion, the results were typically av-
eraged over 10 runs for each prescribed level of excitability
in the medium.

The motion of the wave front has the same features as in
the typical models in the percolation of forest fires or disor-
dered semiconductors�1,3�. No successful wave propagation
is found below a critical valuepc , which depends on the
light intensity used (pc	0.4 orpc	0.6), as is shown in Fig.
2. Forp well below pc , there are mostly isolated sites and a
few pairs and other small clusters, so that the wave cannot
reach the upper edge of the pattern. Forp well abovepc ,
most of the black sites belong to theinfinite cluster, and the
wave velocity is approximately constant. At the percolation
thresholdpc a fractal path of neighboring black squares ap-
pears that connects the bottom with the top of the medium,

FIG. 1. Four different snapshots of the propagation of a wave
front through a light sensitive medium consisting of a random dis-
tribution of excitable squares�black squares� in a nonexcitable me-
dium �white squares�. The wave can propagate only through black
sites. The initial wave front propagating from the bottom,�a�,
breaks up and only a small part reaches the top while other fronts
move around the lattice,�b�–�d�. Times:�a� 0 s,�b� 778 s,�c� 1068
s, and�d� 1405 s.�Proportion of black squares,p�0.5; size of
squares, 3 mm; medium size, 4.5 cm�6 cm; light intensity
through black squares (250
W/cm2), and through white squares
(750 
W/cm2).�

FIG. 2. Inverse of the transit time for propagation between both
edges of the experimental system�see text� is plotted as a function
of the probability of black sitesp. The continuous lines represent
nonlinear fits to Eq.�2� above the percolation threshold for two
different geometries:�, cells connected by common sides;�, cells
connected by common sides and corners. At least five experiments
were carried out for each value ofp in order to compare with
theoretical results typical of infinite media. Parameters of the fitting
curves are�, ��0.1, pc�0.4; �, ��0.08,pc�0.6.
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either through the corners or common sides (pc	0.4), or
only through the common sides (pc	0.6). As a result, even
though the wave propagates through the medium, the perco-
lating cluster is very different from a straight line, slowing
down the wave front velocity. Experimental results corre-
sponding to the elapsed time to transit between both edges
for p�pc were fitted to a power law, which is typical of
critical phenomena, and for a two-dimensional lattice can be
easily calculated�1� as

��1���p�pc�, �2�

with the critical exponent�5/36. �Zero values of the in-
verse of such an elapsed time naturally correspond to unsuc-
cessful propagation.�

Although the lattice was square shaped, light intensity
allowed us to select the way that the wave front moved
through clusters, either through corners and sides or through
sides only. This changes the connectivity of effective neigh-
bors on a given black site from eight to four. Thus, the per-
colation threshold should vary from 0.5928 to 0.4072�1� as
reproduced by the results of the figure.

The extinction time of the autowave is defined as the time
elapsed until termination is reached, which is averaged over
many lattices with the samep. Figures 3�a� and 3�b� show
the lifetime of autowaves as a function of the probabilityp
for the two spatial geometries: square lattice connected only
by nearest neighbors, and by both nearest and next-nearest
ones, both experimentally and numerically. Experiments
show a peak atp	0.6 for the first geometry and nearp
	0.5 for the second one. Atp	0.6 extinction times are
longer than atp	0.5 because in the experiments light inten-

sity was kept higher in order to restrict wave propagation
through sides that were in common only, thus decreasing
wave velocity. The presence of such peaks is associated with
the fractal properties of the connecting cluster present atp
�pc , whose length�and hence the corresponding transit
time� is no longer linearly proportional to the length of the
lattice. Due to finite-size effects the peaks appear as being of
finite height, and with a rounded shape. In fact, the value of
p	0.5 does not match exactly the thresholdpc�0.4072 pre-
dicted by the theory and found in the transit times measure-
ments of Fig. 2. However, in the simulations lattice sizes
were larger, and the critical value obtained in Fig. 3�b� (pc
	0.4) approached much better to the expected value than in
the experimental case.

In this paper, we have presented results of autowave
propagation on a lattice of excitable and nonexcitable clus-
ters. The proportionp of black sites was varied from zero to
one in order to study percolation effects on wave propaga-
tion. The effective wave front velocity�proportional to the
inverse of the transit time� is observed to jump from zero to
finite values at a thresholdp�pc �very close to the percola-
tion thresholds expected for a square lattice� when, as pre-
dicted by the classical percolation theory, a cluster of sites
with the same excitability spans the medium. These thresh-
olds depend on the number of effective neighbors.
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DGES-PB96-0937, PB96-1001, and PB96-0241, and Comis-
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Center of Galicia�CESGA� and Catalunya�CESCA�, Spain.
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FIG. 3. Extinction time for autowaves propagating through lattices with probability of black sitesp: �a� experimentally and�b� numeri-
cally, for the two different lattice geometries�symbols have the same meaning as in Fig. 2�. For p→0, the front can propagate only through
a few black sites before extinction, while forp→1, almost the whole front reaches the top of the lattice. In between, at the cusp the small
broken parts of the front spend aninfinite time �not in the experiment, but in an infinite lattice� wandering through the lattice before
annhilation. Solid lines are spline interpolations of the experimental and numerical data.�a� Experiments: maxima located at�, pc	0.5;�,
pc�0.6. Parameters are as in Fig. 1.�b� Simulations: maxima located at�, pc	0.45; �, pc�0.6. Model parameters:f �3, q�0.002,
��0.05,Du�1, Dv�0, �b�0.01(0.015), and�w�0.04(0.04) to reproducepc	0.45 (pc�0.6). t.u.�time unit.
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Pérez-Villar, J. Armero, L. Ramı´rez-Piscina, J. Casademunt, F.
Sague´s, and J.M. Sancho, Phys. Rev. E56, 6298�1997�.

�15� J. Armero, A.M. Lacasta, L. Ramı´rez-Piscina, J. Casademunt,
J.M. Sancho, and F. Sague´s, Europhys. Lett.33, 429 �1996�;
Phys. Rev. E56, 5405�1997�.

�16� P. Jung and G. Mayer–Kress, Phys. Rev. Lett.74, 2130
�1996�; Chaos5, 458 �1995�.

�17� J. Maselko and K. Showalter, Physica D49, 21 �1991�.
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