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Effective centrality and explosive synchronization in complex networks

A. Navas,1 J. A. Villacorta-Atienza,2 I. Leyva,1,3 J. A. Almendral,1,3 I. Sendiña-Nadal,1,3 and S. Boccaletti4,5
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Synchronization of networked oscillators is known to depend fundamentally on the interplay between the
dynamics of the graph’s units and the microscopic arrangement of the network’s structure. We here propose an
effective network whose topological properties reflect the interplay between the topology and dynamics of the
original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role
and importance of each network’s node in the synchronization process. In particular, in the context of explosive
synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition
to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by
acting only upon a fraction of its nodes.
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I. INTRODUCTION

One of the most intriguing processes in complex networks’
dynamics is synchronization: the spontaneous organization
of the network’s units into a collective dynamics. This
phenomenon is known to be related to a delicate interplay
between the topological attributes of the network and the
main features of the dynamics of each graph’s unit [1–3].
The conditions for synchronization in complex networks
have been addressed by means of different approaches.
For identical units, one of the most successful tools is the
Master Stability Function [4], which rigorously shows how
the spectral properties of the graph influence the stability of
synchronization [1]. The general case of nonidentical units is
far more complicated, and often needs a numerical approach,
where the topology-dynamics relationship can only be
investigated within specific scenarios [5–9]. However, several
very recent works have obtained advances in the analysis
of nonidentical network synchronization of phase oscillators
ensembles, founding explicit bounds between the dynamics,
the topology, and the coupling strength beyond which the sys-
tem reaches phase synchronization [10,11], or how the basin
stability depends on the structural-dynamics interplay [12].

Such a connection between structure and dynamics of a
network is of particular importance in the case of the recently
reported explosive synchronization (ES), an irreversible and
discontinuous transition to the graph’s synchronous state.
Originally, ES was described in all-to-all coupled ensembles
of Kuramoto oscillators [13] for a specific distribution of
natural frequencies [14]. Later on, various kinds of degree-
frequency correlations were found to be able to induce ES in
networks of periodic and chaotic oscillators [15–18], or neural
networks [19]. In addition, other microscopic mechanisms
were proposed, based on diverse coupling strategies [20–22],
or by introducing adaptive dynamics in a fraction of the
network’s units [23].

In this work, we propose the use of an effective topological
network whose structure explicitly reflects the interplay
between the topology and dynamics of the original system. On
that basis, we introduce the effective centrality as a measure to

quantify the role of each node in the synchronization process.
Using this measure, we reconsider the mechanisms underlying
ES and revisit the main scenarios where such a behavior
was previously reported. Finally, we formulate a criterion to
induce explosive transitions by acting only on a fraction of the
network’s nodes.

II. MODEL

We start by considering a network of N phase oscillators,
whose instantaneous phases evolve in time according to the
Kuramoto model [13]:

θ̇i = ωi + σ

N

N∑
j=1

Aij sin(θj − θi), i = 1, . . . ,N, (1)

where θi is the phase of the ith oscillator, ωi its natural
frequency [chosen from a generic, known, distribution g(ω)],
and σ the coupling strength. The topology of the network is
encoded in the adjacency matrix A (Aij = 1 if node i is linked
to node j , and Aij = 0 otherwise). The degree of a node is
ki = ∑

j Aij . The level of synchronization is measured by

the order parameter r = 1
N

〈| ∑N
i=1 eθi |〉T , where |.| and 〈.〉T

denote module and time average, respectively. Throughout this
work, the network size is fixed to N = 1000 and the natural
frequencies ωi are randomly drawn from a uniform distribution
in the interval [−0.5,0.5], unless otherwise specified.

As the coupling strength σ gradually increases, system (1)
experiences a transition from an incoherent (r � 0) to a
frequency-synchronized, phase-locking state (r � 1), a pro-
cess often referred to as path to synchrony (PTS) [24]. In
heterogeneous networks, the PTS is mainly dominated by the
most connected nodes (or hubs), which actually act as synchro-
nization seeds, and progressively recruit the other network’s
nodes. At variance, in homogeneous networks, the PTS is
characterized by the emergence of coherent clusters growing
around multiple synchronization seeds. Along the PTS, the first
nodes that locally synchronize generally correspond to pairs
of connected oscillators whose natural frequencies are closer,
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FIG. 1. (Color online) Synchronization transition curves (black
circles) compared with the modified adjacency matrix Aij (1 + δ�ωij )
in (a) ER, 〈k〉 = 30 and (b) SF 〈k〉 = 12 networks for positive and
negative δ values. Red triangles (δ > 0) and blue squares (δ < 0) show
how a local perturbation enhances/frustrates the synchronization
more efficiently than a global perturbation over all links [dashed
lines, where δ�ωij → δ〈�ω〉, being 〈�ω〉 the average over nonzero
values of the detuning matrix].

whereas the globally synchronized state emerges around
those with natural frequencies close to the synchronization
frequency �s . While traditionally attention has been focused
on the natural dynamics of each node, recent works [21,22]
have shown the importance of frequency detuning in the
process of synchronization, motivating a different approach,
where the links prevail over the nodes themselves. Hence, we
propose the frequency detuning �ωij ≡ |ωi − ωj | between
each pair of nodes as the relevant dynamical feature for
the determination of the PTS. To formalize our idea, let us
introduce a change of variables rj e

i�j = 1
N

∑
k∈	j

eiθk , where
ri(t) is a local order parameter and 	j is the set of neighbors
of the node j . Substituting into Eq. (1) we obtain

θ̇i = ωi + σri sin(�i − θi). (2)

It naturally follows that the velocity difference is 
̇ij =
θ̇i − θ̇j = ωi − ωj + σ [ri sin(�i − θi) − rj sin(�j − θj )]. As
frequency synchronization implies 
̇ij = 0, the set of links
through which synchronization may take place must fulfill

�ωij � σ (ri + rj ), (3)

which in fact relates the local phase locking to the frequency
detuning associated to the links, being those pairs of nodes
with large detuning, which are harder to synchronize. To
further show the role of frequency detuning, we investigate
how a modification of the adjacency matrix by a certain
function of the detuning affects the PTS, i.e., A → Af (�ω).
Considering a first-order approximation, it results in Aij →
Aij (1 + δ�ωij ) for f (0) = 1 and f ′(0) = δ. Figure 1 reports
the synchronization transition curves for [Fig. 1(a)] Erdös-
Reyni (ER) with a mean degree 〈k〉 = 30 [25] and [Fig. 1(b)]
scale-free (SF) with 〈k〉 = 12 networks generated with the
Barabasi-Albert algorithm [26]. It can be seen an enhancement
(frustration) of the synchronization transition as δ is increased
(decreased). Hence, positive (negative) values of δ potentiate
(weaken) the strength of the couplings according to their �ωij .
Notice that such a local perturbation of the adjacency matrix is
more effective in promoting or delaying the PTS than a global
perturbation of the same mean equally acting on all links as
shown by the corresponding dashed lines in Fig. 1.
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FIG. 2. (Color online) Comparison between synchronization
centrality �C

i (black squares) and topological centrality �A
i (red dots).

(a) ER networks, 〈k〉 = 50, �C
i , and �A

i are reported vs the nodes’
natural frequencies ωi ; (b) SF networks, 〈k〉 = 12, �C

i , and �A
i are

plotted vs the node degrees ki . All data refer to ensemble averages
over 100 different network realizations.

III. EFFECTIVE CENTRALITY

Since we are concerned about extracting the dynamical
backbone of the network composed by the seeds of synchro-
nization and according to the above results, we introduce the
following effective adjacency matrix in order to amplify their
role:

Cij ≡ Aij

(
1 − �ωij

�ωmax

)
, (4)

where we have chosen f ′(0) = −1/�ωmax, being �ωmax the
maximum possible detuning present in the system in order
to guarantee Cij � 0. Within this specific choice of f ′(�ω),
Cij results in an effective topological network that exhibits
the structure of the original one but enhancing those more
synchronizable pairs of nodes (i.e., those with small detuning)
according to Eq. (3).

Now, in order to quantify the role of each node in the
synchronization process, we extract the most important nodes
in the effective network defined by C, i.e., we calculate
the standard eigenvector centrality measure [1,27–29] of
C, obtaining the effective centrality vector �C . The ith
component �C

i � 0 provides a measure of the importance of
the node i in the effective network and quantifies its potential
to behave as a seed of synchronization.

As a simple test for further clarifying the meaning of
�C

i , Fig. 2 shows the comparison between �C and its
topological counterpart �A, the eigenvector centrality ex-
tracted from the original adjacency matrix A. For Erdös-Rényi
(ER) networks [25], the distribution of the components of
the vector �C as a function of the corresponding node’s
natural frequencies shows the existence of many seeds of
synchronization with natural frequencies close to �s = 0 [see
the black squares of Fig. 2(a)]. This allows the characterization
of the connection between the microscale (detuning of the
links) and the macroscale (emergence of global synchroniza-
tion) of the system in a much better way than �A, whose
components [red dots in Fig. 2(a)] are instead uniformly
distributed. For heterogeneous scale-free (SF) networks [26],
the synchronization seeds are the hubs and therefore �C and
�A provide essentially the same information, as it can be seen
in Fig. 2(b).

The previous result shows that the effective network
allows us to highlight the importance of each node in the
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FIG. 3. (Color online) Average percentage of coincidence be-
tween the third of the nodes with the highest (red triangles) and
lowest (blue circles) dynamical �S

i and effective �C
i centralities (solid

symbols) and the corresponding percentage between dynamical �S
i

and topological �A
i centralities (empty symbols). Calculations are

performed on ER networks with 〈k〉 = 50, and refer to 10 realizations
of the network’s topology and frequency distribution (see text for
details).

PTS; we proceed with confronting our approach with a
dynamical exploration of the system for the case of ER
networks. Precisely, we calculate a local synchronization
matrix S = {Sij } = Aij |〈ei�θij 〉t | [24] where �θij = θi − θj

and σ ∈ [0,0.7]. The eigenvector centrality of S, denoted by
�S , provides the actual synchronization centrality of each node
in the synchronization process.

Mathematically, the Perron-Frobenius theorem states that
if M is an irreducible matrix, the effective centrality �M

is well defined, i.e., exists and is unique. A N × N matrix
M is irreducible if and only if its associated graph GM is
strongly connected, where GM has N vertices and node i is
connected to j when Mij > 0 [30]. Since both C and S are
symmetric matrices, strongly connected means just that GC

and GS are connected graphs. This fact is always verified in
our simulations, therefore C and S matrices are irreducible.
Notice that both C and S have essentially the connectivity of
A, since whenever Aij = 1 then Cij > 0 (except for one link
that never contributes to disconnect GC), and Sij > 0, since
|〈ei�θij 〉t | > 0.

In Fig. 3 we sort the nodes according to the increasing
value of the corresponding centrality and we report the
percentage of coincidence between the third of the nodes
with the highest (lowest) synchronization �S

i and effective �C
i

centralities (solid symbols), and the corresponding percentage
of coincidence between the third of the nodes with the highest
(lowest) synchronization �S

i and topological �A
i centralities

(empty symbols). It can be seen that the ranking based on �C
i

is able to predict up to 80% of the nodes with the highest
(lowest) dynamical centrality, while the topological centrality
only detects at most 50%. According to �C

i the maximum of
predictability is reached around the synchronization threshold
and decreases rapidly due to the homogenization of the
synchronization matrix S for overcritical couplings, while the
predictability according to �A

i is approximately constant until
it increases to 100% when Sij = 1 (S = A), that is, in the
trivial completely synchronous state.

IV. EFFECTIVE CENTRALITY IN EXPLOSIVE
SYNCHRONIZATION

As effective centrality reveals itself as a suitable mea-
sure to study the PTS, we move on to elucidating how
this quantity helps us also to understand the microscopical
mechanisms underlying explosive synchronization (ES). As
it has been remarked in the introduction, ES can be induced
when topology and dynamics are related in several specific
ways [14–18,20–23,31]. Almost all these methods are based
on a manipulation of the adjacency matrix and/or the links
weights, such that in Eq. (1) Aij is replaced by a certain matrix
�ij which usually correlates the structural and dynamical
features of the network.

To show how the different procedures impact the effective
centrality vector, we compare the �C associated with the non
explosive case and the corresponding �C̃ when the explosive
method is applied, that is, C̃ij = �ij (1 − �ωij

�ωmax
). Results for

some of the different methods are condensed in Fig. 4 for ER
(left panels) and SF (right panels) networks. In each panel, �C̃

i

(red dots) are plotted together with �C
i (cyan dots) to show how

the explosive method actually modifies the effective centrality
vector and, therefore, the dynamical role of each node. Nodes
are sorted in ascending order of �C

i . In all the cases where
the structural and dynamical correlations introduced through
�ij successfully lead to ES [Figs. 4(a)–4(d), 4(f)], there is an
increase (decrease) of �C̃

i of those nodes whose �C
i was low

(high), that is, the weighting method produces a flattening of
�C̃

i . In this way, the potential ability of the nodes to behave
as seeds of local synchronization is frustrated until a certain
coupling strength is reached. Only once the coupling strength
is large enough, the rest of the network fulfills the condition (3),
and therefore a sudden transition to synchronization takes
place.

Figures 4(a)–4(b) correspond to the method described in
Ref. [21], where ES is achieved choosing �ij = Aij |ωi − ωj |
for ER networks (a) and �ij = Aij |ωi − ωj |lij /

∑
j lij for SF

networks (b), being lij the edge betweenness [1]. Figures 4(c)–
4(d) show, instead, the case �ij = Aij |ωi |/ki proposed in
Ref. [31] for uniform frequency distributions centered in zero.
It is easy to see that the above increase-decrease compensation
is fulfilled for both ER [Fig. 4(c)] and SF [Fig. 4(d)] networks.
As expected, in SF networks the modification affects mainly
the hubs, thwarting their dynamical influence as seeds, and
frustrating the PTS. Finally, Fig. 4(f) reports the case of
ES induced in SF networks by imposing a frequency-degree
correlation ωi = ki [15]. Here the effect is focused on the
hubs (see the inset), whose effective centrality is now strongly
decreased, while the imposed correlation does not produce
a substantial difference between �C̃ and �C for the rest
of the nodes. There are, however, cases when, even if the
structure and dynamics are correlated, ES does not occur.
For instance, Fig. 4(e) reports the same case presented in
Fig. 4(c) but for positive definite frequencies. And indeed,
for this frequency distribution, it is seen that the weighting
method fails to flatten sufficiently �C (the red horseshoe
cloud), with the consequence that ES fails to emerge as
well.
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FIG. 4. (Color online) Effective centrality of explosive networks
(�C̃

i , red clouds) versus that of non-explosive networks (�C
i , cyan

clouds) for ER (left panels) and SF (right panels) topologies (see
text for definitions). (a) and (b) account for the weighted method of
Ref. [21] with a uniform natural frequency distribution in [−0.5,0.5].
(c) and (d) correspond to the weighted method of Ref. [31] with
the same uniform frequency distribution (see text for the methods’
description). (e) is the same as in (d) but natural frequencies are here
chosen from the positive values of a Gaussian distribution, in a way
that ES is no longer induced. Finally, (f) corresponds to a SF network
where the degree-frequency correlation method from Ref. [15] is
applied and the same uniform frequency distribution as for (a)–(d) is
used. The inset in (f) is a zoom centered on the highest-degree nodes.
All data refer to averages over 100 realizations.

V. TARGETED EXPLOSIVE SYNCHRONIZATION

A possible application of our effective centrality is the
engineering of a strategy to produce ES in a generic network
by only acting upon a small fraction of its nodes, according
to a given ranking defining their role as synchronization
seeds. We here test four possible rankings: (i) the effective
ranking based on �C

i ; (ii) the distance ranking, which sorts
the nodes according to the distance ��C

i = |�C
i − �C̃

i |; (iii)
the topological ranking, based on �A

i ; and, finally, (iv) a
random ranking, which is used for comparison. These specific
rankings are actually suggested by the characteristic PTS
occurring in both ER and SF networks, where the increase-
decrease condition and the dominant role of hubs constitutes,
respectively, the essential feature (see Fig. 4).

0 10 20 30 40
0

0.3

0.6
(a)

% perturbed nodes

M
ax

. J
um

p

0 10 20 30 40
0

0.4

0.8

% perturbed nodes

(b)

FIG. 5. (Color online) Maximum jump size in the synchroniza-
tion curve σ (r) vs fraction of perturbed nodes chosen along several
rankings: effective (back squares), distance (red dots), topology
(magenta diamonds), and random (blue asterisks). (a) ER networks
〈k〉 = 30, weighting method from Ref. [21]. (b) SF networks 〈k〉 = 6
imposing ωi = ki for the selected nodes as in Ref. [15]. In all cases,
data refer to averages over 50 realizations.

Figure 5 reports the jump in the discontinuous synchro-
nization transition curve for all the rankings as a function
of the % of perturbed nodes affected by the weighting
methods of Refs. [15,21]. The discontinuity jump is calculated
as max[r(σ + δσ ) − r(σ )], the maximal difference found in
the order parameter between two consecutive σ values. For
homogeneous ER networks [Fig. 5(a)], we choose a given
% of ranked nodes and weight their links as �ij = Aij |ωi −
ωj |/�ij , where �ij is the mean of the nonzero elements
of � [32]. The rest of the nodes remain with the original
adjacency. The effective ranking (black squares) indicates that
a significant explosive effect is obtained in the network already
for just 6% of the nodes but decreases afterwards, whereas
the distance ranking (red circles) requires up to 15% to get
an equivalent jump, inducing a complete explosive transition
for percentages above 30%. In comparison, using a random
ranking it is necessary to manipulate at least the 40% of the
nodes, while the topological ranking is not able to induce ES
in this interval.

For SF networks [Fig. 5(b)], we use instead the degree-
frequency correlation as in Ref. [15], setting ωi = ki for the
corresponding first percentage of nodes along the ranking.
In this case, both the effective (black squares) and topological
(magenta diamonds) rankings clearly outperforms the distance
ranking (red circles) by only affecting the 10% of the nodes.
In comparison, the random ranking is not able to induce ES
even above the 40%.

The differences between ER and SF cases are due to the
different ways the seeds spread in the network. In the ER case,
the effective ranking performs better for small percentages
since it focuses on the seeds of synchronization. As soon as
this percentage increases, the nodes with the lowest �C are
not longer captured, and the increase-decrease condition is
not fulfilled. As there are multiple randomly distributed seeds,
the distance ranking is only slightly better than the random
one, as both satisfy the increase-decrease condition once the
percentage is large enough. In the SF case the topology is
determinant as the seeds are just a few hubs, allowing to
induce ES acting upon a very small fraction of the nodes
of the network, whereas the random targeting is definitely not
the suitable choice.

In conclusion, we have introduced an effective network
whose topological properties quantitatively characterize the

062820-4



EFFECTIVE CENTRALITY AND EXPLOSIVE . . . PHYSICAL REVIEW E 92, 062820 (2015)

PTS of networked oscillators, contributing to a deeper knowl-
edge of the synchronization process. Even if the recent devel-
opments [10,11] have advanced in this direction, our approach
allows us to reveal the individual role of the nodes in the
synchronization path, and in particular the inner mechanisms
beneath ES, which are shown to be rooted in a frustration of
the PTS. Finally, it also allows us to control such behavior
locally, since we have the means to identify and isolate those
seeds involved in the emergence of synchronization.
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Reátegui, and S. Boccaletti, Phys. Rev. Lett. 108, 168702 (2012).

[17] P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Phys. Rev. E
87, 042803 (2013).

[18] P. S. Skardal and A. Arenas, Phys. Rev. E 89, 062811 (2014).
[19] H. Chen, G. He, F. Huang, C. Shen, and Z. Hou, Chaos 23,

033124 (2013).
[20] I. Leyva, A. Navas, I. Sendiña-Nadal, J. A. Almendral, J. M.
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