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Recovery after brain injury is an excellent platform to study the mechanism underlying brain plasticity, the
reorganization of networks. Do complex network measures capture the physiological and cognitive
alterations that occurred after a traumatic brain injury and its recovery? Patients as well as control subjects
underwent resting-state MEG recording following injury and after neurorehabilitation. Next, network
measures such as network strength, path length, efficiency, clustering and energetic cost were calculated. We
show that these parameters restore, in many cases, to control ones after recovery, specifically in delta and
alpha bands, and we design a model that gives some hints about how the functional networks modify their
weights in the recovery process. Positive correlations between complex network measures and some of the
general index of the WAIS-III test were found: changes in delta-based path-length and those in Performance
IQ score, and alpha-based normalized global efficiency and Perceptual Organization Index. These results
indicate that: 1) the principle of recovery depends on the spectral band, 2) the structure of the functional
networks evolves in parallel to brain recovery with correlations with neuropsychological scales, and 3)
energetic cost reveals an optimal principle of recovery.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Traditionally, localizationist and holist views of brain function have
exclusively emphasized either functional segregation or functional
integration among components of the nervous system. While segrega-
tion indicates a high functional specialization of each brain region,
integration highlights the idea of a global structure and cooperative
behaviour. Neither of these views alone adequately accounts for the
multiple levels at which interactions occur during brain functioning.
Modern views conceive the human brain as having the capacity to
conjoin local specializationwith global integration (Tononi et al., 1994).
Under this framework, the study of brain functioning is based on the
idea that the brain is a complex network of complex systems with
abundant interactions between local and distant areas (Singer, 1999;

Varela et al., 2001; Fries, 2005; 2009; Singer, 2009). An approach to
understand the dynamical nature of the links between neural
assemblies could be functional connectivity (Friston et al., 1994),
which refers to the statistical interdependencies between physiological
time series recorded in various brain areas (Aertsen et al., 1989).
Functional connectivity is, then, an essential tool for the study of brain
functioning and the implications of the deviation from healthy patterns
is a much debated question recently (Schnitzler and Gross, 2005;
Guggisberg et al., 2008). Functional connectivity patterns have been
proved to be altered by brain injury but, could they also reflect the
capability of brain to compensate for such injury?One could think that it
is possible, since brain plasticity produces changes at multiple levels of
neuronal reorganization, from synapses to corticalmaps and large-scale
neuronal networks (Buonomano and Merzenich, 1998). Studies of the
changes which occurred in the functional connectivity patterns after
brain tumor rejections (Douw et al., 2008), recovery from capsular
stroke (Gerloff et al., 2006) or traumatic brain injury (Castellanos et al.,
2010) are some examples of the way the brain reorganizes after lesion.
However, little is known about the principles governing the structural
reorganization of functional networks after an acquired brain injury and
during recovery.
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Taking this into account, the study of brain injury and its recovery
can be covered from this perspective. Traumatic brain injury (TBI) is
one of the possible forms of acquired brain injury and origin of
mortality and disability around the world (Cullen et al., 2007), leaving
motor and, specially, cognitive deficits. Consequently, rehabilitation
strategies to enhance the recovery of such deficits are needed
(Cicerone et al., 2000, 2005), and are designed attempting to take
full advantage of plasticity. Since cognitive functions require func-
tional interactions between multiple brain regions (Bressler, 2002),
the alteration of functional connectivity patterns after TBI could
underlie both cognitive deficits and its recovery.

The general operating principle governing recovery can be quanti-
tatively characterized by using the framework of complex network
analysis, also called the graph theory (Bullmore and Sporns, 2009;
Bassett and Bullmore, 2009; He and Evans, 2010; Stam, 2010). Graph
theoretical analysis is being currently used to capture the global
structure of the neural system and the interplay between segregation
and integration.Within this framework, the recorded brain sites and the
connections between them represent, respectively, the nodes and the
links of the network (Boccaletti et al., 2006). The small-world
architecture seems to be the key common feature shared by many
complex systems (Watts and Strogatz, 1998) and there is evidence that
structural and functional brain networks show this kind of organization
(GongandZhang, 2009;Palvaet al., 2009; Stametal., 2009; Stam,2010).
Small-word structure is characterized by a pattern of dense local
connectivity (clustering) and a small amount of distant connections that
reduce the overall distance between nodes (path length). This property
has been associated with efficiency in information transmission and
parallel processing providing a model to better understand the
interchange of information in the brain. However, an appropriate
functioning of the network should balance this efficiency in transmis-
sion with the energy consumed in the process. For this purpose, certain
network parameters are related with the energetic demand for the
networkmaintenance. In this sense, the energetic cost ECof the network
is especially meaningful, since it measures whether close or distant
nodes are exchanging information (by measuring their correlations).
Themaintenance of correlations at a long distance ismore energetically
demanding and will lead to higher values of the energetic cost.

In the last few years, the idea of studying the properties of the
brain networks applying the concepts of the graph theory has been
used with healthy and pathological states of the brain. Palva et al.
(2009, 2010a,b), in the context of a visual working memory
maintenance task, showed that the networks associated to the alpha
and beta bands were more clustered and small-world like but had
smaller global efficiency than networks in delta, theta and gamma
bands. In this case, they considered the topological efficiency, which
can be measured as the inverse of the shortest path between nodes
(Latora and Marchiori, 2001). In a neurological condition such as
Alzheimer disease, Stam et al. (2009) showed decreased clustering
coefficient and path length in the alpha band. Additionally, these
authors showed, by means of a computational model, that changes in
the network structure of the alpha band are better explained by a
“targeted attack” model, indicating that highly connected neural
“hubs” may be especially at risk in this disease. On the other hand,
suboptimal economical properties of the human brain network have
been shown to be related to an impaired accuracy of a working
memory task in the beta band in schizophrenia patients (Basset et al.,
2009). Alterations in beta band-based long-distance connections
seem to be consistent with the disconnection syndrome model.

In this work we aim to address three well related questions: a)
Could graph theory capture and quantify the alteration that occurred
after TBI and its recovery? b) Are the structural parameters evolving
parallel to the observed cognitive recovery in patients after neuro-
psychological rehabilitation? and c) Can we gain information about
how the damage is affecting the functional network from the
topological parameters? To address these questions we designed a

study where patients underwent resting-state MEG recordings at two
moments: a) a few months following the occurrence of a TBI and b)
after a rehabilitation therapy. Results were compared with a control
group of the same features. Functional connectivity patterns were
estimated by means of wavelet-coherence and graph theory-based
parameters were calculated. Next, we tested two theoretical models
based on evolutionary networks in order to describe the changes
observed during the recovery of the functional networks. We
hypothesize that the network parameters after rehabilitation would
restore to control ones, i.e., plasticity leads to network reorganization
during recovery that could be carried out by means of restoration to
the optimal topology. In order to test whether the rewiring of the
network is related with its cognitive function, we correlate changes in
topological parameters with changes observed in neuropsychological
test scores. Fig. 1 summarizes the steps followed in order to obtain the
functional networks and the topological parameters under evaluation.

Materials and methods

Patients

The dataset is composed of 29 subjects. These participants were
divided into two groups: 15 TBI patients and 14 healthy controls. TBI
patients were recruited from a rehabilitation centre where they had
been referred in order to undergo a neuropsychological rehabilitation
program. All patients showed severe cognitive impairments in several
domains such as attention, memory and executive functions. The mean
age of the patients was 32.13 years (range 18–51) and their mean level
of education was 14 years (range 8–17). Time since injury at the
beginning of the study ranged from 4 to 6 months (5 months average)
and neuropsychological rehabilitation program lasted for a period
between 7 and 12 months according to each patient's individual
evolution (mean of 9.4 months). The healthy control group was chosen
taking into account the demographic characteristics of the experimental
group (mean age, 31.9; mean educational level, 15.8), not being
statistically different. Exclusion criteria for the selection of all partici-
pants includedpreviousmedical history of psychiatric disease, extended
psychoactive drug consumption and severe sensory or comprehension
deficit. To evaluate neurophysiological and behavioural functioning,
participants underwent two types of procedures: MEG recordings and
neuropsychological assessment. TBI patients had MEG recordings and
neuropsychological assessment before and after the neuropsychological
rehabilitation program (hereafter called “pre” and “post” rehabilitation)
whereas healthy controls were evaluated only once. We are aware that
in longitudinal studies that test the evolution after brain injury, healthy
controls need to be scanned at the same time interval as patients.
However, it has been demonstrated that significant brain functioning
and cognitive changes would not occur in healthy people in less than
one year (Damoiseaux et al., 2006; Beason-Held et al., 2009). Moreover,
recent results obtainedwithMEG (Deuker et al., 2009) have shown that
the reproducibility of graph metrics in human functional networks
shows a good reliability, especially at lower frequencies. All participants
or legal representatives gave their written informed consent to
participate in the study thatwas approvedby the local ethics committee.
Rehabilitation program for patients was conducted in individual one-
hour sessions for three to four days a week. Also, neuropsychological
assessment of both groups, patients and control people, was composed
of tests in order to establish their cognitive status about attention skills,
memory processes, language, executive functions and visuo-spatial
abilities (for a more detailed description see Castellanos et al., 2010).

MEG recordings

Magnetic fields were recorded using a 148-channel whole-head
magnetometer (MAGNES® 2500WH, 4-D Neuroimaging) confined in
a magnetically shielded room. Raw data were submitted to a noise
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reduction procedure that uses simultaneous recording from nine
reference channels that are part of the magnetometer system.
Thereafter, recorded signals were submitted to a band pass filter of
[0.3,50] Hz. Magnetic fields were measured during resting state with
opened-eyes condition, at a sampling frequency of 169.45 Hz. Time
windows without artefacts were visually selected by an experienced
investigator, to reach segments of up to 12 s length.

Functional connectivity and graph analysis

Graph measures are based on the functional connectivity matrices
calculated by means of global wavelet coherence, a time-averaged
normalized measure of association (Torrence and Compo, 1998;
Grinsted et al., 2004). Wavelet-coherence between all combinations
of the 148 magnetometers was calculated, providing a 148×148
matrix. Then, we evaluated the statistical significance level of the
coherence values by using a surrogate data test (Theiler et al., 1992;
Schreiber and Schmitz, 2000; Korzeniewska et al., 2003) with Monte
Carlo simulation to establish a 95% confidence interval and to avoid
spurious couplings. Those weights that did not pass the statistical test
were set to zero. For each individual, matrices were calculated in the
delta ([1,4] Hz), theta ([4,8] Hz), alpha ([8,12] Hz) and beta ([12,30]
Hz) bands. The results of functional connectivity changes of this
particular dataset have been recently published by Castellanos et al.
(2010).

In our study, we consider the matrices as complex networks,
where nodes are the recording sites (148 magnetometers) and links
are obtained from the wavelet coherence after validation by means of
surrogates. We use weighted matrices, that is, we have not
thresholded the matrices to obtain a binary projection. In this way,
we ensure that all the possible information is held. Matrices are close
to be fully connected, since the fraction of non-significant links
(whoseweight is set to zero) is very low. As shown by Nakamura et al.
(2009), the analysis of weighted networks, instead of their unweight-
ed versions, gives better results when comparing the network
structure of different groups of individuals. The features of the
resulting networks can be characterized by various graph-based
measures (for a recent review see Bullmore and Sporns, 2009), which
can be compared between the pre, post and control groups. In what
follows, we give a description of the parameters used in this work.

The average network strength S quantifies how synchronized is
the whole network,

S =
1
N
∑
i; j
i≠j

wij ð1Þ

where N is the number of nodes, andwij is the weight between nodes i
and j.

In a binary matrix, the shortest path length L is the minimum
number of nodes that must be traversed to go from one node to
another. In a weighted matrix, we have to take into account the
different weights of the links, considering that, the higher the weight,
the shorter the topological path between two nodes. Therefore, the
topological length lij of the link between nodes i and j is defined as the
inverse of the link weight, lij=1/wij. However, when computing L for
weighted matrices, the shortest length between a pair of nodes may
not be a direct link, since there could exist a shorter path by
combining two or more alternative links. Therefore, we computed the
minimal shortest path pij between all pair of nodes (Dijkstra, 1959).
Next, we define the average shortest path L of the matrix as:

L =
1

N N−1ð Þ∑i; j
i≠j

pij ð2Þ

where L is a measure of how well connected the network is.
The inverse of the shortest path length is related (but not equal) to

the global efficiency E of the network (Latora and Marchiori, 2001),
which is calculated as:

E =
1

N N−1ð Þ∑i; j
i≠j

1
pij

ð3Þ

As explained by Latora et al., the global efficiency E is a good
indicator of how well the information is transmitted in a parallel
system: the higher the efficiency, the better the information flows.

The previously defined lij is the topological distance between
two nodes but, as long as the brain connectivity involves energy,
the physical Euclidean distance between any pair of nodes
dij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj
� �2 + yi−yj

� �2 + zi−zj
� �2q� �

has important implications

Fig. 1. Illustrative figure showing the experimental protocol and hypothesis to be tested in this work. We measure the magnetoencephalographic activity of 29 individuals (15 TBI
patients and 14 healthy subjects) during resting state. Recordings of the TBI group are obtained after the injury and repeated after the cognitive therapy. Time-series obtained from
the 148 channels of themagnetometer are filtered to avoid artefacts. Next, wavelet-coherence is calculated in order to obtain the coherencematrix. Complex network parameters are
extracted from the weighted matrix. Two kinds of parameters are calculated: a) global parameters of the network: average strength S, shortest path length L, efficiency E, energetic
cost EC and clustering C; and b) local parameters of each node: participation coefficient Pi and within-module-degree zi.
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for the energetic consumption, since the longer the connection, the
more the energetic consumption. To take this factor into account,
we define the energetic cost EC as the average of the outreach of
the nodes (Dall'Asta et al., 2006):

EC =
1

N N−1ð Þ∑i;j
i≠j

wijdij ð4Þ

which simultaneously accounts for both topological and physical
parameters. High values of energetic cost EC are obtained when
physically long-distant connections (high dij) also have high weights
(high wij), since the combination of both features leads to high
energetic consumption. Notice that EC is more physically relevant
than cost-efficiency (Achard and Bullmore, 2007), where only the
topological distance is considered, and therefore it does not reveal the
energetic effort of the network to get synchronized.

Finally, in order to acquire knowledge about the local state, we use
theweighted clustering coefficient C (Stam et al., 2009). This parameter
measures the likelihood thatneighbours of anodewill also be connected
between them. Theweighted version of the clustering characterizes the
tendency of nodes to form local clusters of synchronization:

C =
1
N
∑
i

∑
j;k

wijwjkwik

∑
j;k

wijwik
ð5Þ

These measures do not depend exclusively on the weights of the
links, but also on the network structural organization. With the aim of
quantifying changes in the network structure, we compare all measures
to the corresponding average values of 100 surrogated random
networks constructed from the original ones by randomly reshuffling
the edge weights. In this way, we obtain the corresponding random
values Lr, Er, ECr, and Cr, and next, we use them to normalize all
parameters (X̂ = X = Xr). In this way, values of normalized parameters
close to the unity (X̂≈1) would indicate that the network has a similar
structure to its randomcounterpart (X≈Xr). On thecontrary, the longer
the distance to the unity, the less random the functional network is.

The above described measures are global characteristics of the
network. However, some nodes may have more relevant topological
roles than others in local and/or distant connections. In order to
establish intra and inter lobe connections, MEG channels were
grouped into frontal (F), central (C), right temporal (RT), left temporal
(LT) and occipital (O) regions. Since we are interested in the relations
between anatomical and functional networks, we have chosen the
community division corresponding to the anatomical assignation
commonly used in literature. This division has also the advantage of
being related to the local segregation of cognitive features, whose
improvement evaluation is the last goal of our study.

Local connections involve correlations within a certain brain area
whereas non-local connections involve correlations between two
different regions (F–C, F–RT, F–LT, F–O, C–RT, C–LT, C–O, RT–LT, O–RT,
and O–LT). The relevance of each node can be described as the role
that it plays in its own region (intra-region hub) or connecting
different brain regions (inter-region hub). The within-module-degree
Z measures how connected is a node compared to its own brain
region. For a node i belonging to the brain region B (Guimerà and
Amaral, 2005; Meunier et al., 2009), Zi is given by,

Zi =
WBi−WB

σWi
ð6Þ

where WBi is the total local weight of the i node, WB is the average
local weight in the brain region B, and σWi is the standard deviation of
the local weights in the brain region B. Therefore, Zi~0 if node i has a
local weight around the average value inside its community (lobe).
Next, we calculate the participation coefficient Pi, which measures

how a node i spreads its connections among all brain regions. The
weighted version for a participation coefficient Pi of node i can be
written as (Guimerà and Amaral, 2005):

Pi = 1− ∑
N

B=1

WBi

Wi
ð7Þ

where Wi is the total weight of the links of node i. If most of the
connectivity weights of node i are inside its own community, then Pi is
small, and otherwise Pi approaches to 1 if node i has its links mostly
distributed over the other communities.

Statistical tests

To increase the statistical power and reduce the effect of the non-
Gaussian distribution, we normalize topological parameters by means
of a logarithmic transformation (Gasser et al., 1982; Pivik et al., 1993).
The log-transformed synchronization values are statistically analyzed
by using a pairwise Kruskal–Wallis (UMann–Whitney for 2 groups) to
compare control, pre and post conditions. Next, the statistics are
analyzed with Matlab statistical toolboxes. Associated p-values were
thresholded at pb0.05 (see Brookes et al., 2005; Campo et al., 2010;
Castellanos et al., 2010, for a similar statistical approach).

Results

Graph parameters changes

Can graph theory-based measures capture the alteration which
occurred after a TBI and its recovery? And, can they describe the kind
of changes in the network? To address these questions we quantified
the changes which occurred in network parameters in the pre (after
TBI) and post (after rehabilitation treatment) groups and their
changes relative to the control group. In what follows, we concentrate
in two spectral bands; delta ([1,4] Hz), and alpha ([8,12] Hz), since
they are the bands where changes were statistically significant.

Table 1 summarizes the values of the absolute and normalized
network parameters (of control, pre and post groups) and indicates
those values that are statistically different form the control group. In
Fig. 2 we plot the average distance (in percentage) of the graph
measures of the pre and post groups to the control one. We observe
that TBI affects the delta and alpha bands in opposite ways. In the
delta band (Fig. 2A), there is an increase (~11%) of the overall network
strength S after the TBI, which is a consequence of a higher
synchronized activity between brain regions. After the rehabilitation
therapy, the network strength recovers to a value that is only ~3%
higher than the control group. Interestingly, changes observed in the
rest of the network parameters are influenced by the increase of S.
Since network weights have increased, distances between nodes are
reduced and the network shortest path L decreases (~−8%). Again, the
distance to control is higher after the TBI than after therapy, which
reveals that patients are restoring to those values of the healthy
group. The network efficiency E, energetic cost EC and clustering C
behave in a similar way, with an increase higher than 8% in the pre
group which is reduced in all cases after therapy. The increase of these
three parameters is in accordance with the enhancement of the
network strength S. In order to evaluate whether the changes in the
network parameters are a consequence of the increase of S or there is
reorganization in the network structure, we calculate the normalized
network parameters. We can observe in Fig. 2C that the percentage of
variation is in all cases lower than 0.5% and not statistically significant,
despite that the changes in the absolute values are around 8% to 10%.
This fact reveals that there are no significant changes in the network
structure (neither after TBI nor after therapy), since normalization by
the randomized version of the network is not sensitive to changes in
the network strength S. The main conclusion is that the delta-band
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functional network increases its strength after TBI, but the structure of
the functional network remains the same. After therapy, absolute
values of the network parameters recover in the direction of the
control group, despite that recovery is not complete. Note that the

maintenance of the global structure does not necessarily involve that
the distribution of weights is constant: weights may have changed
from node to node, but without a significant impact in the statistical
properties of network structure.

Fig. 2. Differences of the network parameters of the pre (black bars) and post (grey bars) group with regard to the control group. Plots A and C are the absolute and normalized
network parameters for the delta band, while B and D are for the alpha band. The distance-to-control of all parameters is given by %X = Xpre=post−Xcontrol

Xcontrol
× 100. The statistical

significance (pb0.05) of each value is indicated by symbols: (*) statistical difference between pre and control, (†) statistical difference between pre and post and (•) statistical
difference between post and control.

Table 1
Absolute and normalized (^) network parameters for the control, pre (after TBI) and post (after therapy) groups.

The left column corresponds to delta band and the right column to the alpha band. Network parameters are: average strength S, shortest path L, efficiency E, energetic cost EC and
clustering C. The statistical significance (pb0.05) of each mean value is indicated by symbols: (*) statistical difference between pre and control, (†) statistical difference between
pre and post and (•) statistical difference between post and control. Colours of the post values correspond to: (green) total recovery, achieved when pre≠control, post≠pre and
post=control, (blue) partial recovery, obtained when pre≠control, post=control but post=pre, and (red) not recovered, pre≠control, but post≠control and post=pre. We
can see that statistical differences are only obtained at the absolute values of the delta band and the normalized values of the alpha band.

1193N.P. Castellanos et al. / NeuroImage 55 (2011) 1189–1199
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Interestingly, changes in the alpha band go in the opposite direction
(see Figs. 2B and D). Despite that the absolute differences in the control
group are lower than in the delta band, four of the topological parameters
suffer a variation higher than 5%. In this case, it is a decrease in the
network strength S that determines the modification of the network
parameters. After the TBI a reduction of the synchronized activity in the
alpha band leads to a decrease of the S parameter around 8%. As a
consequence, the shortest path between nodes increases (~5%) and the
rest of the network parameters decrease. Despite that the changes in the
mean values are important, they do not pass the statistical test.
Nevertheless, we can extract additional conclusions from the analysis of
the normalized parameters. If we compare Fig. 2C (normalized delta
band) and D (normalized alpha band), we see that despite that the
changes in the absolutevalues are lower in thealphaband, thevariationof
the normalized parameters ismuch higher, especially in the shortest path
length L and the global efficiency E. In addition they are statistically
significant (pb0.05), as canbeobserved in thevalues given inTable1. This
fact indicates that TBI leads to a reorganization of the functional network,
but it is only statistically reported in the alpha band. After the therapy,
network parameters evolve in the direction of the control group, but, as
can be seen in Figs. 2B and D, the recovery is not complete. Nevertheless,
there are no statistical differences in L, E and EC parameters between the
post and control groups, and only the clustering C shows statistical
differences between the post-therapy patients and healthy individuals.

Correlation between topological parameters and neuropsychological test
scores

Neuropsychological outcomes, as described in Castellanos et al.
(2010), show a general trend of improvement, in comparison
between pre and post conditions, as well as with the control group.
These results are indicative of cognitive recovery of patients in the
study with a rapprochement to healthy control group for post
condition in all neuropsychological tests. However, although they
recovered in a significant way, did not reach a complete reestablish-
ment of all the cognitive processes.

Further post-hoc analyses were performed to explore whether
neuropsychological test score changes in patients were related to
changes in topological measures, in delta and alpha bands. Subse-
quently, Pearson's correlation coefficients were calculated and t-tests
were performed (pb0.05). The topological changes showing signif-
icant correlations are path length, L, in delta frequency band and,
normalized global-efficiency (Ê), in alpha frequency band.

A positive correlation between the changes underwent from pre to
post condition path length, L, and Performance IQ of WAIS-III changes
is found, R=0.52 (Fig. 3). Positive correlation means that those

patients who increased L in the delta band during the recovery are
those that showed greater improvements in their Performance IQ
scores. This positive correlation agrees with the progressive increase
of L values from pre to control reference, as shown in Fig. 2.
Additionally, a positive correlation between post and pre network
normalized global efficiency, Ê, and Perceptual Organization Index of
WAIS-III changes is found, R=0.73 (Fig. 3B). This positive correlation
means that those patients who increased alpha-based normalized
global efficiency are those that showed greater improvements in their
W-POI values. As the bar diagram shows, pre Ê values are lower than
control ones. So a decrease of Ê values from pre to post is needed for
an approaching the control reference, in agreement with the positive
correlation found.

Analysis of node performance

The above studied parameters define the global properties of the
whole network. However, spatial information such as brain region
localization of changes could help us to understand the recovery
process after damage. For this purposewe groupedMEG channels into
five brain regions, each one corresponding to a brain lobe [frontal (F),
central (C), right temporal (RT), left temporal (LT) and occipital (O)],
and we defined local connections (within a brain area) and distant
connections (between different brain areas). Considering both local
and distant connections, a degree of participation could be defined for
each node (MEG sensor in this case). The within-module degree (Z)
and the participation coefficient (P) quantify how connected is a node
within its own community (local hub) and between brain areas
(connector hub), respectively. In order to knowwhich nodes are more
involved in the recovery, we define “recovered nodes” in terms of
their changes in Z and P. Recovered nodes are those whose Z and P in
pre condition are statistically different from both control and post
values, whereas both parameters in post condition are statistically
similar to control reference. Fig. 4 shows the “recovered nodes” in
delta and alpha band-based networks from both local- (red circles)
and distant-connector (black circles) perspective. In the delta band-
based network, the “recovered nodes” are mainly concentrated in
central, right temporal and occipital areas. Both local and distant hubs
take part in the recovery. Interestingly, the number of recovered
nodes (34) is three times higher than the not recovered ones (10),
indicating the efficacy of the recovery process in this band. In the
alpha band, we do not find a predominance of the recovered nodes
(16) over the not recovered ones (18). Interestingly, the recovery of
local activity (black nodes) is much lower (5) than the recovery of the
activity between distant regions (11). On the contrary, nodes which

Fig. 3. Correlations between topological changes and neuropsychological test score changes. A) Changes in the average path length in delta band positively correlate with changes in
PIQ (Performance IQ) test score. The increase observed in L from pre to post condition (Fig. 2) agrees with the positive sign of correlation. B) Changes in the normalized cost positively
(Ê) correlate with changes in POI (Perceptual Organization Index) test score. The increase observed in Ê from pre to post condition (Fig. 2) agrees with the positive sign of correlation.
Bar diagrams show the average of the PIQ and POI scores for control, post and pre condition. * codes a statistical differences (pb0.05).
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did not recover their local role are more present (12 out of 18) than
the nodes that did not restore their long range connections.

Modelling functional networks changes: the targeted model

The differences in the network structure observed in the alpha
band make us to propose a model that modifies the average strength
and simultaneously introduces changes in the structure. With this
aim, we hypothesize that the changes in the weight of the links due to
recovery are not homogeneous in percentage, but affect each link in a
different ratio, proportionally to the weight (stronger edges are more
sensitive to be recovered than weak ones). This effect may modify the
network in two directions and could be modelled by two different
perspectives: a) a model which enhances the weight differences
between links, such that at each time step high weighted links
increase their structural role (called contrasting-model), or on the
contrary, b) a model which reduces the differences, leading to a
homogenization of the weights and, therefore, reducing the hierar-
chical structure (called unifying-model).

To implement both hypotheses, we design a model that takes the
real pre-therapy matrix as the initial data, Ai

0 at t=0. For each time
step t, the evolution of the matrix is calculated as Ai

t = T iAi
t−1, where

T i is a matrix calculated as:

T i = m
Ai
0

max Ai
0

� �
" #

+ b ð8Þ

Contrasting-model (T+): The goal of this model is enhancing those
linkswithhigher initialweights, being the coefficientsmi = 1−k

1−min Ai
0ð Þ

and b =
k−min Ai

0ð Þ
1−min Ai

0ð Þ. At every step, the globalweight is reduced, but not

homogeneously, since each link is multiplied by a different value

ranging in the interval [k,1], with kb1, being 1 the highestweight and
k the minimal. This leads to an increase of the relative difference
between higher and lower weights along the evolution.
Unifying-model (T−): Alternatively, if we want to reduce the
relative differences betweenweights, the coefficients of Eq. (8) can
be changed to mi = k−1

1−min Ai
0ð Þ and b =

1−k⋅min Ai
0ð Þ

1−min Ai
0ð Þ , and we obtain

opposite effects: the global average strength of the matrix
decreases and, in addition, the relative differences between link
weights are reduced at each time step.

In Fig. 5 we show the results of these two versions of the targeted
model. In Figs. 5A and B the evolution of the network parameters for
the delta band can be observed, both for T+ (cyan traces) and T−
(magenta traces), being k=0.99. The parameter k has been chosen to
fit the average strength S of the post-therapy experimental values
after 30 time steps. It can be seen that for the global parameters
(Fig. 5A) in the delta band the evolution due to T+ and T− still fits with
the experimental values. However, the targeted model fails to
reproduce the stability of the normalized measures observed in the
experimental data (Fig. 5B). In Figs. 5C and D we show the results of
the targeted model for k=1.0025 in the alpha band, both for T+ and
T−. The absolute values of the network parameters (Fig. 5C) show a
good resemblance to the real evolution, but the important point is the
fact that, in this band, the targeted model succeeds in reproducing the
changes in the normalized measures (Fig. 5D), whose modification
reflects the reorganization of the network structure. Specifically, we
see that the main tendency of the structural changes is caught only by
the T+ version of the targeted model (cyan traces), the contrasting-
model. These results point to the hypothesis that in the alpha band the
structural reorganization after recovery corresponds to an increase of
the strength in the most active links rather than in the rest of the
edges. On the contrary, the unifying model T−, which homogenizes
the network, leads to an evolution of the network parameters in a
direction opposite to the real changes (magenta circles of Fig. 5D).

Discussion

The aim of this work could be uniquely centred in testing whether
recovery from traumatic brain injury has occurred or not. In this
sense, our results can be interpreted as a positive improvement, in
terms of approaching to control reference (as previously shown by
Castellanos et al., 2010). However, the capability of the mathematical
analysis introduced in the current study also allows studying the way
plasticity process underlies recovery: following an evolution to
healthy functional networks that implies an adjustment of the overall
synchrony in the delta band and structural reorganization in the alpha
band.

Our results show that delta and alpha are the bands where network
changes are statistically significant. After TBI, thenetwork strength S and
the energetic cost EC are the most altered topological parameters,
showing opposite changes in the delta (increase) and alpha (decrease)
bands. After the cognitive therapy (post condition), topological
parameters evolve in all cases to those of the control group, both in
the alpha and delta spectral bands. Nevertheless, a reorganization of the
network structure is only reported in the alpha band, while changes in
the network parameters of the delta band can be explained as a
consequence of the increase of the network strength S.

Although finding signs of recovery in theta and beta bands (data
not shown), the statistical differences were not robust enough to be
taken into account. Nevertheless, both theta and beta-based para-
meters of the pre group were more distant to the control reference
than in the post group for almost all the topological measures.

In order to test if such measures, capturing global topological
properties, evolve in parallel to the cognitive recovery observed in
patients after therapy,we correlate topologicalwith neuropsychological-

Fig. 4. Recovered nodes, defined as those whose within-module degree Z (local
importance) and participation coefficient P (connector role between lobes) in pre
condition is statistically different to both control and post participation, whereas at the
same node the post condition is statistically similar to control reference. Not recovered
nodes are those whose P and Z parameters in the control group are statistically different
between both pre and post groups, whereas P and Z in post condition are statistically
similar to pre rehabilitation condition. Red nodes represent recovery/no-recovery at the
local activity whereas black nodes account for long-range connections.
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test changes.We find correlations with some of the general scores of the
WAIS-III test, specifically, a positive correlation between changes in
delta-based path length (L) and those in Performance IQ score (PIQ), and
a positive correlation between alpha-based normalized global-efficiency
(Ê) and Perceptual Organization Index (POI).

We note that the most altered parameters after TBI were in all
spectral cases the network strength S and the energetic cost EC. The
most pronounced changes are found in the absolute parameters of the
delta band, where statistical differences arise between pre and control
conditions but disappear in the post condition, unveiling the recovery

of the original network structure. In this band, all graph-based
parameters increase after TBI and reduce after therapy, approaching
to control reference. The only exception is the network shortest path
L, whose decrease is a consequence of the higher weights in the
connections between brain regions. The pathological increase of slow
rhythms is widely documented in the literature (Lewine et al., 1999;
Bartolomei et al., 2006a,b; Lewine et al., 2007; Bosma et al., 2008). It
seems that the increased delta-based connectivity in patients
following a TBI reflects a generalized physiological malfunctioning
which diminishes with cognitive recovery. A higher strength could

Fig. 5. Results obtained with numerical simulations of the targeted models T+ (light-blue circles) and T− (magenta circles). In all panels, the average parameters of the pre (red
circle), post (blue square) and control (black star) groups are plotted. Panels A–B: Evolution of delta band network parameters (light-blue dotted lines) of pre-therapy patients, with
the initial value before therapy in black dots: absolute values (A) and normalized values (B). Panels C–D: Evolution of alpha band parameters of pre-therapy patients (with the same
colour code): absolute values (C) and normalized values (D).
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point out to a better transmission, but in fact the high levels of extra
energetic cost reveal an overcharged network, unbalanced in the
transmission versus energy consume trade-off. The impact of a TBI on
alpha-based network produces, contrarily to delta network, a
disconnection effect. Our results show that the alpha band network
in the pre condition is characterized by a lower clustering and longer
path length than control references, leading to a network with
reduced transmission capabilities. This effect is corrected after the
therapy, which approximates clustering and path length to those
values of the control group. In addition, these changes are related to
the improvement in neuropsychological test evaluation.

The approaching of post-patient's topological parameters to
control reference can be interpreted as a recovery after the
rehabilitation intervention. However, we are conscientious about
the still opened debate on treatment effectiveness (Rohling et al.,
2009; Cicerone et al., 2005). Changes observed on psychometric test
of cognitive function after rehabilitation is commonly interpreted as a
sign of effectiveness of the rehabilitation process (Park and Ingles,
2001). Results provided by neuroimage studies principally show
spatially localized physiological changes. Due to the diversity of
techniques and tasks used, and the absence of a control reference, the
conclusions are heterogeneous (Kelly et al., 2006). The aim of this
work could not be to test if changes observed at the neuropsycho-
logical or neurophysiological level are, or not, due to rehabilitation
interventions. We are conscientious about the limitation due to the
lack of a group of patients that have not received neurorehabilitation.
However, the declaration of Helsinki establishes that a treatment
that has been probed beneficial for patients should not be denied
just by experimental reasons. Considering this limitation the current
study can only provide evidence of the neurophysiological mecha-
nisms underlying the process of neuronal plasticity after brain injury
but does not pretend to be ameasure of effectiveness of rehabilitation.
However, the correlation between topological changes and improve-
ment of the neuropsychological tests could be interpreted as evidence
that network topology and cognitive recovery evolve in a simulta-
neous and related way after brain injury. Nowadays, the neuroscien-
tific community using mathematically abstract frameworks, as
graph theory, is debating “how the parameters of complex brain
networks relate to cognitive and behavioural functions? This will
probably be a key focus of future work that might be combined with
further studies of clinical disorders” (Bullmore and Sporns, 2009).
Ourwork points in this direction and it correlates network parameters
with cognitive functions, for the first time, in patients suffering
from TBI. Concerning other kind of studies, it has been probed very
recently that intellectual performance is related to the overall
connectivity network topology of the brain (Stam, 2010). In the
work by Bassett and Bullmore (2009), the authors studied how
the spectral topology of brain networks can be related to behavioural
performance on cognitive task. They showed that superior working
memory performance is associated with greater cost-efficiency at
high frequency (beta band). The association of brain network
architecture and cognitive functioning was also demonstrated by Li
et al. (2009). On the other hand, anatomical brain networks estimated
from MRI-DTI in healthy subjects showed high clustering and short
path length (typical properties of small-world networks). The authors
found that higher IQ is correlated with a larger number of
connections, shorter path length and higher efficiency. Other works
in anatomical networks, such as van den Heuvel et al. (2009), studied
the association between how efficiently the regions of the brain are
functionally connected and our level of intelligence. Very interesting-
ly, they found : a) a positive correlation between the path length and
intelligence quotient (IQ) and b) a positive association between the
global efficiency (normalized) of the brain networks and intellectual
performance. Micheloyannis et al. (2006) tested the neural efficiency
hypothesis comparing the topology in healthy controls having few
years of normal education with individuals with university degrees.

They found that those people with university degrees exhibit less
small-world properties in most frequency bands during a working
memory task. Our results show that those patients who had more
increases in delta-based path length (increase after TBI) are also those
who showed greater improvements in Performance IQ scores.
Performance IQ takes into account specific abilities related to
executive functions, attention, praxis and memory process. These
cognitive functions are commonly altered in TBI, and it is important to
improve them for the patient's adaptation to social and work
activities. We found that, interestingly, L is one of the topological
parameters that correlate with IQ in previous studies, as mentioned
before. Performance IQ takes into account complex abilities that, as
stated by Stam et al., “require the delicate cooperation of multiple
specialized areas in the brain to allow optimal information processing”
(Stam, 2010). This optimal information processing, can be carried out
by means of a short path length, which implies that any area of the
brain can be reached in a small number of (topological) steps. The
recovery of L (in terms of approaching to a healthy reference) could
be, then, a remarkable parameter whose recovery implies an
improvement in IQ scores. Additionally, those patients with higher
increases of alpha-based normalized global-efficiency Ê (decreased
after TBI), are those who showed greater improvement in the
Perceptual Organization Index (POI), which is related to working
memory and visual–spatial task. It is interesting to highlight that
those cognitive scores that better correlate with topological para-
meters were those relatedwith visuo-spatial and perceptual functions
normally related with the right hemisphere. At this point, the results
derived from node performance analysis introduce a complementary
explanation of the recovery process taking place within the brain. As
shown in Fig. 4, those nodes that we define as “recovered” are more
present in the delta band, showing that the therapy is especially
efficient at low frequencies. In the alpha band, we do not observe such
a good rehabilitation, specifically at the local activity. This later point
could indicate that the network reorganization suggested by the
global parameters could be a consequence of a reassignment of
weights at the local activity.

Some computationalmodels have studied the effect of damage and
posterior recovery of brain network characteristics after injury. The
work by Butz et al. (2009) addressed a very interesting question, how
rehabilitation strategies must be designed (continuous or paused) to
take full advantage of plasticity according to stimulations and
comparing adult with juvenile networks. Modelling network damage
is one of the best possibilities that graph theory offers, as shown, for
example, in the works by Honey and Sporns (2008) and Alstott et al.
(2009) in acquired brain injury, and Stam et al. (2009) in Alzheimer's
disease. Traditionally, two different network alterations aremodelled:
a) the network damage is introduced at random by decreasing/
increasing edge strength (or even removing edges), and b) the
damage is targeted toward the more connected nodes. In the work by
Alstott et al. (2009), the authors computationally study the effects of a
localized structural lesion on the network, where lesion is imple-
mented in twoways: a) sequential single node deletions (random and
targeted) and localized area removal, and b) by removing all nodes
and their connections within a spatially defined region around a
central location. As shown by the authors, lesions along the cortical
midline, the temporo-parietal junction and the frontal cortex, result in
the largest and more widespread effects on functional connectivity.
Also, lesions affect the coupling between regions outside the lesion
itself, including the contralateral hemisphere. Honey and Sporns
(2008) investigated the relationship between inter and intra regional
couplings using two dynamical cortical models. Their results showed
that high-degreenodesproduce the largest andmostwidespread effects
on cortico-cortical interactions. This result seems to be common in all
models studying the effect of damage. Nakamura et al. (2009) have
examined network properties following a similar experimental design
as our study. Their results revealed that during recovery the network
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begins to approximate what is observed in healthy controls. However,
from our point of view, some questions are missing in this study: a) the
decomposition into spectral bands, which reveals some valuable
information, since, as we have seen, different bands are affected
differently by injury and recovery, and b) the relation between changes
in the topological parameters and those in cognitive evaluation.

Our experimental results show that TBI has different consequences
in the delta and alpha bands. In the former, it is associated with an
overall increase of synchronization, in the latterwith a general decrease.
Therefore, a network model must take into account both different
behaviours. Structural changes are more focused in alpha based-
functional connectivity. The evolution of the absolute values of the
network parameters goes in the direction of the control group; also we
found statistically significant variations of the normalized network
parameters. This fact reveals that the modification of the functional
network after recovery does not follow a random reorganization or, in
other words, the recovery at the alpha band does not occur at all brain
regionswith the same probability.When a targeted evolutionarymodel
is considered, the numerical results fit with the reorganization of the
network suggested by the experimental results in the alpha band.
Specifically, the targeted model has to take into account the fact that
those links with higher activity need to increase their relevance in the
network in order to recover the activity of the control group. On the
contrary, a targeted model that diminishes the relative difference
between network edges would fail in reproducing the evolution
towards the healthy state after recovery. Our results show that the
contrastingmodel fits the observed data better than the unifyingmodel,
indicating that the functional connectivity recovery in alpha band
follows a plasticity principle where those linkswith higher activity play
a fundamental role in recovery.

Concerning the delta band, we observe that neither the contrasting
nor the unifying model is able to reproduce the changes observed in
this band, which indicates that the delta band does not follow the
same recovery process as the alpha band.

Finally, it is worth mentioning the interplay between changes
observed in the delta and alpha bands and its possible implications.
The energetic cost EC is an intuitive parameter that has great implica-
tions over the system and its dynamical behaviour, since it is related
to the energy consumption of a physical information-processing
system (Buzsaki, 2006). On one hand, delta-based networks exper-
iment a hyper-synchronization effect after TBI, producing an
overcharge of the network where energetic cost increases. On the
other hand, the impact of TBI on alpha-based network results in a
hypo-synchronization effect, decreasing the energetic cost of the
functional network. This reduction leads to a decrease of the
clustering C and an increase of the path length L, both changes
leading to a worsening of the information transmission properties of
the network. In the post condition, topological parameters converge
to healthy controls, as it is the case of delta-band. Nevertheless, in this
case, the increasing of energetic cost is a signal of recovering activity.
Literature have yet documented the heterogeneity of networks
depending on the spectral band considered (Palva et al., 2009; Bassett
and Bullmore, 2009). Nevertheless, our results show that the
overcharge observed in delta-based networks, and the disconnection
found in alpha-based networks could follow a principle of balance-
optimization of energetic cost, lost after TBI. It is not interesting to
have neitherminimal normaximal energetic consumption, but having
an optimal relationship between them, understanding optimal in
terms of a reference established by healthy human brain networks.
Although the energetic cost of the network is a parameter defining
topological characteristics, it is closely related to the physical–
anatomical measures in the brain. Individual or assemblies of
physically close neurons have a higher probability of being connected
than spatially remote neurons or regions (Braitenberg and Schüz,
1998; Hellwig, 2000; Cherniak, 1994). Many aspect of the brain
anatomy can be explained considering the principle of minimising

axonal wiring-volume or metabolic running cost (Chklovskii et al.,
2002; Klyachko and Stevens, 2003; Buzsáki et al., 2004) since larger
axonal projections are more material and energetically expensive
(Cherniak et al., 2004). However, more recent results have shown that
the neuroanatomical connectivity may not always be associated to an
optimal distribution of the network connections (Kaiser and Hilgetag,
2006).

Our results show that the functional networks associated to the
healthy group are those with a more balanced equilibrium between
the network parameters of the delta and alpha bands (i.e., strength,
shortest path, efficiency, energetic cost and clustering). It also seems
that a trade-off between the synchronized activities of these two
spectral bands has occurred to reach an optimal information-
processing system, being the principle, we hypothesize in this work,
that leads the plasticity process to the recovery of the acquired brain
injury.

Acknowledgments

This work was supported by MADRI.B (CAM i+d+I project), Obra
Social CajaMadrid, MAPFRE 2008 and IMSERSO (07-2008), the
Spanish Ministry of Science and Technology (FIS2009-07072), and
by the Community of Madrid under the R&D Program of activities
MODELICO-CM/S2009ESP-1691. We are grateful to S. Aurtenetxe, O.
Demuynck, J. García-Pacios, and D. del Rio for their generous help. We
would like to thank Dr. Juan Manuel Muñoz Céspedes, who led this
study. His ideas and personality will always be with us.

References

Achard, S., Bullmore, E., 2007. Efficiency and cost of economical brain functional
networks. PLoS Comput. Biol. 3 (2), e17.

Aertsen, A., Gerstein, G.L., Habib, M.K., Palm, G., 1989. Dynamics of neuronal firing
correlation: modulation of effective connectivity. Journal of Neurophysiology 61,
900–917.

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., Sporns, O., 2009. Modeling the
impact of lesions in the human brain. PLoS Comput. Biol. 5–6.

Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C., Postma, T.J., Heimans, J.J.,
van Dijk, B.W., de Munck, J.C., de Jongh, A., Cover, K.S., Stam, C.J., 2006a. Disturbed
functional connectivity in brain tumour patients: evaluation by graph analysis of
synchronization matrices. Clin. Neurophysiol. 117, 2039–2049.

Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C., Postma, T.J., Heimans, J.J.,
van Dijk, B.W., de Munck, J.C., de Jongh, A., Cover, K.S., Stam, C.J., 2006b. How do
brain tumors alter functional connectivity? A magnetoencephalography study.
Ann. Neurol. 59, 128–138.

Basset, D.S., Bullmore, E.T., Meyer-Lindenberg, A., Apud, J.A., Weinberger, D.R., Coppola,
R., 2009. Cognitive fitness of cost-efficient brain functional networks. Proc. Natl
Acad. Sci. USA 106 (28), 11747–11752 (Jul 14).

Bassett, D.S., Bullmore, E.T., 2009. Human brain networks in health and disease. Curr.
Opin. Neurol. 22 (4), 340–347.

Beason-Held, L.L., Kraut, M.A., Resnick, S.M., 2009. Stability of default-mode network
activity in the aging brain. Brain Imaging Behav. 3 (2), 123–131.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U., 2006. Complex networks:
structure and dynamics. Phys. Rep. 424, 175–308.

Bosma, I., Douw, L., Bartolomei, F., Heimans, J.J., van Dijk, B.W., Postma, T.J., et al., 2008.
Synchronized brain activity and neurocognitive function in patients with low-
grade glioma: a magnetoencephalography study. Neurooncology 10, 734–744.

Braitenberg, V., Schüz, A., 1998. Cortex: Statistics and Geometry of Neuronal
Connectivity. Springer, Berlin.

Bressler, S., 2002. Understanding cognition through large-scale cortical networks. Curr.
Dir. Psychol. Sci. 11, 58–61.

Brookes, M.J., Gibson, A.M., Hall, S.D., Furlong, P.L., Barnes, G.R., Hillebrand, A., Singh, K.D.,
Holliday, I.E., Francis, S.T., Morris, P.G., 2005. GLM-beamformermethod demonstrates
stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response
in visual cortex. Neuroimage 26, 302–308.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10 (4), 312.

Buonomano, D.V., Merzenich, M.M., 1998. Cortical plasticity: from synapses to maps.
Annu. Rev. Neurosci. 21, 149–186.

Butz, M., van Ooyen, A., Worgotter, F., 2009. A model for cortical rewiring following
deafferentation and focal stroke. Front. Comput. Neurosci. 3, 10.

Buzsaki, G., 2006. Rhythms of the Brain. Oxford University Press, New York.
Buzsáki, G., Geisler, C., Henze, D.A., Wang, X.J., 2004. Interneuron diversity series: circuit

complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27
(4), 186–193.

1198 N.P. Castellanos et al. / NeuroImage 55 (2011) 1189–1199



Author's personal copy

Campo, P., Poch, C., Parmentier, F.B.R.,Moratti, S., Elsley, J.V., Castellanos, N.P., Ruiz-Vargas,
J.M., Pozo, F., Maestú, F., 2010. Oscillatory activity in prefrontal and posterior regions
during implicit letter-location binding. Neuroimagen. 49, 2807–2815.

Castellanos, N.P., Paul, N., Ordoñez, V.E., Demuynck, O., Bajo, R., Campo, P., Bilbao, A.,
Ortiz, del Pozo, F., Maestú, F., 2010. Reorganization of functional connectivity as a
correlate of cognitive recovery in acquired brain injury. Brain 133, 2365–2381.

Cherniak, C., 1994. Component placement optimization in the brain. J. Neurosci. 14 (4),
2418–2427.

Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R., Changizi, K., 2004. Global
optimization of cerebral cortex layout. Proc. Natl Acad. Sci. USA 101 (4), 1081–1086.

Chklovskii, D.B., Schikorski, T., Stevens, C.F., 2002. Wiring optimization in cortical
circuits. Neuron 34 (3), 341–347.

Cicerone, K.D., Dahlberg, C., Kalmar, K., Langenbahn, D.M., Malec, J.F., Bergquist, T.F., et
al., 2000. Evidence-based cognitive rehabilitation: recommendations for clinical
practice. Phys. Med. Rehab. 81, 1596–1615.

Cicerone, K.D., Dahlberg, C., Malec, J.F., Langenbahn, D.M., Felicetti, T., Kneipp, S., Ellmo,
W., Kalmar, K., Giacino, J.T., Harley, J.P., Laatsch, L., Morse, P.A., Catanese, J., 2005.
Evidence-based cognitive rehabilitation: updated review of the literature from
1998 through 2005. Arch. Phys. Med. Rehabil. 86 (8), 1681–1692.

Cullen, N., Chundamala, J., Bayley, M., Jutai, J., et al., 2007. The efficacy of acquired brain
injury rehabilitation. Brain Inj. 21 (2), 113–132.

Dall'Asta, L., Barrat, A., Barthélemy, M., Vespignani, A., 2006. Vulnerability of weighted
networks. J. Stat. Mech. P04006.

Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,
Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects.
Proc. Natl Acad. Sci. USA 103 (37), 13848–13853.

Deuker, L., Bullmore, E.T., Smith, M., Christensen, S., Nathan, P.J., Rockstroh, B., Basset, D.S.,
2009. Reproducibility of graph metrics of human brain functional networks.
Neuroimage. 47 (4), 1460–1468.

Dijkstra, E.W., 1959. A note on two problems in connection with graphs. Numer. Math.
1, 269–271.

Douw, L., Baayen, H., Bosma, I., Klein, M., Vandertop, P., Heimans, J., et al., 2008.
Treatment-related changes in functional connectivity in brain tumor patients: a
magnetoencephalography study. Exp. Neurol. 212, 285–290.

Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through
neuronal coherence. Trends Cogn. Sci. 9 (10), 474–480.

Fries, P., 2009. The model- and the data-gamma. Neuron 64 (5), 601–602.
Friston, K.J., Tononi, G., Reeke Jr., G.N., Sporns, O., Edelman, G.M., 1994. Value-

dependent selection in the brain: simulation in a synthetic neural model.
Neuroscience 59 (2), 229–243.

Gasser, T., Bacher, P., Mocks, J., 1982. Transformations towards the normal distribution
of broad band spectral parameters of the EEG. Electroencephalogr. Clin.
Neuropshysiol. 53, 119–124.

Gerloff, C., Bushara, K., Sailer, A., Wassermann, E.M., Chen, R., Matsuoka, T., Waldvogel,
D., Wittenberg, G.F., Ishii, K., Cohen, L.G., Hallett, M., 2006. Multimodal imaging of
brain reorganization in motor areas of the contralesional hemisphere of well
recovered patients after capsular stroke. Brain 129 (Pt 3), 791–808.

Gong, Y., Zhang, Z., 2009. Global robustness and identifiability of random, scale-free,
and small-world networks. Ann. NY Acad. Sci. 1158, 82–92.

Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform and
wavelet coherence to geophysical time series.Nonlinear Process. Geophys. 11, 561–566.

Guggisberg, A.G., Honma, S.M., Am, Findlay, Dalal, S.S., Kirsch, H.E., Berger, M.S., et al., 2008.
Mapping functional connectivity inpatientswithbrain lesions. Ann.Neurol. 63, 193–203.

Guimerà, R., Amaral, L.A., 2005. Cartography of complex networks: modules and
universal roles. J. Stat. Mech. P02001.

He, Y., Evans, A., 2010. Graph theoretical modeling of brain connectivity. Curr. Opin.
Neurol. 23 (4), 341–350.

Hellwig, B., 2000. A quantitative analysis of the local connectivity between pyramidal
neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82 (2), 111–121.

Honey, C.J., Sporns, O., 2008. Dynamical consequences of lesions in cortical networks.
Hum. Brain Mapp. 29, 802–809.

Kaiser, M., Hilgetag, C.C., 2006. Nonoptimal component placement, but short processing
paths, due to long-distanceprojections in neural systems. PLoSComput. Biol. 2 (7), e95.

Kelly, C., Foxe, J.J., Garavan, H., 2006. Patterns of normal human brain plasticity after
practice and their implications for neurorehabilitation. Arch. Phys. Med. Rehabil.
87, S20–S29.

Klyachko, V.A., Stevens, C.F., 2003. Connectivity optimization and the positioning of
cortical areas. Proc. Natl Acad. Sci. USA 100 (13), 7937–7941.

Korzeniewska, A., Manczak, M., Kaminski, M., Blinowska, K., Kasicki, S., 2003.
Determination of information flow direction among brain structures by a modified
directed transfer function (dDTF) method. J. Neurosci. Meth. 125, 195–207.

Latora, V., Marchiori, M., 2001. Efficient behavior of small-world networks. Phys. Rev.
Lett. 87, 198701.

Lewine, J.D., Davis, J.T., Sloan, J.H., Kodituwakku, P.W., Orrison Jr., W.W., 1999.
Neuromagnetic assessment of pathophysiologic brain activity induced by minor
head trauma. AJNR Am. J. Neuroradiol. 20 (5), 857–866.

Lewine, J.D., Davis, J.T., Bigler, E.D., Thoma, R., Hill, D., Funke, M., Sloan, J.H., Hall, S.,
Orrison, W.W., 2007. Objective documentation of traumatic brain injury subse-
quent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI.
J. Head Trauma Rehabil. 22 (3), 141–155.

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., Jiang, T., 2009. Brain anatomical network and
intelligence. PLoS Comput. Biol. 5 (5), e1000395 (May).

Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in modular
organization of human brain functional networks. Neuroimage 44 (3), 715–723.

Micheloyannis, S., Pachou, E., Stam, C.J., Vourkas, M., Erimaki, S., Tsirka, V., 2006. Using
graph theoretical analysis of multi channel EEG to evaluate the neural efficiency
hypothesis. Neurosci. Lett. 402 (3), 273–277 (Jul 24).

Nakamura, T., Hillary, F.G., Biswal, B.B., 2009. Resting network plasticity following brain
injury. PLoS ONE 14, 4–12.

Palva, S., Monto, S., Palva, J.M., 2009. Graph properties of synchronized cortical
networks during visual working memory maintenance. Neuroimage 49 (4),
3257–3268.

Palva, J.M., Monto, S., Kulashekhar, S., Palva, S., 2010a. Neuronal synchrony reveals
working memory networks and predicts individual memory capacity. Proc. Natl
Acad. Sci. USA 107 (16), 7580–7585.

Palva, S., Monto, S., Palva, J.M., 2010b. Graph properties of synchronized cortical
networks during visual working memory maintenance. Neuroimage 49 (4),
3257–3268.

Park, N.W., Ingles, J.L., 2001. Effectiveness of attention rehabilitation after an acquired
brain injury: a meta-analysis. Neuropsychology 15 (2), 199–210.

Pivik, R.T., Broughton, R.J., Coppola, R., Davidson, R.J., Fox, N., Nuwer, M.R., 1993.
Guidelines for the recording and quantitative analysis of electroencephalographic
activity in research contexts. Psychophysiology 30, 547–558.

Rohling, M.L., Faust, M.E., Beverly, B., Demakis, G., 2005. Effectiveness of cognitive
rehabilitation following acquired brain injury: a meta-analytic re-examination of
Cicerone et al.'s (2000, 2005) systematic reviews [Review]. Neuropsychology.
2009; 23 (1):20–39.

Schnitzler, A., Gross, J., 2005. Normal and pathological oscillatory communication in the
brain. Nat. Rev. Neurosci. 6, 285–296.

Schreiber, T., Schmitz, A., 2000. Surrogate time series. Physica D 142, 646–652.
Singer, W., 1999. Neuronal synchrony: a versatile code for the definition of relations?

Neuron 24, 49–65.
Singer, W., 2009. Distributed processing and temporal codes in neuronal networks.

Cogn. Neurodyn. 3 (3), 189–196.
Stam, C.J., 2010. Characterization of anatomical and functional connectivity in the brain:

a complex networks perspective. Int. J. Psychophysiol. 77 (3), 186–194.
Stam, C.J., de Haan, W., Daffertshofer, A., Jones, B.F., Manshanden, I., van Cappellen van

Walsum, A.M., Montez, T., Verbunt, J.P., deMunck, J.C., van Dijk, B.W., Berendse, H.W.,
Scheltens, P., 2009. Graph theoretical analysis ofmagnetoencephalographic functional
connectivity in Alzheimer's disease. Brain 132 (Pt 1), 213–224.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, D., 1992. Testing for
nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94.

Tononi, G., Sporns, O., Edelman, G.M., 1994. A measure for brain complexity: relating
functional segregation and integration in the nervous system. PNAS 91, 5033–5037.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79, 61–78.

Van den Heuvel, M., Stam, C.J., Kahn, R.S., Hulshoff, E., 2009. Efficiency of functional
brain networks and intellectual performance. J. Neurosci. 29 (23), 7619–7624.

Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase
synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature
393 (6684), 440–442.

1199N.P. Castellanos et al. / NeuroImage 55 (2011) 1189–1199


