
July 28, 2012 12:17 WSPC/S0218-1274 1250167

 Papers

International Journal of Bifurcation and Chaos, Vol. 22, No. 7 (2012) 1250167 (9 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127412501672

NONLOCAL ANALYSIS OF MODULAR ROLES
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We introduce a new methodology to characterize the role that a given node plays inside the
community structure of a complex network. Our method relies on the ability of the links to
reduce the number of steps between two nodes in the network, which is measured by the number
of shortest paths crossing each link, and its impact on the node proximity. In this way, we use
node closeness to quantify the importance of a node inside its community. At the same time,
we define a participation coefficient that depends on the shortest paths contained in the links
that connect two communities. The combination of both parameters allows to identify the role
played by the nodes in the network, following the same guidelines introduced by Guimerà et al.
[Guimerà & Amaral, 2005] but, in this case, considering global information about the network.
Finally, we give some examples of the hub characterization in real networks and compare our
results with the parameters most used in the literature.

Keywords : Complex networks; community role; betweenness.

1. Introduction

During the last years, complex network analysis has
given fruitful information about complex systems
from a new perspective [Newman, 2003; Boccaletti
et al., 2006; Costa et al., 2011], where the structure

of the network constrains the dynamical processes
occurring in it and, at the same time, the dynam-
ics of the nodes can influence the evolution of
the network structure [Gross & Blasius, 2008].
One of the advantages of this new perspective is
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that we are able to analyze not only the network as
a global entity but the role that nodes play inside
it. Moreover, we have to consider that real net-
works have certain modularity, which is related to
the appearance of community structures that are
crucial in the dynamical processes taking place on
top of the network [Almendral et al., 2011]. There-
fore, the interplay between the individual nodes
(microscale), the existing communities (mesoscale)
and the behavior of the whole network (macroscale)
can only be understood from a multilevel approach
with different scales interacting with each other.

Within this framework, Guimerà et al.
[Guimerà & Amaral, 2005] introduced a two-
dimensional characterization regarding the impor-
tance of each node inside its own community and
the connection with other communities of the net-
work. Specifically, they defined a within-module
degree zi and a participation coefficient pi, the for-
mer taking into account the importance of a node
inside its own community and the latter measur-
ing how diverse are the links that are sent to other
communities in the network. The methodology of
Guimerà et al. [2005] has been applied to a wide
manifold systems such as social [Teitelbaum et al.,
2008; Moon et al., 2010], technological [Guimerà
et al., 2005; Costa et al., 2007] and biological net-
works [Guimerà & Amaral, 2005; Hagmann et al.,
2008; Buldú et al., 2011]. More recently, Arenas
et al. [2010] have defined different indicators to eval-
uate the role of the nodes of a network. In this
case, authors took advantage of the singular value
decomposition of the participation matrix, which
contained the information regarding how a node
spreads its connections among the communities of
the network.

Despite being good approaches for evaluating
the role of the nodes, both methods are local in
scope, since they only take into account the ori-
gin and final community of the links, no matter
what nodes are being attached to. In this way, links
that connect different community hubs and those
connecting collateral nodes end up with the same
relevance, which may have important implications,
specially in the computation of the participation
coefficient. Looking back, it is not the first time
that disregarding the importance of links has led to
counterintuitive results. This is the case of the het-
erogeneity paradox [Nishikawa et al., 2003], where
a small-world topology that reduces the number of
steps between nodes, seemed to be inadequate to

achieve synchronization between nodes. The hetero-
geneity paradox was solved in parallel by Motter
et al. [2005] and Chavez et al. [2005] by assigning
weights to the links according to their degree [Mot-
ter et al., 2005] or their betweenness [Chavez et al.,
2005]. Therefore, the introduction of weights in the
links was reflected in differences between relevant
and nonrelevant connections, leading to an increase
of the network synchronizability.

In the current work, we are concerned about
how to assign weights to the links of a network in
order to better identify the role that a node is play-
ing in the community structure. With this aim, we
propose a new method to evaluate the participation
of the nodes in their neighboring communities and
redefine the importance of a node inside its com-
munity in terms of the community closeness. Fol-
lowing the ideas introduced by Chavez et al. [2005],
we propose the use of the link betweenness (more
precisely, the number of shortest paths) in order
to weigh the relevance of the inter-community links
and, therefore, the participation coefficient pb

i of the
nodes. Next, we define a z-score zc

i based on the
proximity of a node to its neighbors in the commu-
nity. Both parameters allow to identify the provin-
cial and connector hubs [Guimerà & Amaral, 2005]
using global information about the network struc-
ture, a fact that was disregarded in the methods
previously reported. Finally, we check the appli-
cation of the proposed method by analyzing the
structure of four real networks, with special atten-
tion to the discrepancies in the role assignment pro-
vided by the classical method [Guimerà & Amaral,
2005].

2. Analysis of Roles

The role assignment introduced by Guimerà et al.
[Guimerà & Amaral, 2005] departs from a par-
tition of a network into communities. Network’s
partition must be already known from experimen-
tal observations or obtained by applying one of
the many existing community detection algorithms
[Fortunato, 2010]. Once the community structure
is known, we have to go down to the lowest scale
(i.e. node level) in order to analyze the role of the
nodes in their corresponding communities. The clas-
sical classification of nodes is based on the compu-
tation of the within-module degree zi (also known
as z-score) and the participation coefficient pi. The
former parameter quantifies the importance of the
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node i inside its community and it is defined as:

zi =
ki − 〈kcomi〉

σkcomi

(1)

where ki and comi are, respectively, the degree and
the community of the node i, 〈kcomi〉 is the mean
degree of the community comi and σkcomi

is the
standard deviation of k in comi. The z-score of a
node is zero if it has a degree k equal to the aver-
age of the community. Positive (negative) values
of zi reveal that the node has more (less) connec-
tions than the average. On the other hand, the par-
ticipation coefficient pi indicates how connections
of the node i are distributed among the existing
communities:

pi = 1 −
Ncom∑
j=1

(
k

comj

i

ki

)2

(2)

where k
comj

i is the number of connections of node i
that go into community comj and Ncom is the total
number of communities. The participation coeffi-
cient is zero when all links of a node are inside
its community and close to one when they are dis-
tributed among all modules of the network.

Figure 1(a) shows an example with a test net-
work (Test Network A) where both parameters
have been calculated. The network is divided into

four communities and it has three kinds of nodes:
(a) connector hubs (1, 17, 33 and 49), which are
relevant nodes inside their communities, (b) non-
hub connectors (2, 3, 18, 19, 34, 50 and 51), which
are nodes with low relevance in their communi-
ties, but with connections to other communities,
and (c) peripheral nodes (the rest), which are not
relevant inside and outside their communities. The
upper inset of Fig. 1(b) shows the values of zi and pi

for each kind of node. Interestingly, we can observe
how nonhub connectors have a higher participation
coefficient than the connector hubs, despite hubs
being connected to the hubs of other communities.
This is a consequence of having a high number of
connections with nodes of their own community and
the fact that each link has the same weight in the
participation coefficient. Nevertheless, if we com-
pute the number of shortest paths that cross each
link of the network [see Fig. 1(b)], we observe that
links connecting to hubs have a higher number of
shortest paths passing through them, which should
be reflected in a higher participation coefficient.

To overcome this drawback we need to redefine
the participation coefficient of a node and, in addi-
tion, its community z-score. With this aim, we fol-
low the guidelines given in [Chavez et al., 2005] and
weigh each link according to the number of shortest
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Fig. 1. (a) Structure of Test Network A, which is split into four communities. According to the number of links, there
are three kinds of nodes: (1) connector hubs (1, 17, 33 and 49), (2) nonhub connectors (2, 3, 18, 19, 34, 35, 50 and 51)
and (c) peripheral nodes (the rest). Colors have been assigned according to the different kind of links: (1) red and black,
links between community hubs, (2) yellow and green, links between nonhub connectors and between nonhub connectors and
peripheral nodes, respectively, and (3) blue, internal links. (b) Plots of the number of shortest paths crossing each kind of link
and the (pi, zi) and (pb

i , z
c
i ) plots for the three kinds of nodes, calculated as in [Guimerà & Amaral, 2005] (upper inset) and

with our proposed metrics (bottom inset).
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paths that go through it. Now, the importance of
the node i inside its community is quantified with a
z-score based on its community closeness cin

i , which
is the inverse of the minimum number of steps that
we have to make in order to go from node i to any
other inside its community:

cin
i =

1
kin

i

∑
j∈Vi

1
dij

(3)

where kin
i is the degree of node i inside its commu-

nity, Vi is the set of community neighbors of node
i, and dij is the shortest distance between nodes i
and j. Hence, we define the community relevance zc

i
as the z-score of the node closeness:

zc
i =

cin
i − 〈cin

comi
〉

σcincomi

(4)

where 〈cin
comi

〉 is the average closeness of the com-
munity comi and σcincomi

is the standard deviation of

cin inside comi. Figure 2 shows an example (Test
Network B) of how a community relevance mea-
sure based on closeness can better quantify the
importance of a node inside its community. In this
case, the network has a unique community of fifteen
nodes, with two hubs (nodes 1 and 9) and one con-
nector node inside the community (node 8). Note
that all nodes, apart from the hubs, have degree
two, which is reflected in the same z-score zi when
it is based on the node degree. Nevertheless, we
would disregard the importance of node 8 in the
transmission of information inside the community,
since all shortest paths between nodes 1–7 to nodes
9–15 pass through it. Therefore, a z-score based on
closeness enhances the relevance of connector nodes,
such as node 8, as we can see in Fig. 2(b) where zi

and zc
i are compared. With zc

i , the importance of
node 8 increases when compared with other nodes
of the same degree and, at the same time, it is still
lower than the zc

i of the network hubs.
With regard to the relevance in the connection

between communities, we define the betweenness
participation coefficient pb

i , which quantifies how
the shortest paths that pass through the links of
a node i are distributed among the existing com-
munities:

pb
i = 1 −

Ncom∑
j=1

(
B

comj

i

Bi

)2

(5)

where B
comj

i is the number of shortest paths that
pass through those links of node i that fall into
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Fig. 2. (a) Structure of Test Network B. In this example, we
assume that all nodes belong to the same community. Nodes
1 and 9 are the community hubs, with a degree khub = 7,
while the rest of the nodes have the same degree knonhub = 2.
Note that node 8, despite having the same number of connec-
tions as the other nonhub nodes, is a relevant node, since it
connects the left and right sides of the community. (b) Plot
showing zi versus zc

i . We can see that a measure of the z-score
that is based on closeness (zc

i ), allows to differentiate among
nodes of the same degree, but with different relevance.

community comj, Bi is the total number of short-
est paths that require a link that is attached to i
and Ncom is the total number of communities. The
betweenness participation coefficient pb

i is zero when
all links of a node i are inside the same community
or in the absence of shortest paths crossing node i.
On the contrary, it is close to one when links of node
i contain shortest paths equally distributed among
all modules of the network. The inset of Fig. 1(b)
shows how the new participation coefficient pro-
motes the impact of nodes with higher betweenness,
which are now the nodes with higher participation
pb

i in the network. Due to the simplicity of the Test
Network A, we do not observe differences in the
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community relevance zb
i , despite them appearing for

more complex community structures.

3. Results

3.1. Characterizing community
hubs

In order to test the power of our method, we ana-
lyze four real networks of different nature and size
[Almendral et al., 2010], namely, the Zachary karate
club [Zachary, 1977], a dolphin network [Lusseau &
Newman, 2004], a network of political books in

USA [Krebs, 2011] and the network of domestic
flights in the USA [Newman, 2004]. Table 1 sum-
marizes the basic topological parameters of these
networks.

As mentioned in the previous section, our
method is of special interest when there exist differ-
ences in the ability of the links to transmit informa-
tion, which is measured, in our case, by the number
of shortest paths nsp(j) crossing each connection j.
Figure 3 shows the ranking of the links with regard
to nsp(j). As we can observe in all four exam-
ples, there is a high heterogeneity in the number
of shortest paths of each link. This difference in

Table 1. Summary of the parameters of the networks under analysis.

Description Test Network A Karate Club Dolphin Network Political Books USA Natl. Airports

Nodes (N) 64 34 62 105 332
Links (L) 70 78 159 441 2126
Communities (M) 4 2 4 3 5
Shortest Path (L) 2.63 2.41 3.36 3.08 2.74
Clustering (C) 0.0012 0.554 0.255 0.483 0.620
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Fig. 3. Link ranking based on the number of shortest paths for four different real networks: (a) Zachary Karate Club,
(b) Dolphin Network, (c) USA Political Books in Amazon’s web page and (d) National Airport Network of the USA. Note
that in all cases there is a clear difference in the number of shortest paths crossing each link, which leads to links with more/less
importance. In (a) and (b) we observe a two-slope linear dependence. In (c), intermediate positions of the ranking follow an
exponential decay (note the log-linear scale). Finally, the airport network in (d) follows a power law decay with an exponential
cut-off for the last nodes of the ranking (in this case, note the log–log scale). Links inside and between communities are plotted
in red and black, respectively.
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the link importance is particularly displayed in the
ranking of the two largest networks, which have,
respectively, an exponential decay [book network,
Fig. 3(c)] and a power-law decay with exponential
cut-off [airport network, Fig. 3(d)].

Once these differences have been observed, we
have to check whether the inclusion of the link
importance introduces changes in the role played
by the nodes in the community structure. Notice
that this is an important issue since the calcula-
tion of the shortest paths, which includes global
information about the network, is much more CPU
demanding than any other local measure of the net-
work. With this aim, we calculate (for all networks)
the within-module degree zi and participation coef-
ficient pi of each node [Eqs. (1) and (2)] and elab-
orate a ranking based on both parameters. Next,
we compute the community relevance zc

i and the
betweenness participation coefficient pb

i and recal-
culate the ranking of all nodes with the new param-
eters. Finally, we analyze the changes observed by
comparing both rankings. Figure 4 shows a two-
dimensional plot of the increase/decrease of the
node ranking, both in the relevance inside their

communities ∆zi = rank(zc
i )− rank(zi) and in their

participation in the overall community structure
∆pi = rank(pb

i) − rank(pi). Node sizes are propor-
tional to their number of connections. Figure 4 gives
a snapshot on the information gained by the redef-
inition of the role assignment. The closer a node is
to the value (0, 0), the less information we gain from
the new method. On the contrary, deviations from
the origin of coordinates indicate that the num-
ber of shortest paths contained in the links of a
given node are increasing/decreasing its relevance
in the inter- (or intra-) community structure. We
can see in Fig. 4 that, although some nodes remain
close to the origin, others have strong deviations in
one or both parameters. Interestingly, nodes with
higher degrees (i.e. indicated by larger radius in
the figure) show larger variations in the partici-
pation coefficient and not in the intra-community
relevance. This is somehow expected and indicates
that the importance of a node in their community
is mainly dominated by its internal degree (despite
there being some exceptions).

In order to have a deeper insight about the
information gained by our method, we elaborate
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Fig. 4. Two-dimensional plot showing the changes in the ranking of nodes due to the use of role parameters based on shortest
path analysis. Networks are the same as those described in Fig. 3: (a) Zachary Karate Club, (b) Dolphin Network, (c) Political
books in the Amazon webpage and (d) National Airport Network of the USA. Specifically, we plot ∆zi = rank(zc

i )− rank(zi)
versus ∆pi = rank(pb

i ) − rank(pi), which indicates the reordering in the community relevance and participation, respectively.
Node sizes are proportional to their degrees.
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in detail the role variations in the network of air-
port connections [Newman, 2004; Almendral et al.,
2010]. The network is formed by 332 airports and
2126 flight connections. The application of the fast
algorithm developed by Newman [2004] provides an
optimal partition consisting of a structure of five
communities: the largest community C1 compris-
ing the airports of the west and central parts, and
the second largest C2 grouping the airports from
the eastern part. The third community C3 includes
airports from southern-east states Louisiana, Mis-
sissippi, Alabama and Florida and the fourth com-
munity C4 is for airports in the area of Montana.
Finally, airports in Alaska are grouped in the small-
est community C5.

Table 2 summarizes the modification of the
role of the nodes induced by the new measures
of the community relevance and network participa-
tion. We observe that the community relevance zc

i
does not change significantly, which indicates that
the use of the node degree in order to evaluate the
importance of a node inside its community is a good
approach. Nevertheless, there are significant varia-
tions in the participation coefficient pb

i . In this case,
there are six new airports that raise to the top-ten
ranking when compared with the previous partic-
ipation measure. This fact reveals that the inclu-
sion of the shortest paths in the link weight gives
additional information, increasing the importance
of those nodes that are in the way of the connec-
tion between other two. This kind of analysis is spe-
cially recommended for transport or communication
networks, such as the airport network, where the
reduction of the number of steps between nodes is

a crucial issue. In these kinds of networks, the posi-
tion of the node in the network, and its role in the
connection with other nodes, can be more impor-
tant than the degree itself.

Finally, we go one step further and analyze how
a node distributes its connections among the com-
munities. This information is included in the value
of pb

i , in the sense that, the more distributed the
shortest paths are between the set of communities,
the higher the value of pb

i . Nevertheless, pb
i aver-

ages the contribution among all communities and
does not allow to detect the communities where a
given node i is participating the most. To overcome
this drawback, we can plot the contributions that
a node makes to each community in a plot simi-
lar to Fig. 5. In this figure, we show the (pb

i , z
c
i )

phase space of the fifteen nodes with the largest
number of shortest paths. Nodes sizes are propor-
tional to the number of shortest paths and colors
inside each node indicate the community that is
receiving the shortest paths. With this figure, we
can see the nodes with higher relevance inside its
community, their participation coefficients and how
they participate in each community. It is worth not-
ing that Anchorage Airport (Alaska) is the one with
the highest number of shortest paths and, in addi-
tion, is one of the airports with higher relevance
within its community and, at the same time, high
participation coefficient. On the contrary, the short-
est path connections of the Bethel Airport are only
distributed inside its community, as indicated by a
high zc

i combined with a low pb
i . Finally, airports like

Minneapolis-St. Paul have a complementary role,
since they have a very high participation coefficient

Table 2. Variations of the roles of the nodes of the Airport Network of the USA [Newman, 2004]. Airports are ordered by
the ranking of the community relevance zb

i (column 2) and betweenness participation coefficient pb
i (column 4). Note that

the increase/decrease in the participation coefficient is much higher than in the community relevance, which has only small
variations.

zb
i Rank pb

i Rank

Rank zb
i (Community) Improvement pb

i (Community) Improvement

1 Anchorage Intl (C5) +1 Salt Lake City Intl (C1) +16
2 Dallas/Fort Worth Intl (C1) −1 Minneapolis-St. Paul Intl/Wold- (C2) +9
3 Chicago O’hare Intl (C2) = Spokane Intl (C1) +1
4 Stapleton Intl (C1) = Seattle-Tacoma Intl (C1) +9
5 Pittsburgh Intl (C2) = Missoula Intl (C4) +4
6 Bethel (C5) 3 Billings Logan Intl (C4) +4
7 San Francisco Intl (C1) −1 Gallatin Field (C4) −1
8 Charlotte/Douglas Intl (C2) −1 Anchorage Intl (C5) +24
9 William B Hartsfield Atlan (C2) −1 Los Angeles Intl (C1) +7

10 Lambert-St. Louis Intl (C2) +1 Detroit Metrop. Wayne Cou (C2) +54
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San Francisco Intl
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Minneapolis–St Paul Intl
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Salt Lake
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Los Angeles
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The William
B. Hartsfield
Atlanta Intl

Fig. 5. Two-dimensional plot showing the (pb
i , z

c
i ) phase space of the fifteen nodes with the largest number of shortest paths.

Node sizes are proportional to the total number of shortest paths crossing the node. Colors inside nodes indicate the percentage
of participation inside each community, specifically: C1 (yellow), C2 (red), C3 (grey), C4 (green) and C5 (light blue).

(connector with other communities) but a low local
relevance, or at least, not too high when compared
with other network hubs.

4. Conclusions

We have proposed a new methodology to evaluate
the role that a node plays in the community struc-
ture of a network. We propose to evaluate the
relevance of a node inside its community and the
participation in other communities of the network
by taking into account the number of shortest paths
that pass through the node. In this way, we define
a community z-score zc

i based on the closeness of
a node inside its community. Next, we redefine
the participation coefficient proposed by Guimerà
et al. [Guimerà & Amaral, 2005] and we weight
the links with their number of shortest paths.
Although both new parameters, zc

i and pb
i , have

a high computational cost [O(N(M + N log(N)))],
they include information about the global struc-
ture of the network, while the previously proposed
measures were based on local properties (node
degree). We give some examples of how the role of
a node changes when the new parameters are used,
showing that the participation coefficient is spe-
cially affected when taking into account the short-
est paths. Finally, we focus on the analysis of the
American Airport Network [Newman, 2004], pro-
viding a new representation (see Fig. 5) of how

the inter/intra community relevance of a node can
be plotted. Despite previously proposed methods of
role analysis being good approximations, we believe
that this new methodology will give more accurate
results, specially in the framework of communica-
tion and transportation networks.
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