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Abstract

Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive
Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI
subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory
task were evaluated by synchronization likelihood (SL), to quantify the statistical dependence between MEG signals and to
obtain the functional networks. Graphs from MCI subjects show an enhancement of the strength of connections, together
with an increase in the outreach parameter, suggesting that memory processing in MCI subjects is associated with higher
energy expenditure and a tendency toward random structure, which breaks the balance between integration and
segregation. All features are reproduced by an evolutionary network model that simulates the degenerative process of a
healthy functional network to that associated with MCI. Due to the high rate of conversion from MCI to Alzheimer Disease
(AD), these results show that the analysis of functional networks could be an appropriate tool for the early detection of both
MCI and AD.
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Introduction

A key issue in neuroscience is the understanding of the

coexistence of local specialization and long distance integration

in the complex structure of the brain. Graph theory provides

valuable tools to describe the topological organization supporting

cognitive processes [1]. In particular, the approach led to a

characterization of structural and functional networks in the brain

[2–4], typically endowed with high clustering and short non-

Euclidean distance between nodes, the fingerprint of a Small

World (SW) architecture [5]. In addition, graph analysis may help

to identify network signatures of impairment in pathological

conditions, such as the network organization in Alzheimer’s

Disease (AD) [6]. AD, the most frequent cause of dementia, is

characterized by accumulation of beta-amyloid proteins, degen-

eration of neurons, loss of synaptic contacts, and it has been

described as a disconnection syndrome [7]. Stam et al. [6]

demonstrated that functional networks of AD patients show a loss

of SW properties [6,8,9], resulting in an increase in the mean path

length between nodes [8], with an associated decrease in local

synchrony [9]. A crucial point is whether the pathophysiology of

AD would be detected long before the actual diagnosis of the

disease [10]. Indeed, the identification of preclinical AD could

significantly enhance the benefit of new drugs and vaccines, at the

time when the severe brain damage, such as widespread brain

atrophy, associated with AD, has not taken place yet.

On the other side, Mild Cognitive Impairment (MCI) is an

intermediate state between healthy aging and dementia [11]. In

fact, 12% to 15% of MCI subjects develop some form of dementia

per year. This makes MCI patients an ideal population to search

for neurophysiological profiles of prediction of who will develop

dementia. In amnestic MCI, cognitive abilities are mildly

impaired, and patients are able to carry out everyday activities,

but there are pronounced deficits in memory tasks. Whether MCI

subjects show a similar network profile than AD patients is still a

matter of debate. Neuropathological studies indicate that MCI

patients share some of the AD pathophysiological characteristics,

such as the presence of neurofibrillary tangles, loss of dendritic

spines and the accumulation of beta-amyloid protein in the

associative cortex [12]. fMRI studies show higher blood flow

values in medial temporal lobe regions during a memory task in

MCI, as compared to controls [13]. Bajo et al. [14] described

higher functional connectivity values from MEG recordings in

MCI subjects than in age-matched controls.

To our best knowledge, no previous characterizations of the

topological properties of functional brain networks in MCI
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subjects with MEG were attempted so far. We here apply methods

from complex networks theory to compute macroscopic and

mesoscopic parameters of the functional networks in a group of

nineteen MCI patients and a group of control participants of the

same size. Brain activity was measured by means of MEG during a

Sternberg’s letter-probe memory task [15,16] and functional

connectivity was calculated using the synchronization likelihood

(SL), a measure to evaluate the generalized synchronization based

on the theory of nonlinear dynamical systems [17]. We will show

that an increase in global network synchronization in MCI

patients occurs, as compared to healthy controls, and that an

evolution of the MCI functional network towards a more random

structure takes place. Interestingly, MCI patients feature an

increased synchronization between brain areas [14], and AD

patients a corresponding decrease in connectivity [18]. Finally,

based on the experimental observations, we offer a computational

evolutionary network model that simulates the transition from

healthy to MCI topology, and satisfactorily reproduces the

changes in the network metrics observed in MCI subjects.

Materials and Methods

Data
MEG scans were obtained from nineteen MCI patients and

nineteen healthy volunteers during a Sternberg’s letter-probe task

(see Materials and Methods in File S1 for details). Before the MEG

recordings, all participants or legal representatives gave written

consent to participate in the study, which was approved by the

local ethics committee of the Hospital Clnico San Carlos. Data

segments free of artifacts corresponding to eye blinks, eye

movements of muscular activity were chosen by visual inspec-

tion. Five frequency bands [a1 : (8{11) Hz, a2 : (11{14) Hz,

b1 : (14{25) Hz, b2 : (25{35) Hz, c : (35{45) Hz] were

considered. Synchronization Likelihood (SL) [17] was calculated

between all channel pairs for each frequency band. A normali-

zation was applied to obtain a probability matrix from which the

topological network parameters are extracted. In what follows we

define the normalization method and the metrics calculated over

all networks.

The SL between the 148 sensors yields a (symmetric and

weighted) 148|148 correlation matrix Cfvijg. The values of the

matrix elements range from *0:05 to *0:5, which corresponds to

a difference of one order of magnitude between the maxima and

the minima. The matrix is fully connected, and all pairs of nodes

(sensors) have a SL higher than zero. Traditionally, two different

techniques are used in order to study weighted brain networks.

The first method involves thresholding the matrix to obtain an

unweighted network Afaijg, so that the link between node i an j is

aij~1 if the weight of the connection is above the threshold, and

aij~0 otherwise. In some other occasions, a fraction of the total

number of links is kept [19] (e.g., the 5% of the highest weighted

links). In both cases, information is lost by thresholding. Our

approach relies in a normalization technique recently proposed

[20] that allows using the measures applied to unweighted

networks to the weighted case without losing the information

contained in the weights distribution. In addition, this normali-

zation facilitates comparison between networks obtained from

different individuals. By mapping the weights of the correlation

matrix vij with a continuous bijective map M : R?[0,1] it is

possible to obtain a probability matrix Pfpijg. In our case, we

linearly normalize the weights pij~
vij{min½vij �

max½vij �{min½vij �
. The

matrix Pfpijg reflects the probability of existence of a link

between node i and j, and an ensemble of unweighted matrices

can be generated on the basis of the probabilities given by P. The

power of the approach is that any polynomial function calculated

as the average of an ensemble of adjacency matrices obtained from

P, is equal to the value of the polynomial of the matrix P itself

[20]. Therefore, one can extend several classical measures for

unweighted networks to P. To visualize the advantage of this

method, we have plotted in Fig. 1 the matrices Cfwijg, Afaijg
(with 5% of the links) and Pfpijg for a control individual, grouping

nodes according to the lobe they are over. We can see that in the

case of the adjacency matrix, Fig. 1B, we lose information, which is

specially relevant for the inter-lobe correlations (e.g., see

connections between central and occipital lobe). In addition, by

comparing Cfwijg and Pfpijg, we observe how the matrix

normalization enhances the contrast between low and high

correlated nodes.

Definition of network parameters
As for the network parameters, the average degree of a node i is

obtained as ki~
X

j
pij, and the mean degree K is K~

1

N

X
i

ki.

The mean shortest path Lð Þ can be obtained as follows: the length

Dij associated to the link connecting nodes i and j is defined as the

inverse of its probability Dij~1=pij , being Dij~? when pij~0.

By applying the Dijkstra’s algorithm [21], the shortest distance

Figure 1. Functional network projection. Functional networks from a representative control volunteer. A broad-band filter was applied. (A)
Weighted SL matrix obtained from the SL between 148 sensors. (B) Unweighted adjacency network after converting the SL matrix vij (shown in A)
into a binary matrix using as a threshold wthres~0:38, which leaves the 5% of all possible links. (C) Probability matrix after normalizing vij as explained
in the text (note the contrast enhancement). In all panels, nodes/sensors are grouped according to the lobe they belong to: frontal left (FL), frontal
right (FR), temporal right (TR), central (C), temporal left (TL) and occipital (O).
doi:10.1371/journal.pone.0019584.g001
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matrix Lflijg is found. The value li~
1

(N{1)

X
j

lij tells us how

far is node i from the rest of the network, while the average

L~
1

N

X
i

li gives the average shortest path of the whole network.

The mean clustering Cð Þ reflects the probability of finding

triangles in the network. It can be calculated through the

probability matrix as Ci~

P
j,k pijpjkpikP

j,k pijpik

. The average clustering

coefficient is obtained by averaging C~
1

N

X
i

Ci [20].

The node outreach Oi~
X

j[V (i)
pijdij relates the distance and

the weight of the connections of node i, being V (i) the set of nearest

neighbors of node i and dij the physical (Euclidean) distance of the

links (obtained from the distance between sensors). The network

mean outreach O~
1

N

X
i

Oi reflects whether the network activity

is dominated by short-range (low outreach) or long-range (high

outreach) connections. Finally, the network modularity Qð Þ
quantifies the existence of topological communities inside the

network [22]. Its value is Q~
1

pnet

X
i,j
½pij{

pipj

pnet

�d(ci,cj), where

pnet is the sum of all terms of Pfpijg, d(ci,cj) is the Kronecker delta

and ci and cj are the communities of nodes i and j, respectively. In

what follows, we focus on assuming the classical network partition

into six lobes (central, frontal-left, frontal-right, temporal-left,

temporal-right and occipital).

In order to evaluate the deviation of the network parameters

from their corresponding randomized versions, we have generated

100 network surrogates by randomly permuting the coefficients of

the matrix P. Finally, we have normalized the metrics with the

average of the set of surrogate matrices, X̂X~X=Xran.

Results

Network structure and global properties
For each individual, we construct a probability matrix from the

broadband signal Pall{band and five probability matrices from

each considered frequency band Pband (a1, a2, b1, b2 and c). Next,

we compute the network parameters described in the previous

section and average them by groups (control and MCI). File S1

summarizes the results obtained for each group along with the

percentage of variation from the control group. The average

degree of the network K shows an increase of 15.9% for the MCI

group. Since only positive recognition trials during the memory

paradigm are considered, these results confirm that MCI patients

require higher synchronization in their functional networks in

order to perform a memory task [14]. We also observe that

differences between both groups are more evident in the

broadband signal, a signature that will be constantly present for

all network parameters. As a consequence of the higher number of

connections in the MCI group, the average shortest path L
decreases, although differences between both groups are less

significant. It is interesting to note that the normalized shortest

path L̂L*2 in both controls and MCI, revealing that the average

distance between nodes is twice as large as for an equivalent

random graph. Since L̂LcontrolwL̂LMCIw1, the organization of the

shortest paths within the MCI network is slightly shifted towards

more random configurations.

The outreach parameter O is the most affected parameter. We

observe a 23.4% increase for the broadband signal, which is higher

than the 15.9% increase in mean degree for both networks. This

indicates that the increase in correlation between nodes in the MCI

networks becomes more pronounced at long-range connections,

and the combination of both alterations makes the outreach

parameter the one with the highest differences between both groups.

This suggests that individuals suffering from MCI incur in a higher

energetic cost than controls to perform the same memory task, since

they have to maintain high correlations at longer distances. The

normalized outreach ÔO is in both cases lower than in the random

case (ÔOv1) since the existing correlations between nearby brain

regions are spread around the whole network when randomizing it.

Nevertheless, we observe that the MCI group has a ÔO closer to one,

which again reveals that the functional structure is more random

than in the control group. Finally, there is a decrease in the

modularity Q that is in accordance with an evolution towards

random topologies. This reduction of Q in the MCI group, larger

again for the broadband signal, indicates a degradation of the

modular structure of the functional networks, and it is an inherent

property of random networks, whose modularity is close to zero.

Figure 2 shows the behavior of the degree distribution, clustering,

outreach and neighbour’s mean degree – as a function of the node

average degree k for control (green circles) and MCI groups (red

squares) computed from the broadband signal. In Fig. 2(A) we report

the cumulative degree distribution Pc(k) which, in turn, corresponds

to the average degree of an ensemble of unweighted networks

generated using the probability matrix. The figure makes it evident the

likelihood of finding highly connected nodes within the MCI group.

As for the clustering distribution C(k), both groups have positive

correlations (see [Fig. 2(B)]), a behaviour that has been previously

reported in healthy individuals and Alzheimer patients [8]. Notice that

individuals suffering from MCI have lower clustering coefficient,

entailing an evolution towards random structures, where the number

of triangles is much lower than in the networks analyzed here [2]. The

outreach distribution O(k) [Fig. 2(C)] shows that the MCI group

features higher values of the outreach. Since O(k)~S
P

j dijpijTki~k

(where S::T indicates ensembles average), the latter feature comes

from an increase in the probabilities of long distant links. In other

words, the evolution of the disease has, somehow, increased the weight

of long-range connections. Finally, in Fig. 2(D) we report the average

degree of the nearest neighbours of nodes with degree k, knn(k). This

distribution characterizes the assortativity of the network [23]. Both

groups show a positive degree correlation, revealing the assortative

nature of the networks. Interestingly, assortative organization has been

already reported in functional connectivity networks obtained with

fMRI [24]. Despite both networks being assortative, the MCI group

exhibits higher knn values, as a result of the much larger levels of

synchronization between nodes.

To compare the mentioned network parameters between the two

groups, each parameter value was first averaged across epochs for

each participant and channel pair. Then, nonparametric permu-

tation testing [25–27] was applied to find channel pairs with

significant differences between groups. In brief, a two-sample non-

parametric test (Kruskal-Wallis test) between groups was performed.

Next, non-parametric permutations were calculated by randomly

dividing the 38 participants into 2 groups of 19 members to match

the numbers in the original groups. This was repeated 106 times for

each channel pair. Subsequently, the threshold was obtained from

the 99th percentile of this set of 106 p-values. After the application of

this statistical method to SL raw data (i.e., without band-pass

filtering) there are 6 parameters showing significant differences

between the two groups: outreach O (p~0:007), normalized

clustering ĈC (p~0:002), modularity Q (p = 0.0033), mean degree

K (p~0:018), normalized shortest path L̂L (p~0:025) and

normalized outreach ÔO (p~0:027) (see File S1 for details).

Mesoscale analysis: inter-lobe communication,
community structure and roles

From a holistic point of view, it is well known that the

processing abilities of the brain rely on the segregation and

Reorganization of Functional Networks in MCI
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integration of information [28]. Since both mechanisms depend on

the modular structure of the network, any alteration of the

interplay between the existing clusters may lead to a deterioration

of the functional network performance. With the aim of evaluating

how MCI modifies the modular structure, we have measured the

internal lobe strength Sin
l , the external lobe strength Sout

l and the

lobe modularity Ql , being l the lobe index. The two former

parameters measure, respectively, the total weight of the

connections inside lobe l,

Sin
l ~

1

2

X
i~l,j~l

pij ,

and those going to other lobes Sout
l ~

1

2

X
i~l,j=l

pij .

Figure 3 summarizes the variation of these parameters in the

MCI group for the classical cortical division into six lobes (central,

frontal left, frontal right, temporal left, temporal right and

occipital). With regard to the internal lobe strength [Fig. 3(A)],

we can see that three lobes have a significant increase of their

internal activity, specifically, the central (z18:7%), the frontal left

(z10:2%) and the temporal right (z8:5%), and only the frontal

right lobe has slightly reduced its internal synchronization

({2:0%). Differences in the external lobe strength are more

important [Fig. 3(B)], with an increase higher than 15% in all

lobes, indicating that, besides an evolution towards random

structures, there is an increase in the weight of the connections

between lobes in MCI. As a consequence, the modularity of all

lobes decreases [Fig. 3(C)], since the restructuring of the network is

dominated by the increase of the inter-lobe connections.

Therefore, despite the increase in communication between lobes,

the segregated structure of the brain is dramatically reduced and

the balance between segregation and integration present in a

healthy brain is lost. Finally, we have plotted the percentage of

variation of the lobe-to-lobe strength [Fig. 3(D)], which shows in all

cases a positive value.

Next, we have gone down to the lowest scale (i.e., the node

level). We have used the classification of nodes introduced by

Guimerà et al. [29], which is based in the computation of the

within-module degree zi and the participation coefficient pi. The

first parameter, quantifies the importance of node i inside its

community and it is defined as zi~
ki{�kkci

skci

, where ki and ci are,

respectively, the degree and the community ci of the node i, �kkci
is

the mean degree of the community and skci
is the standard

deviation of k in ci. On the other hand, the participation

coefficient pi~1{
XNc

ci~1

kci

ki

� �2

indicates how connections of

the node i are distributed among the existing communities, where

kci
is the number of connections between node i and community ci

and Nc is the total number of communities. The participation

coefficient is zero when all links of a node are inside its own

community and close to one when they are distributed among all

modules of the network. Figure 4(A) shows the position of the

nodes with higher influence in their communities (circles) and

higher participation coefficients (triangles) in the healthy group.

We can observe that, during a memory task, most participating

nodes are located over the two frontal lobes, while nodes with

higher relevance (i.e., those with higher weights) are located over

the occipital lobe. Figure 4(B) shows those nodes which have

suffered the highest variation of both parameters in the MCI

group. We observe a generalized increase of the participation

coefficient, while the within-module degree has both positive and

negative changes, which indicates that a certain reorganization is

Figure 2. Network parameter distributions. Several network parameter distributions for the control (green circles) and MCI (red squares)
groups. (A) Probability distribution of finding a node with a degree higher than k, (B) clustering coefficient C(k), (C) outreach O(k) and (D) average
nearest neighbors degree knn(k).
doi:10.1371/journal.pone.0019584.g002
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occurring inside each lobe. Note that nodes with higher increases

in the participation coefficient are located over the occipital,

temporal right and central lobes, while nodes for which the within-

module degree has increased the most are spread over the whole

network (see File S1 for more details).

Modelling network changes: the emergence of MCI
All previous results indicate that mild cognitive impairment is

related to a random increase in synchronization between brain

areas. In order to model this phenomenon, it is necessary to

understand how weights are distributed within the network, since

the disease modifies the correlations between nodes. Figure 5(A)

shows the probability Pc(O) of finding a connection with an

outreach coefficient higher than O in the control (green circles)

and MCI (red squares) groups and the inset plots report the

probability Pc(p) of having a link with a normalized weight higher

than p. We highlight a power law scaling in the weight

distribution, with a truncated tail in both groups, similar to what

is observed in anatomical [30] and functional networks. In

contrast, they do not share the same outreach distribution, since

the probability of finding nodes with high outreach is higher in the

MCI group. This discrepancy is a consequence of a shift of higher

weights (i.e., correlations) to links with longer distances, increasing

the outreach of the links. In order to confirm this observation, we

plot in Fig. 5(B) the increase in the weight of each link

(pMCI
ij {pcont

ij ) as a function of its length. Red and black circles

correspond, respectively, to intra-lobe and inter-lobe connections.

Despite the global strength is here higher in the MCI (since

KMCI
wKcont), there are both positive and negative changes, so

the increase of the correlation between nodes is not a generalized

behavior. Nonetheless, there exists a number of long-range

connections that significantly increase in weight while, at the

Figure 3. Mesoscale analysis. Percentages of variation in the MCI group with respect to the control one of: the strength inside each lobe (A), the
strength of the links going out from each lobe (B), and the lobe modularity (C). In (D), percentages of variation of the lobe-to-lobe strength. Lobe
code: 1 = central, 2 = frontal left, 3 = frontal right, 4 = temporal left, 5 = temporal right and 6 = occipital.
doi:10.1371/journal.pone.0019584.g003

Figure 4. Community structure and roles. (A) Nodes with higher within-module degree zi and participation coefficient pi in healthy individuals.
Only the first 13 nodes with the highest zi and pi are labelled. Those with the highest zi are marked with circles and triangles indicate those with the
highest pi . (B) Nodes with higher variation at the within-module degree and participation coefficient in the MCI group. Again, only the first 13 nodes
with the highest differences are labelled: nodes with higher increase of zi (circles) and pi (triangles). Lobe color scheme: red (central), blue (frontal
right), black (frontal left), magenta (temporal right), green (temporal left), and cyan (occipital).
doi:10.1371/journal.pone.0019584.g004
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same time, the weights of some short-range connection drastically

decrease [see Fig. 5(B)]. This fact indicates that in MCI patients

there is an increase in correlations at long distances and a decrease

of short range connections.

Our model can be discussed as follows: a) we randomly select a

link in the correlation network Cfwijg, b) we modify the initial

weight wij?w’ij , c) we obtain the new probability matrix Pfpijg
and recalculate all network parameters and d) we repeat

sequentially the previous steps from a). The new values of wij

are bounded by the maximum and minimum of the initial

correlation matrix. At each time step, the value of w’ij of the

modified connection is obtained by the expression

w0ij~wij
:½1zlzg�:j(dij), where l is the degradation rate, a

constant related to the average increase of the network strength, g
is a white noise term with zero mean and amplitude bn, and j(dij)
is a function that introduces the influence of the length of the link.

Figure 5(C) and (D) shows two numerical simulations obtained with

j(dij)~1 (i.e., no influence of the length) and j(dij)~bd (c�dd{dij)
3,

where c regulates the influence of the distance to the average

length �dd and bd is the amplitude of the length dependency. We

can see how, in both cases, the model successfully reproduces the

bell-shaped behavior of the weight variation. Nevertheless, a

length-dependent term j(dij)=1 has to be included to account for

the increase in long-range connections and the decrease at short

distances. In the example plotted, a cubic function is chosen, but

the adequate function is still an open question.

Finally, Fig. 6 shows the numerical results of the evolution of

four network parameters (shortest path L, clustering coefficient C,

outreach O and modularity Q) as the disease progresses starting

from a healthy brain. We consider two different scenarios, one

without the length influence j(dij)~1 (blue squares) and other

with j(dij)~bd (c�dd{dij)
3 (black circles), with bd~0:05 and c~1:2

(other parameters are given in the caption of Fig. 5). In both cases,

network parameters evolve in the direction of the MCI values (red

dashed lines), with the only exception of clustering in absence of

length dependence. With regard to the outreach O and modularity

Q, it is worth mentioning that the increase of weights at the long-

range connections [i.e., j(dij)=1] accelerates the process of the

network deterioration.

Discussion

The effect of MCI on brain networks dynamics is related to a

group of phenomena that are hallmarks of an atypical network

functioning. The relevant difference between healthy and MCI

subjects is the increase in synchronized activity between brain

areas. The enhancement in overall synchrony is reflected as an

increase of average connectivity K in functional networks and a

reduction in the average distance between nodes L. The second

difference is that the increase in correlation is associated with an

evolution towards random structures, as reflected by the

normalized network parameters L̂L, ĈC and ÔO, which are in all

cases closer to unity. Despite the existence of an underlying

random process, the increase in outreach O is much higher than it

would be expected after a random reorganization of the network

and indicates that the increase in synchronization is more frequent

for long-range connections. This third difference plays a crucial

role in the energetic cost, since patients suffering from MCI need

to maintain correlations at long distances in order to successfully

perform a memory task. An increase in the energetic cost with the

same outcome indicates lower energetic efficiency. The network

modularity Q is dramatically affected according to all these

observations. The evolution towards random topologies dilutes the

identification of the network clusters, and the increase in weight of

Figure 5. Relationship between lengths and weights. (A) Cumulative probability distribution of the normalized weights (inset) and outreach
for the control (green circles) and MCI (red squares) group. Despite having similar weight distribution, links with high outreach coefficient are more
probable for the MCI group. (B) Variation of the link weight (MCI minus control), black circles correspond to intra-lobe connections and red circles to
inter-lobe ones. (C) Variation of the link weight obtained with the evolutionary model without considering the influence of the link length (j(dij)~1).
(D) Variation of the link weight considering the length influence. Parameters used in the simulations are: l~0:01, bn~0:10, bd~0:05 and c~1:2.
doi:10.1371/journal.pone.0019584.g005
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the long-range connections, makes network communities (lobes)

more open. Both effects lead to a less modular network and break

the subtle balance between segregation and integration processes.

The conclusion is that, in order to compensate for the loss of the

segregation and integration balance, MCI subjects tend to increase

their long range synchronization which could be underlying the

increased blood flow showed in fMRI studies during memory task

[13].

Another indication that this synchronization profile might be

related to a compensatory effort is the fact that the main

differences between the control and MCI subjects are observed

in the alpha band (see File S1 for details). This frequency band has

been previously related with working memory task and its

connectivity values are modulated by memory load [1]. Thus,

the relation between the alpha band and working memory suggests

that the increase in long range coordination showed by the MCI

subjects might be revealing a reorganization of the network

dynamics to compensate for the physiological malfunctioning

associated with this neurological condition. Interestingly, MCI

seems to share some of the neuropathophysiological characteristics

of AD [31]. Examples include neurofibrilary tangles, which affect

communication, the loss of synaptic contacts or the accumulation

of the beta-amyloid protein which tend to happen in the

associative cortex such as the temporal or the parietal lobes in

both AD and MCI patients [7,12,32]. The parietal lobe has been

recently associated with a hub, a highly connected region, in

working memory tasks [1]. Thus, the physiological impairment of

hubs could lead to the necessity of establishing a new configuration

based on long distance connections to compensate for the lack of a

centre which facilitates information communication.

Next, we developed a minimal network evolutionary model

trying to capture the main signatures of MCI. The model shows

that network parameters evolve in accordance with the observa-

tions, and allows one to understand how the progression of the

disease could take place. Thus, as the functional network of a

subject that is developing MCI increases its long distance

connectivity, it is progressively mirroring the MCI network. The

results suggest than an evaluation should be made on normal

elderly subjects with subjective memory complaints (since some of

them develop an objective cognitive impairment) in order to see if

this tendency of communication based on long distance connec-

tions could be ultimately assessed as an early hallmark of cognitive

impairment.

Many spatially distant, but functionally integrated functional

networks have been described with fMRI and fcMRI analyses

[33–35]. The results obtained in these distinct, but distributed,

functional networks are compatible with our outcomes, although

the type of analysis performed in each study is different (frequency

domain in MEG versus blood flow in fMRI). The increase in the

intralobe connections far from indicating a breakdown of

integrated distributed networks (fMRI), are compatible with the

integration of these functional networks, since interlobe connec-

tions overcome the increase of intralobe activity. The greater

connectivity between anterior-posterior sites observed in the MCI

group can be signaling the engagement of a dorsal fronto-parietal

attentional network [36] which might reflect the greater

executive/attentional resources that are necessary in order to

accomplish the task for this group [37]. In fact, both techniques,

MEG and fMRI, are adding complementary information pointing

in the direction of a higher energetic cost in MCI subjects than in

controls to perform the same memory task.

Finally, it is interesting to highlight the differences between the

findings on MCI and Alzheimer disease (AD), since patients

suffering from MCI are prone to develop AD. In both conditions,

Figure 6. Modeling the disease. Evolution of network parameters [shortest path (A), clustering (B), outreach (C) and modularity (D)] as the
number of impaired links increases. Red dashed lines are the mean values of the MCI group. Blue squares correspond to j(dij)~1 and black circles to
j(dij)~bd (c�dd{dij)

3 . Parameters used in the simulations are given in Fig. 5 caption.
doi:10.1371/journal.pone.0019584.g006
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the distortion of the functional network is related to an evolution

towards random structures, as indicated by a clustering coefficient

and shortest path length that is closer to the random configuration.

Both results are in accordance with the influence of aging in the

increase of the network entropy, a concept recently formulated by

Drachman [38]. Interestingly, the appearance of MCI is related to

an increase of the connections in the network, contrary to what is

observed in AD. Thus, MCI patients that evolve to Alzheimer’s

Disease must show, at some point, a sudden decrease in the

synchronization of their functional networks. In this sense,

forthcoming experiments should address whether connections

which increase in value in MCI patients are later the ones that

suffer the largest decrease in efficiency when the patient develops

AD.
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