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In a small-world network of mainly attractively coupled nonidentical neurons, we show that a
small fraction of phase-repulsive couplings is able to strongly improve synchronization for certain
values of the link strength, and long-range connection probability. By means of a spectral analysis
we relate the observed dynamical behavior with the structural properties of the network.
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1. Introduction

One of the most important mechanisms for informa-
tion transmission and processing in large ensembles
of oscillators is synchronization, specially in biolog-
ical networks. Different experiments have pointed
out this fact in the neural tissue, finding a relation-
ship between the functioning of the system and the
net structure [Sergev et al., 2002; Egúıluz et al.,
2005]. The importance of the synchronous behavior
in real collectives has given rise to the question of
how to optimize the network topology for synchro-
nization. Several strategies have been developed
with the aim to find the best method to achieve
synchronization in complex networks, mainly focus-
ing on a weighting procedure of the links in net-
works with heterogeneous degree [Boccaletti et al.,
2006]. Most of the works are devoted to the study
of synchronization in networks of attractively cou-
pled identical units, but heterogeneity of dynamical
units is naturally present in real networks, biolog-
ical or social. Also, in real systems, heterogene-
ity in connections is also a common feature; it is
known that biological networks combine different
kinds of interactions to improve synchronization

and transmission performance, as in the case of exci-
tatory and inhibitory synapses coexistence in the
brain [Ravinovich et al., 2006].

In a previous work [Leyva et al., 2006] we
explored both the heterogeneity of the units and
couplings in a network of Hodgkin–Huxley neurons.
There, we showed that a small percentage of repul-
sive links in a small-world structure can induce the
emergence of a collective oscillatory state in cases
where the equivalent network based on only attrac-
tive connections is unable to synchronize or even
to activate the ensemble. In this work, we extend
the previous study to a different neural model, to
show that the only dynamical constraint for the
phenomenon to appear is the neural excitability
[Hodgkin & Huxley, 1952]. A structural analysis
allows us to reveal the relationship between the
dynamics and the topology.

2. Model and Numerical Results

We wish to study the onset of synchronous behav-
ior in a heterogeneous population of excitable units,
where initially a small part of the ensemble is

711



March 16, 2009 18:1 02307

712 J. A. Almendral et al.

self-oscillatory while the remaining stay in a quies-
cent state. For this purpose, we study the dynamics
of an ensemble of nonidentical coupled units using
two well-known models for neural excitability: the
Hodgkin–Huxley (HH) and the Fitz-Hugh–Nagumo
(FHN). The HH model belongs to class 1 excitabil-
ity spiking at arbitrarily low frequency, whereas the
FHN is a class 2 excitability model with a certain
firing frequency band [Izhikevich, 2005]. Both mod-
els have a different complexity level but the common
feature is the existence of a transition from excitable
to oscillatory dynamics by tuning only one control
parameter, corresponding to the external current.

2.1. The HH network

Initially, we study a network of N Hodgkin–Huxley
(HH) neurons considered as spatially isopotential
cells. The model reads:

CV̇i = Ii − I ion
i (Vi, xi) + d

∑

j

�ijVj

ẋi = αx(1 − xi) − βxxi

The variables and parameters are the standards
in literature [Hodgkin & Huxley, 1952]. L = (�ij) =
(cij)/ki is the Laplacian matrix, zero-row sum, with
ki normalizing the connection strength by the num-
ber of incoming links to node i, and C = (cij) is
the connectivity matrix, equal to ±1 if nodes i and
j are connected, and zero otherwise. The minus sign
in the connection indicates that the neurons associ-
ated to those nodes are repulsively connected. The
coefficient d stands for the global coupling strength.

The heterogeneity in the population is intro-
duced by means of the external bias current Ii,
which is uniformly distributed within the interval
I0 ± ∆I, with I0 = 9µA/cm2 near the Hopf bifur-
cation according to class I excitability, in such a way
that for the chosen ∆I = 0.2µA/cm2, about 70%
of the neurons stay at rest while the remaining will
fire periodically.

In order to observe how unit heterogeneity
and phase repulsive couplings influence a coher-
ent behavior, initially we consider just a regular
lattice (short-range links) topology with identical
(all positive or all negative) connections for an
ensemble of N neurons. As expected, the system
reaches a phase synchronized state for a certain
d = d+ ∼ 0.2 and, equivalently, for d = d− ∼ 0.02 it
reaches an antiphase coherent state. Since d− < d+,
phase-repulsive coupling results are more effective

to globally activate and entrain the whole network
[Leyva et al., 2006].

However, our main interest is to explore the
influence of a complex topology (long-range links)
in the activation and synchronization of the net-
work. Taking into account the previous result, we
consider the possibility of being repulsive at least
for part of the long-range connections. Then, we fix
d = 0.1 for the coupling strength, that is, within the
unsynchronized regime for local positive coupling as
explained above, C is modeled by keeping the reg-
ular short-range connections positive ci,i±1 = +1,
and by randomly adding a fraction p of long-range
couplings cij = cji = ±1 with a probability q of
being negative.

Figure 1 shows space-time plots of the volt-
age variable through the whole network for different
probabilities p and q. In the absence of long-range
connections (not showed), for the chosen coupling
strength d, only about the initial 30% of the neu-
rons is firing and the array is not activated or syn-
chronized, as said above. When long-range links are
included, the first observation is that for any p, a
minimum fraction of the newly added links needs
to be repulsive in order to increase the activity of
the network, as evident when comparing Fig. 1(a)
with Figs. 1(b)–1(d). There, the activity generated
by the initially active neurons is reduced or even
annihilated when all the long-range connections are
attractive (q = 0). However, the scenario completely
changes when, for the same p, some of the short-
cuts are repulsive (q > 0) like in Figs. 1(b)–1(d)
where self-sustained electrical activity emerges for
nonzero q.

In addition, we observe the existence of optimal
values for p (let us call this value p = pc) and q for
which the collective oscillation becomes maximally
phase-coherent. This fact can be observed by com-
paring Fig. 1(b) where p = pc and Fig. 1(d) for the
same q but slightly higher p.

We now quantitatively study how the dynam-
ics is affected by p and q, by measuring the mean
firing rate (MF) of the network and the standard
deviation of the global electrical voltage V (t) =∑N

i=1 Vi(t) obtained as σV =
√

〈V 2(t)〉 − 〈V (t)〉2,
where 〈· · ·〉 denotes temporal average. While MF
measures the network activation, a high σV indi-
cates that this activity is coherent. When the net-
work is fully activated MF approaches 70 Hz.

The effect of the topology in the dynamics as
a function of p and q can be seen in the contour
plots in the p − q space shown in Fig. 2. We first
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Fig. 1. Space-time plots of the neuron voltage for a N = 800 Hodgkin–Huxley units network, with ∆I = 0.2, d = 0.1, and
different coupling connectivities: (a) network with long range couplings, p = pc = 0.0055, and q = 0; (b) same as (a) but
q = 0.3; (c) same as (b) but q = 0.45; (d) same as (b) but p = 0.015.
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Fig. 2. (a)–(c) Mean frequency (MF) and (b)–(d) network coherence σV as a function of p and q in a N = 800 Hodgkin–
Huxley network. Panels (a) and (b) are contour plots in the p − q plane. It becomes evident from panel (b) that there exist
values for p and q for which the coherence is maximum. Each point is averaged over 100 simulations, 1 s long (transients
avoided), for different network and initial condition realizations. Panels (c) and (d) are cross-sections of the 3D representation
of MF and σV for several values of q, respectively. Legend in panel (d) applies also to panel (c).
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observe the different behavior of both the activity
and coherence as a function of p. The effect of the
activity (measured by the MF rate) is shown in the
left panels (a) and (c), and the coherence is rep-
resented in the right panels (b) and (d) through
σV . While for MF, there is a transition towards a
fully activated system at certain p, the σV reaches a
maximum at this point. In Figs. 2(b) and 2(d) the
signature of a resonance is clear both in p and q, as
observed in Fig. 1.

In Fig. 2, we also observe the importance of q in
the response of the network. First, it is clear that a
value q �= 0 is needed to activate the network, which
is related to the larger ability of a negative pertur-
bation to move the system out from the stable point
(quiescent state). The q value of maximal activity
depends slightly on p. Additionally, this activity will
be coherent for a (p, q) pair of values that shift to
higher p as q increases.

2.2. The FHN network

In order to confirm the validity of our results we
perform a similar study with a Fitz-Hugh–Nagumo
neuron network, described by the equations:

V̇i = Ii + Vi − V 3
i

3
− wi + d

∑

j

�ijVj

ẇi = 0.08(Vi − 0.8wi + 0.7)

FHN is a simplified model based on the HH
model, using a polynomial approximation to the
ionic currents. However, it retains the main dynam-
ical features regarding the excitability, which seems

central for the existence of the resonance described
above for the HH network. To obtain an equiva-
lent heterogeneity in the population, the external
bias current Ii is now distributed within the inter-
val Ii = 0.323 ± 0.003. As in the previous case, this
interval is chosen to assure that the ratio 70%/30%
of silent and oscillating neuron is maintained.

First, we study the synchronization properties
of a regular lattice of nodes with all positive or
negative links. We observe that again the phase-
repulsive lattice is much more effective in activating
the network, with activation thresholds of d+ = 0.3
and d− = 0.05, respectively. This asymmetry is the
key for the trade-off between activation and syn-
chronization when long-range links are included.

In Fig. 3, the space-time plots of a network of
N = 600 FHN neurons can be observed, for sev-
eral situations dynamically equivalent to those in
Fig. 1. As in the previous case, there exists a criti-
cal long-range link probability p = pc and an opti-
mal fraction q = qc of negative long-range links
to maximally activate and synchronize the network
[Fig. 3(b)]. A smaller q fraction results in a mostly
inactive ensemble [Fig. 3(a)], while a higher q yields
an active but incoherent state [Fig. 3(c)]. Further-
more, when p > pc, the activity decays even for
q = qc [Fig. 3(d)].

Figure 4 is equivalent to Fig. 2. Here it can be
seen that a strong resonance also appears in the
coherence of the network for certain values of both
probabilities p and q. If we compare these results
with its counterpart in Fig. 2, we observe that the
resonance is wider both in p and q than for the HH
case. This fact is due to the higher asymmetry than
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Fig. 3. Space-time plots of the neuron voltage Vi for a N = 600 FHN units network, with d = 0.1, and different coupling
connectivities: (a) network with long-range couplings, p = pc = 0.01, and q = 0; (b) same as (a) but q = 0.2; (c) same as (b)
but q = 0.4; (d) same as (b) but p = 0.001.
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Fig. 4. Mean frequency (MF) and network coherence σV as a function of p and q in a N = 600 FHN network. Figure
description is the same as in Fig. 2. It can be seen that the p− q resonance is wider here than in the HH-network, due to the
higher asymmetry in the attractor.

in the HH case in the activation efficiency for the
positive and negative links.

3. Structural Analysis

Once we know the dynamical features of the phe-
nomenon, the linkage with the network topology is
pointed out from the observation that the critical
link probability pc depends strongly on the ensem-
ble size as � ln(N)/N , that is, coincides with the
birth of the giant connected component (GCC) of
the Poisson random graph with N nodes, which is
precisely the network we have when only the ran-
domly added long-range connections are considered
(i.e. when we neglected the local couplings) [Leyva
et al., 2006].

Therefore, we wish to analyze whether the net-
work structure has some bearing on the dynamics.

Recently, the master stability function method has
been successfully used for this goal in several situa-
tions [Boccaletti et al., 2006]. However, this method
requires the dynamical units to be identical in
order to consider the stability of the perfectly syn-
chronous state, which is not our case. Then, to
perform our analysis we use a purely structural
analysis, based on the properties of L, ignoring the
dynamics imposed on it, that is, we consider

V̇ = dLV (1)

where V = (V1, . . . , VN ). Then, there is a basis in
which Vi ≈ exp(dλit), where λi are the eigenvalues
of L.

It is well known that all the eigenvalues of the
Laplacian associated to a network with only attrac-
tive couplings are negative. However, when we add
some repulsive connections, L has both positive and
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negative eigenvalues. We find that any set of initial
states rapidly evolves into the subspace S+, asso-
ciated with the positive eigenvalues, within a time
smaller than the characteristic temporal scale of the
system dynamics (τ ≈ 15 ms for the HH unit).

To quantify the effect of S+, we note that, for
a given positive λ+

i , edλ+
i is a measure of how much

the system spreads into the subspace defined by the
corresponding eigenvector. Then, the ratio

edλ+
i t

edλmaxt
= ed(λ+

i −λmax)t (2)

measures how different is the evolution in that sub-
space with respect to that where the system devel-
ops faster. By defining the geometric average of this
ratio,

g(t) = ed(〈λ+〉−λmax)t (3)

we can estimate the homogeneity of the evolution in
S+ with a number in (0, 1]. Then, g → 1 means sim-
ilar evolution in all dimensions in S+, whereas g < 1
implies that the behavior is determined by those
vectors with the largest associated eigenvalues.

We are now interested in the behavior of g(t)
as a function of p and q. As the shape of g(t) with p
is not very sensitive to time, we fix t = d−1 ∼ τ
to focus our study within the time scale of our
dynamical unit. In Fig. 5 we observe that g ≡ g(τ)
presents a minimum at pc which is lower for higher
values of q, and whose position shifts to higher p
as q increases, as in the numerical simulations of
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Fig. 5. Dependence of the structure parameter g with the
adding link probability p, in a log-linear scale, for different
probabilities q. Each point is an average over 100 different
realizations of a N = 800 network.

the networks. In this last case, the system becomes
more heterogeneous due to the connectivity, and
therefore, the intrinsic dynamics is minimally con-
strained by the structure that arises around pc due
to the repulsive shortcuts.

The results reflect the fact that at pc there
is a transition from a 2 − k lattice to a network
with a exponential degree distribution, indicating
the presence of hubs. In this state, where the eigen-
values dispersion is large, the activity is enhanced,
as observed in the numerical simulations, and the
network is compatible with the diversity of the
dynamical units, which are allowed to reach a par-
tially coherent state. On the other hand, far from
pc the nodes are indistinguishable from a topol-
ogy point of view and the dynamical units are
constrained to evolve alike, when they have differ-
ent intrinsic dynamics, failing to attain a coherent
behavior.

In summary, we have shown numerically how a
small fraction of phase-repulsive links can enhance
activity and coherence in a complex network of
nonidentical dynamical units, initially in different
dynamical regimes. We have numerically proved
this statement for complex ensembles of two dif-
ferent neuronal models. A spectral analysis allows
us to obtain information about how the topology
influences the dynamics.
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