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Abstract. Dynamical properties of complex networks are related to the spectral
properties of the Laplacian matrix that describes the pattern of connectivity of the
network. In particular we compute the synchronization time for different types
of networks and different dynamics.We show that the main dependence of the syn-
chronization time is on the smallest nonzero eigenvalue of the Laplacian matrix,
in contrast to other proposals in terms of the spectrum of the adjacency matrix.
Then, this topological property becomes the most relevant for the dynamics.
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1. Introduction

In the last decade we have witnessed an enormous effort towards understanding the complex
patterns of connectivity that have been found in many natural, social or technological systems
[1]–[5]. Once the systems are characterized from a topological point of view, it is the turn of
the dynamical properties and relating both dynamic and static characterizations has become
one of the hot topics in network theory in recent years. There can be many different dynamics
implemented in networks, ranging from simple discrete state systems, like cellular automata or
random boolean networks, to networks of units whose individual behaviour is already complex,
as happens in samples of coupled chaotic units. But, when dealing with the emergent behaviour
characteristic of complexity, one of the main issues is to discern between the effects related to
the topology and the effects related to the dynamical rules of the units.

In this paper we want precisely to understand which is the main topological characteristic
of a network (undirected and unweighted) that influences the dynamical response. By looking at
particular dynamical rules of the individual nodes and at particular rules of interaction between
the units, the goal is to see what do they have in common in terms of the static properties of
the network. In particular we want to analyse the route of complex networks to synchronization,
understood as a stationary state in which all the units are in the same state. Synchronization
of complex networks has been widely analysed in the past [6], mainly in the context of the
master stability formalism (see [7]–[13]) that studies the stability of the synchronized state.
Other studies have focused on the behaviour of small structures (motifs), as for instance [14,
15], and some other recent publications analyse the behaviour along the complete evolution
of the system [16]–[21], highlighting the relation between spectral, topological and dynamical
properties of networks.

Synchronization is a general concept and not related to a particular type of dynamics; for this
reason, in order to stress the dynamical significance of the network parameters we consider three
different types of dynamical evolution of the units and of the interaction rules: linear dynamics
as a general approximation when the variables describing the units states are close to each other
and hence close to the synchronized state, Kuramoto dynamics [22] that have been widely used
in physical and biological problems, and a generic model of spin-like units that could model
interactions between individuals in a social network.

The outline of the paper is as follows. In section 2 we analyse the simplest case of linear
interactions between units. In section 3 we compare the roles of the eigenvalues of the adjacency
matrix and the Laplacian matrix, going back to the dynamics in section 4 where the two different
nonlinear dynamical rules are considered. We end in section 5 with the conclusions of our work.

2. Linear dynamics

Synchronization is a generic feature of coupled identical dynamical systems. In recent years
the physics community has been focusing on the effect of connectivity patterns that go far
beyond the usual regular lattices or all-to-all neighbouring schemes. Nowadays we have become
used to considering units as nodes of a graph that are linked to other units in a complex way.
Each unit evolves following its own dynamics and they are coupled according to some rules.
Under generic conditions the coupling tends to favour the synchronization of the units. The first
theoretical attempt to analyse the stability of the synchronized state of a complex network was

New Journal of Physics 9 (2007) 187 (http://www.njp.org/)

http://www.njp.org/


3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

made by Barahona and Pecora [7]. Keeping the formalism to a minimum they proposed a system
that obeys the following set of equations of motion

dxi

dt
= F(xi) − σ

n∑
j=1

LijH(xj), (1)

where F corresponds to the unit evolution and H stands for the coupling; σ is the coupling
strength and Lij is the Laplacian matrix, related to the adjacency matrix, Aij by the following
relation:

Lij = kiδij − Aij. (2)

This Laplacian matrix is symmetric with zero row-sum and hence all the eigenvalues are real
and non-negative. The eigenvalues are ordered such that

0 = λ1 � λ2 � · · · � λN. (3)

The number of zero eigenvalues is equal to the number of connected components. If we are
concerned with synchronization as a global effect, we have to notice that it is only possible in
systems with a single connected component and hence there will be a single zero eigenvalue,
implying λ2 > 0. In general, the following inequality is also fulfilled [23]

λN � 2kmax, (4)

where kmax is the largest degree in the graph.
Barahona and Pecora show that the synchronized state is stable if λN

λ2
< αB

αA
, where αA and

αB are the lower and upper bounds, respectively, of the effective coupling σλi in which the
maximum Liapunov exponent is negative. This inequality involves a part that depends on the
topology of the network, the eigenvalue ratio Q = λN

λ2
, and a part that depends on the dynamical

properties of the functions H , F , and the values of the variables in the synchronized state. Thus
it could be concluded [13] that the synchronizability of the system, understood as the stability
of the synchronized state, is enhanced if the ratio Q is as small as possible. Since the value
of the largest eigenvalue λN depends mainly on the maximum degree of the network, the main
dependence will be, according to [13], on the smallest nonzero eigenvalue λ2, usually called the
spectral gap.

In this paper, we want to perform an additional step in the direction of characterizing
synchronization in complex topologies, and for this reason we propose, as an additional
parameter, the time the system needs to synchronize. Obviously, this characterization will depend
on many factors: the type of dynamics of the single units, how strong the coupling is, and how
far the initial set-up is from the synchronized state. In order to simplify this picture and to
analyse how this time depends on the topological properties we will consider the simplest case
of dynamics and coupling, and in the next sections we will study more complex dynamics. We
will assume that each unit has a constant driving F(xi) = constant, the same for all the units,
and hence we can fix it to zero by transforming to a moving frame of reference. Furthermore,
we will consider that the coupling is linear, which is a good approximation when the values of
the variables describing the system are close to each other. Thus we deal with the system of
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differential equations

dθi

dt
= −σ

∑
j

Lijθj, i = 1, ..., N. (5)

We should remark that, although we introduce this set of differential equations as a first
approach to the problem of synchronization in complex networks, (5) itself is interesting in the
context of distributed systems where it is known as consensus dynamics [24], having a long
history in the field of computer science.

The Laplacian matrix is related to the topological properties of the network and hence it is
the only relevant dependence; since the coupling strength σ just fixes the time scale. There is
another obvious dependence on the initial conditions that will be discussed later.

The solution of this system reads in terms of the normal modes ϕi [16]∑
j

Bijθj = ϕi(t) = ϕi(0)e−λit, i = 1, ..., N, (6)

where Bij is the matrix of the transformation from the old coordinates to the new ones. Thus
we are left with linear combinations of phases in the original coordinates that is equal to a term
that depends on the initial conditions multiplied by an exponential that decays very fast in time
according to the eigenvalues of the Laplacian matrix. For very large t the exponentials decay to
zero and the only solution is that all the units become synchronized. We can then assume that,
at large times, the phase difference in the original coordinates decays exponentially with the
smallest eigenvalue λ2.

Thus we can write

θi − θj = Ce−λ2t, (7)

where C is an unknown constant that depends on the specific details of the network and on the
initial configuration.

Formally, the time the system needs to achieve complete synchronization is infinite. Usually
in computer simulations one establishes a relaxed synchronization condition. We say that two
oscillators are synchronized if the cosine of their phase difference is very close to 1,

cos(θi − θj) � 1 − ε, (8)

which means that θi − θj ∼ ε1/2 and we can write

1
2 ln ε = ln C − t · λ2 (9)

and from here we can say that the synchronization time behaves in the following way:

Tsync ∼ 1

λ2

[
ln C − 1

2
ln ε

]
. (10)

It is clear that this time depends on the topology and on the threshold condition.
In order to check these statements we have performed numerical simulations of (5) for

different networks and thresholds. In all cases we have assumed random initial conditions
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Figure 1. Time to synchronize as a function of ln ε.We have used a network of 256
nodes that was proposed in [16] as an example of network with two hierarchical
community levels.

in the range [0, 2π].5 It is precisely this dependence on the initial conditions that makes the
synchronization time Tsync a fluctuating magnitude. The range in the initial conditions is the
responsible of the dispersion in the synchronization time, and this dispersion cannot be reduced
by increasing the number of realizations.

We have considered different types of networks, with a wide range of topological features and
sizes, just to focus on the dependence on the relevant characterization of the dynamical response
of the network. Before entering into the details of the topology let us focus on the threshold
dependence. To this purpose we consider a particular network and change the synchronization
condition (8). The results of this set of simulations is plotted in figure 1, where we can observe
a clear linear dependence of the synchronization time on ln ε, thus providing support to the
assumptions we have made before. We have checked this dependence on other networks and
dynamics and the conclusions are the same, the main dependence on the threshold is of the type
shown in (10).

Following these assumptions now we want to check that, fixing the threshold condition,
the synchronization time depends on the inverse of the spectral gap only. For this reason we
have used networks with different sizes (128, 256 and 512), community structure at different
hierarchical levels (1 level, 2 levels, and no communities), and growing rules. We have chosen
networks grown according to different rules. Erdős–Rény (ER) random graphs [25]; small-world
models as proposed by Newman and Watts (NW) [26], in which the shortcuts are added instead
of rewired as in the original Watts–Strogatz model [27]; and Barabási–Albert (BA) preferential
attachment growing model networks [28].

Although these networks have different features, and this is reflected in their synchronization
times, we want to stress that there is a clear dependence on the spectral gap, and this is indeed what
can be concluded from figure 2, in which all the networks show an almost linear dependence on
1/λ2. Furthermore, although when moving from one class of network to another class of network

5 This choice is due to the fact that in section 4, we will deal with phase oscillators where this is the natural choice.
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Figure 2. Synchronization time for different networks. To show the dependence
on the smallest nonzero eigenvalue of the Laplacian matrix, we have plotted the
time to synchronize as a function of 1/λ2. In these plots, we fix the threshold to
0.99. We have used three sets of networks: networks introduced in [16] that have
two community levels; networks introduced in [29] that have one community
level; and networks with no community structure grown with different rules (see
main text for details).

this dependence is not so clear, one can undoubtedly conclude that there is a monotonic increase
of the synchronization time on the spectral gap. Networks with community structure need special
care because neatly defined communities are related to very precise time scales for the internal
synchronization within the community (see [16]) and, consequently, they show a different slope
in figure 2.

This conclusion about the monotonic dependence on the spectral gap supports the
previous analysis in [13] that highlights the role of this particular eigenvalue in the dynamical
characterization of a complex network. In particular these authors show, apart from the stability of
the synchronized state, that random walks propagate more easily in networks with large spectral
gaps. This observation enables the authors to construct optimal graphs where the optimization
goal is precisely the lowest spectral gap. In any case, we have shown that synchronization time
depends mainly on this value for a set of linearly coupled dynamical systems. In section 4, we
will come back to this issue dealing with other nonlinear dynamics but first we will discuss in the
next section the role played by this eigenvalue and other proposals in the literature of complex
networks.

3. Spectral analysis

In the previous section, we mentioned that, in recent literature, complex networks have been
dynamically characterized by the spectral gap in terms of the stability of the synchronized state,
following the original arguments of Barahona and Pecora [7], and also in terms of random
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walks [13]. We have provided additional support by showing how the synchronization time
strongly depends on this property. But also in recent literature some focus has been put on slightly
different characterizations, in particular in [30] the authors propose the largest eigenvalue of the
adjacency matrix. We have computed this eigenvalue λA

N and compared it with the spectral gap
(the first nonzero eigenvalue of the Laplacian matrix). In general, for a complex network, there
is no simple relation between the eigenvalues of the two matrices, the adjacency matrix and the
Laplacian matrix. Only in the particular case of a regular lattice, or a network in which all nodes
have exactly the same degree (k), the eigenvalues satisfy the following relationship

λL
i = k − λA

N−i+1, (11)

as can be easily concluded from 2 and keeping the same ordering for the eigenvalues of the
adjacency matrix

λA
1 � λA

2 � · · · � λA
N. (12)

But if the distribution of degrees is not homogeneous, as usually happens in complex networks,
then the relation is unknown. As a first approximation, for distributions of connectivities that
are not far from the homogeneous one, as it happens for instance in random and in small-world
graphs, we can still consider it. In this case, since the first eigenvalue of the Laplacian matrix
is zero the largest eigenvalue of the adjacency matrix should be close to the average degree.
Thus, networks that are quite homogeneous in degree will have a value of λA

N that is very close
to the average degree, and hence it provides little information about the network structure and
its dynamical properties. For this reason our proposal of characterizing the dynamical response
of the system by the spectral gap is more appropriate.

In figure 3, we plot the second eigenvalue of the Laplacian matrix (λL
2 ) against the largest

eigenvalue of the adjacency matrix (λA
N). There we can observe several facts that deserve

some comments. Firstly, for networks with a homogeneous distribution of degrees, the largest
eigenvalue of the adjacency matrix divided by the mean degree of the graph shows a very
slight dependence on the network structure. On the contrary, the first nonzero eigenvalue of the
Laplacian, divided by the mean degree as well, presents a more pronounced dependence on the
network structure. Secondly, for networks with an inhomogeneous distribution of degree, such
as the ones grown with the BA preferential attachment rule, both eigenvalues change with the
network under consideration but they change in a similar fashion conserving a linear relationship.
Then, one can conclude that, even in this case, there is no additional information in the adjacency
matrix with respect to the Laplacian one. In summary, the first nonzero eigenvalue of the Laplacian
matrix is more sensitive to network changes than the largest eigenvalue of the adjacency matrix,
and for this reason it will be the focus of the next sections.

4. Nonlinear dynamics

In order to check that the conclusions we have drawn before about the characterization of the
dynamical properties of complex networks in terms of the spectral gap goes beyond the linear
model, in this section we are going to consider two quite different nonlinear models: a model
of phase oscillators and a model of spins. In both cases, according to the dynamics and the
interaction, the system tends to synchronize. One of them synchronizes in a threshold sense,
since phase is continuous, and the other in an absolute way since the spin states are discrete.
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Figure 3. Smallest nonzero eigenvalue of the Laplacian matrix versus the largest
eigenvalue of the adjacency matrix for different networks, both of them divided by
the average degree of each network. Inset: the same but without normalization. We
have chosen networks grown according to different rules. ER stands for Erdős–
Rény random graphs; NW for Newman–Watts [26], in which the shortcuts are
added instead of rewired as in the original Watts–Strogatz model [27]; and BA
for Barabási–Albert preferential attachment growing model [28].

4.1. Kuramoto oscillators

One of the most studied models of coupled oscillators is that due to Kuramoto [22]. In this case
oscillators follow the dynamics:

dθi

dt
= ωi + σ

∑
j

Aij sin(θj − θi), i = 1, ..., N, (13)

where ωi stands for the natural frequency of the oscillator and σ describes the coupling between
adjacent units. If the oscillators are identical (ωi = ω ∀i) there is again only one attractor of the
dynamics: the fully synchronized regime where θi = θ, ∀i, which is stable. There has been a
lot of effort in the recent literature on this model applied to complex networks [16]–[18], [31].
Concerning our current discussion relating spectral and dynamical properties one should notice
[16] where the intermediate time scales are related to the topological scales of the networks
which, in turn, are related to the distribution of eigenvalues. As we said before, the number
of zero eigenvalues of the Laplacian matrix is equal to the number of connected components
of the network. It is trivial then to conclude that if λL

2 = 0, the network is split in more than
one disconnected subnetworks. Then, from a dynamical point of view, it is impossible for the
network to achieve a complete synchronized state, as only subnetworks with internal coherence
but no synchronization between them are possible. Thus, a small value means that we are close
to this situation and that it will take a long, although finite, time to synchronize completely
(no matter how close to 1 the threshold condition is chosen).
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Actually, in [16, 17] it is shown that the existence of clearly defined communities [32],
groups of nodes in which the number of internal links is large compared with the number of
external ones, is related to gaps in the values of the eigenvalues, and the order of the gap is
related to the number of communities, the sharper the community definition the larger the gap.
This relation between spectral properties of the Laplacian matrix and the topological properties
of the network is in turn reflected in the dynamics. Starting from a random distribution of phases
and averaging over a set of distributions, what was observed is that synchronization appears
from the innermost local scale to the outermost (albeit global) scale. In this synchronization
process, the groups of nodes that get synchronized correspond to the topological communities
and the times at which the groups merge to form larger groups are related to gaps in the spectrum
of the Laplacian matrix. This relation closes the interdependence between topological, spectral
and dynamical properties of the network. Then, in this general framework in which gaps in the
spectrum are related to the achievement of synchronization at different scales, the last gap λ2,
always large compared with λ1 = 0, should correspond to the completion of the synchronization
process at the largest global scale.

With this goal in mind, we are going now to evaluate the synchronization time for a system
of Kuramoto oscillators and analyse its dependence on the spectral gap. Before entering into the
simulation details one has to notice that, starting the dynamics from a random distribution of
phases, the oscillators rapidly settle into closer phases; after this fast initial evolution all phases
are quite similar and the sine function in 13 can be well approximated by its argument. For
this reason the linear model discussed in section 2 is a good approximation for the Kuramoto
oscillators at later times, close to the synchronized state. This does not ensure, however, that this
happens along all time evolution of the system and one has to be careful if the evolution concerns
all time scales. In our numerical simulations, we have analysed the same type of networks as in
section 2 for the Kuramoto dynamics and the results are shown in figure 4.

In figure 4, we can see that the time to synchronize for the different networks is around one
order of magnitude larger; this is of course due to the initial rearrangement of the oscillators.
Whereas in the linear model they are coupled linearly, in the Kuramoto model they are coupled
through the sine function, which is smaller and makes the transient time needed to get similar
phases larger. Once this transient is over, the phases are very similar and the two models behave
in exactly the same way. Of course, if initial conditions in a small interval were chosen, the
difference with respect to the linear model would be shortened, and the transient time reduced.
In any case, the important point is that the scaling of the synchronization time with the spectral
gap is identical in both models, enhancing our assumptions about the importance of the spectral
gap as the key characterization of the dynamical response of the system. As happens with the
linear interaction rules, here the dependence on the inverse of the spectral gap is not linear for
the whole set of networks. Although the internal structure of the networks with communities can
introduce important effects in the route towards global synchronization and break slightly the
linear dependence, the monotonously increasing behaviour with 1/λ2 is maintained.

4.2. Majority dynamics

The linear model analysed in section 2 and the Kuramoto model discussed in the previous
paragraph are described by continuous variables, phases, and the synchronization is understood
in a threshold sense. In any case we have shown that the synchronization process is similar in
both cases, being quite different in the transient to synchronization but very similar when arriving

New Journal of Physics 9 (2007) 187 (http://www.njp.org/)

http://www.njp.org/


10 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10–2 10–1 100
101

102

103

1/λ2

T
sy

nc

0 level
1 level
2 level

Figure 4. Synchronization time for the same networks as in figure 2, for
dynamical evolution given by 13. All the details of the simulations, such as
distribution of random phases, threshold for synchronization, and coupling
constant, are the same.

at the synchronized state. In this subsection we propose a completely different model, in which
the dynamics is discrete, and hence does not share the processes described above.

Let us consider a discrete spin-like system in which the nodes of a network have only two
possible states, si = ±1. This could model, for instance, the dynamics of public opinion in social
influence networks (e.g. when a group of people choose among two different opinions). Initially,
half of the spins are randomly set at the state −1 and the other half at +1. Then, each node i

receives an input hi = ∑
j Aijsj, with Aij being the adjacency matrix. In this manner, as other

authors have pointed out [33, 34], this spin-like network is characterized at each step by some
pattern of internal states, whose evolution represents the global dynamics.

We evolve the network according to the following local majority rule: the state of node i at
time t + 1 is given by

si(t + 1) =




+1 if hi(n) > 0,

si(t) if hi(n) = 0,

−1 if hi(n) < 0.

(14)

We find that the system does not synchronize for some initial states. That is, the system
wanders in the phase space without reaching a fixed point. This phenomenon is a kind of
frustration in which the system is unable to reach the lowest energy state.

To focus our attention on how the topology contributes to synchronizing the system, we
overcome this frustration by introducing a slight perturbation, which can be regarded as noise or
a thermal bath. We find that it is enough, for the system to synchronize, that 0.5% of the states
are randomly switched at every step. The introduction of such a perturbation has a drawback, in
the sense that it also destroys the final synchronized state. For this reason we will consider that
the system is synchronized if 99% of the nodes are in the same discrete state.
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Figure 5. Synchronization time for a discrete spin-like dynamics following a
local majority rule. Three types of networks are considered: ER, NW, and BA. In
all of them we find that the synchronization time monotonically grows with 1/λ2.

According to these rules we have performed several numerical simulations to compute the
average time required to synchronize networks, all of them formed by 512 nodes, grown again
following different models. Namely, we have considered several ER, NW and BA networks.

Since it is impossible to synchronize a system with disconnected components, we have only
studied networks with a unique connected component and refused those that do not verify such
condition. This is not a problem for NW and BA networks because their growth is such that all
nodes are linked. But this is not the case for ER networks in general and we have only considered
ER networks with a single component.

We observe that the synchronization time monotonously depends on the inverse of the
spectral gap as we have found in the previous simulations (figure 5). The importance of this
particular eigenvalue is again clear, although in the present case the functional dependence is
different from the previous continuous models (linear and Kuramoto). Nevertheless, due to the
fact that the dynamical rules are completely different, it gives more arguments to our line of
reasoning and the spectral gap should be considered the main characteristic of the network
concerning the dynamical response.

In principle, the dynamical evolution of this spin-like system is quite different from the
linear and Kuramoto models analysed above. However, the dynamical evolution can be written
in compact form

si(t + 1) = 


[∑
j

Aijsj(t) + µsi(t)

]
, (15)

where 
(x) is the Heaviside step function, and µ is a number 0 < µ < 1 that ensures that there
is no change in the case of a tie between the neighbours. In this equation one can notice that the
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argument of the Heaviside function can be written in matrix form

∑
j

Aijsj(t) + µsi(t) =
∑

j

[
Aij +

µ

ki

δij

]
sj(t). (16)

In this way the evolution of the units reads

si(t + 1) = 


[∑
j

[
Aij +

µ

ki

δij

]
sj(t)

]
, (17)

in which two important facts should be noticed. Firstly, the Heaviside function imposes a quite
strong nonlinearity that, eventually, could be regularized but, in principle, can be responsible
for the rapid convergence towards the synchronized state of this dynamical rule. Secondly, the
matrix in the argument

Aij +
µ

ki

δij, (18)

plays a key role in the way the coupling is performed. This matrix, which can be related to the
Laplacian and adjacency matrices, can be analysed in the same terms as these others. Since its
eigenvalues should give information about the dynamical processes taking place, its calculation
and comparison with the other spectral properties becomes relevant and it will be the objective
of future work.

5. Conclusions

In this paper we have presented results on different types of dynamics running in complex
networks. We propose a new dynamical measure to characterize the dynamical properties of
networks, the synchronization time. Although this time can depend on many factors, mainly the
type of dynamics that is implemented and on others like the coupling and the initial conditions,
we observe that this time basically depends on one of the static features of the network, the
so-called spectral gap, the smallest nonzero eigenvalue of the Laplacian matrix. The role played
by this eigenvalue has also been stressed in the features of complex networks related to the
dynamics. We have also compared this eigenvalue with another proposal from the literature,
based on the spectral properties of the adjacency matrix, and we have found that the dependence
is clearer in terms of the inverse of the spectral gap of the Laplacian matrix. Likewise, we have
found that different dynamics can be described in terms of other matrices, different from the
traditional studies based on the Laplacian or adjacency matrices.

The study we have performed relating the spectral, topological and dynamical properties
of complex networks has an immediate continuation in terms of the robustness of the network.
Usually robustness is defined in terms of the topology, i.e. how the network connectivity responds
to external attacks, but we are convinced that relating topological and dynamical properties would
give more hints about the dynamical robustness of the network, which is the dynamical response
of the network to dynamical attacks.
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