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Abstract— Most of congestion control schemes require
users to behave in a cooperative way, so that they respect
some ”social responsible” rules. However, without forcing
end users to adopt a centralized mandated algorithm
controlling their behavior (which is not advisable), it is
not possible to guarantee that they will not act in a selfish
manner. Consequently, a fundamental issue is to evaluate
the impact of having users that act in such a manner.

In such a scenario, having a Nash equilibrium guarantees
that no selfish user has incentive to unilaterally deviate
from its current state (i.e., it guarantees that we are in a
stable state in the presence of selfish users).

However, here we formally prove that an efficient Nash
equilibrium can not be reached in practice for any oblivious
control policy.

I. INTRODUCTION

An important issue that has been largely studied is
dealing with congestion control schemes. Since many
communication systems in our days are based on the
principle of sharing a common resource (e.g., a com-
munication link) among different users, one of the main
objectives of such schemes is to establish a number of
rules guaranteeing that the common resources are shared
fairly among users.

However, most of those schemes require users to
behave in a cooperative way, so that they respect some
”social responsible” rules. Nevertheless, many authors
have already noticed that, without forcing end users to
adopt a centralized mandated algorithm controlling their
behavior (which is not advisable), it is not possible to
guarantee that they will not act in a selfish manner. For
instance, the TCP control scheme is voluntarily in nature
and critically depends on end–user cooperation [1].

Consequently, several authors have already evaluated
the impact of having users that act in a selfish man-
ner [2], [3], [4]. An interesting technique to model selfish

This work has been partially supported by the project MCYT
BFM2003-03081. Corresponding author: Vicent Cholvi, LSI, Univer-
sitat Jaume I, Campus de Riu Sec, 12071 Castellón (Spain). Email:
vcholvi@uji.es. Phone: +34 964 72 83 32. Fax: +34 964 72 8435.

users consists of using concepts from game theory. From
a game-theoretic perspective, users are considered as the
game players and congestion control schemes establish
the game rules. An important concept in game theory is
the Nash equilibrium: in our context, a Nash equilibrium
is a scenario where no selfish user has incentive to
unilaterally deviate from its current state. Clearly, being
in a Nash equilibrium means that we are in a stable state
in the presence of selfish users.

a) Related Work: In [5], the author uses a M/M/1
model and shows that, with Markovian arrival rates,
the fair share allocation scheme is the only that can
guarantee Nash equilibrium within a subset of allocation
functions called MAC. Akella et al. [2] consider TCP and
prove that RED does not have a Nash equilibrium. They
also use a variation of Choke [6] and, by using simula-
tion, show that a good Nash equilibrium is reached. Garg
et al. [3], by using also TCP, show that, in the presence
of selfish users, current schemes will inevitably lead to
a congestion collapse. They propose a class of service
disciplines called DWS that punish misbehaving users
and reward congestion avoiding well behaved users.

Dutta et al. [4] consider a scenario where the arrival
rate of users is modeled by a Poisson process. They show
that, by using oblivious policies, it is not possible to
reach an efficient and fair Nash equilibrium. Observe
that, in this context, fair means that all users obtain the
same reward. Our paper is deeply inspired in this work
and can be considered to be an extension of it, where our
contribution is the formalization of some of the claims
presented there.

In the next section we introduce our theoretic model.
In Section III we present a feature that has to be fulfilled
by the aggregate load at equilibrium satisfying an effi-
cient Nash condition. This result is used in Section IV
to show that the efficient equilibrium of any oblivious
efficient policy can not be reached in practice. Finally,
in Section V we present our conclusions and discuss



about future work.

II. A GAME–THEORETIC MODEL

Game theory is a tool for analyzing the interaction
of decision makers with conflicting interests. Roughly
speaking, a game has three components: a set of players,
a set of possible actions for each player, and a set of
utility functions.

In our system, players are end–point traffic agents.
Those agents are selfish, i.e., they are only concerned
about their own good. Each player has a strategy which
is to control the traffic that the player injects to the
network. Currently, TCP traffic is the dominant traffic in
the internet and its selfishness can be controlled by the
two AIMD parameters [2]. However, this only covers a
subset of selfish players (e.g., it does not covers UDP
traffic). For this reason, following a approach similar
to [4], we model the traffic arrival rate of player i by
a Poisson process with average rate λi (for all players
in the system).

The rules of the games are determined by the queue
management policy in routers. Here, we only consider
oblivious policies, i.e., policies that do not differentiate
between packets belonging to different flows. Such type
of policies do not consider the current status of the net-
work, but rather, its average status. For this reason, they
are very important because of its ease of implementation
and deployment. For instance, FIFO, the most commonly
used policy, is oblivious.

In general, a user’s utility depends on its goodput,
loss rate and end–to–end delay. However, for a majority
of applications the goodput is the most important factor
determining the user’s utility [3]. Therefore, we also as-
sume that the utility function of each player is equal to its
goodput µi. Taking into account that we are considering
oblivious policies, we have that µi = λi(1 − p(λ)) [7],
where p(λ) is the drop probability due to an average
aggregate load of λ ≡

∑N

i=1 λi and an average service
time of unity (N denotes the number of players). In order
to simplify the analysis, and without loss of generality,
in the rest of the paper we assume that the service rate
of the system is normalized to 1.

b) Nash Equilibria: In a Nash equilibrium, no
player can increase his goodput by either increasing
or decreasing their input rate (throughput). Thus, the
following condition must be satisfied

∂µi

∂λi

∣∣∣∣
λ∗

= 0, i = 1, . . . , N, (1)

where λ∗ is the average aggregate load at equilibrium.
This condition can be rewritten as

q(λ∗) + λ∗

i q
′(λ∗) = 0 where q(λ) ≡ 1 − p(λ). (2)

Nonetheless, we are interested in a symmetric equi-
librium, which imposes λ∗

i = λ∗/N . Hence the Nash
condition becomes

q(λ∗) +
λ∗

N
q′(λ∗) = 0. (3)

Remark that this symmetry condition implies that the
goodput at equilibrium is the same for all players, which
is the only way to guarantee that the obtained policy if
fair.

c) Efficiency: On the other hand, given a solution
for the Nash condition, it is also desirable that such
solution has a good efficiency. It is said that a solution is
efficient when the aggregate goodput at equilibrium µ∗,
which is defined as

µ∗ ≡

N∑
i=1

µ∗

i =

N∑
i=1

λ∗

i q(λ
∗) = λ∗q(λ∗), (4)

verifies that limN→∞ µ∗ is a positive constant.
d) Sensitivity: Observing Eq. 3 we may remark that

λ∗ is, in general, a function of the number N . Hence,
the load offered by any of the players at equilibrium λ∗

i

also depends on N . In this situation, it is interesting to
define a parameter measuring the increase on λ∗

i when
N changes. With this purpose and similar to [4], we
introduce the sensitivity coefficient ∆i(N) which can be
defined as

∆i(N) = λ∗

i (N) − λ∗

i (N − 1). (5)

Observe that ∆i(N) is a measurement of how difficult is
for player i to reach a new equilibrium when the number
of users increases from N − 1 to N . For practical pur-
poses, it will be interesting to obtain oblivious policies
having no sensitivity to N (∆i(N) = 0). We say that
a policy is reachable in a practical situation if it has
no sensitivity to N . This would guarantee that, once all
hosts have reached the equilibrium, they will be able to
maintain it without the need of passing a transient period
of time searching their new Nash conditions. Hence, in a
practical point of view, given that N changes rapidly in
a real Internet situation, having ∆i(N) �= 0 means that
the system would be all the time out of the equilibrium.

e) Our Work: In [4] it has been shown that whereas
some policies do not impose a Nash equilibrium (e.g.,
Drop-tail queueing or RED), there are some others that
guarantee it (e.g., VLRED). Furthermore, from the latter
type of policies, some cannot impose the existence of
an efficient Nash equilibrium (e.g. VLRED) while oth-
ers guarantee an efficient equilibrium (e.g., EN-AQM).
Analogously and taking into account the set of policies
that impose a Nash equilibrium, it has been also shown
that some of them are very sensitive (e.g., EN-AQM). We



note that it is possible to define policies having ∆i(N) =
0 for all i and N . For example, it can be shown that
having an oblivious drop probability of p(λ) = 1− e−λ,
the sensitivity coefficient ∆i(N) becomes zero for all i
and N . Proving this is immediate just by applying the
Nash condition and verifying that λ∗

i is a constant value
independent of N .

From the above paragraph, we have that there are poli-
cies that impose a Nash equilibrium which are efficient
and reachable. However, our goal is to find a policy being
efficient and reachable at the same time. For instance,
the EN-AQM policy (which is efficient) has been shown
in [4] not to be reachable. Similarly, that policy having
an oblivious drop probability of p(λ) = 1− e−λ (which
is reachable) is not efficient since the aggregate goodput
at equilibrium µ∗ = N(1 − eN ) goes to zero when N
increases. In the following sections, it will be proved that
any efficient oblivious policy is sensitive to the number
of agents, which makes it unreachable for practical
purposes.

At this point, we would like to remark that Dutta et al.
have provided a result somehow similar in [4]. However,
they assume that p(λ∗) must be a non-decreasing and
convex function. Furthermore, they assume that their
sensitivity coefficient (defined as λ∗(N) − λ∗(N − 1)
is Nα. Such assumptions, although simplify the proof,
are arbitrary. On the contrary, our result is completely
general. Surprisingly, we also prove that their assumption
about the sensitivity coefficient (i.e., that must be of the
form Nα) constitutes a sufficient condition to obtain an
efficient solution.

III. THE NASH CONDITION IN THE CONTINUUM

LIMIT

As it has been stated previously, the average aggregate
load at equilibrium λ∗ derived from the Nash condition
depends on N , the number of agents involved in the
network. Hence, λ∗ is a discrete function λ∗ : N → R

+,
which for every value of N returns the λ∗ imposed by
the Nash condition for N agents.

However, although λ∗ is a discrete function of N ,
it is always possible to regard λ∗ as a twice derivable
function f : R

+ → R
+ such that f(N) = λ∗(N) for all

integer N . Therefore, Eq. 3 can be seen as the following
condition, which holds for all v ≥ 1,

q[f(v)] +
f(v)

v
q′[f(v)] = 0, (6)

where, according to the definition of f , the derivative
must be understood as ()′ ≡ d

df
(). For simplicity, let us

denote q(v) instead of q[f(v)].

Consequently, if it is used the notation (̇) ≡ d
dv

(), the
Nash condition in the continuum limit is written as

q(v) +
f(v)

v

q̇(v)

ḟ(v)
= 0, (7)

Then, a first order ordinary differential equation is
obtained,

−
ḟ(v)

f(v)
v dv =

dq(v)

q(v)
, (8)

whose solution can be written formally as follows,

q(v) = D e−I(v), (9)

where D is a constant of integration and I(v) is defined
in this manner

I(v) ≡

∫
ḟ(v)

f(v)
v dv. (10)

Clearly, q(v) must be a well defined probability (i.e.,
it must be in the range [0, 1]). The next lemma (whose
proof we omit for space reasons) shows the form of f(v)
to fulfill this.

Lemma 1: q(v) is a well defined probability if and
only if the function f(v) can be written as

f(v) = D’ eJ(v), , (11)

with D’> 0 and

J(v) ≡
I+(v)

v
+

∫ v

1

I+(z)

z2
dz, (12)

being I+(v) such that I(v) ≡ −M + I+(v), with 0 ≤
M < ∞ and I+(v) ≥ 0 for all v ≥ 1.

Now, we use that result to demonstrate that any
efficient solution f(v) satisfying the Nash condition must
verify that limv→∞ f(v) = f∞, with f∞ ∈ (0,∞).

Lemma 2: Any efficient f(v) that verifies the Nash
condition must verify that 0 < limv→∞ f(v) < ∞.

Proof: The lemma is proved in two steps. First,
we present the restriction imposed on f(v) by the Nash
condition. Second, we present the restriction imposed
on f(v) by having an efficient solution to the Nash
condition.

• The restriction imposed by the Nash condition:
Since both terms in the right side of Equation 12
are non–negative, then we have that J(v) ≥ 0
for all v ≥ 1. Assuming that f(v) verifies the
Nash condition, from Equation 11 we have that
f(v) ≥ D’ for all v ≥ 1. Since D′ > 0 then
limv→∞ f(v) > 0.

• The restriction imposed by having an efficient solu-
tion to the Nash condition: By reductio ad absur-
dum. Assume that there exists an efficient solution



to the Nash condition and prove that such solution
cannot be satisfied by an average aggregate load
f(v) verifying limv→∞ f(v) = ∞.
If limv→∞ f(v) = ∞, then, in order to obtain
a function q(v) satisfying the Nash condition, we
have that limv→∞ J(v) = ∞. If such a solution is
also efficient, the following condition must hold

0 < lim
v→∞

λ∗(v) q[λ(v)] < ∞,

which in the continuum limit implies that

0 < lim
v→∞

f(v) e−I+(v) < ∞

Taking into account Eq. 11, the former condition
can be written as

0 < lim
v→∞

eJ(v) e−I+(v) < ∞

which can only be true if

lim
v→∞

J(v) − I+(v) �= ±∞. (13)

Since limv→∞ J(v) = ∞, Eq. 13 can only be
satisfied if limv→∞ I+(v) = ∞. But, if it is
verified that limv→∞ J(v)−I+(v) = constant, with
limv→∞ J(v) = ∞ and limv→∞ I+(v) = ∞, it is
easy to check that

lim
v→∞

J(v)

I+(v)
= 1,

which implies (by definition of J(v)) that

lim
v→∞

1

I+(v)

∫ v

1

I+(z)

z2
dz = 1. (14)

Define the function s(v) as follows:

s(v) ≡
1

I+(v)

∫ v

1

I+(z)

z2
dz. (15)

We have that Eq. 14 imposes on s(v) the condi-
tion limv→∞ s(v) = 1. Since it is also true that
limv→∞ 1/s(v) = 1, there exists some V ≥ 1 such
that, for all v > V ,

1

s(v)
< 1 + ε. (16)

where ε is a positive real number.
On the other hand, by definition of s(v), its deriva-
tive with respect to v is the following

I+

v2
= ṡ(v)I+ + s(v)İ+. (17)

Then, the following ordinary differential equation
is obtained

İ+

I+
=

1

s(v)v2
−

ṡ(v)

s(v)
, (18)

whose solution can be written formally as

I+(v) =
C

s(v)
exp

[∫
dv

s(v)v2

]
, (19)

where C is a constant of integration.
If Eq. 16 is taken into account, we have that, for
all v > V ,

I+(v) < C (1 + ε) exp

[∫
1 + ε

v2
dv

]
=

C (1 + ε) exp

[
C’ −

1 + ε

v

]
, (20)

where C’ is a constant of integration. As a conse-
quence, it is derived that, for all v > V

I+(v) < C (1 + ε) exp

[
C’ −

1 + ε

V

]
= C”, (21)

where C” is a constant. Therefore, it is obtained that
limv→∞ I+(v) < ∞. However, this contradicts the
result derived from Eq. 13 (i.e., limv→∞ I+(v) =
∞). Then, we conclude that any average aggregate
load f(v), such that limv→∞ f(v) = ∞, cannot
result in an efficient solution to the Nash condition.

IV. EFFICIENT SOLUTIONS TO THE NASH CONDITION

As it has been shown in Lemma 2, the efficient solu-
tions to the Nash condition must be searched among the
average aggregate loads f(v) such that limv→∞ f(v) =
f∞, with f∞ ∈ (0,∞). This case can always be written
as f(v) ≡ f∞[1+ f̃(v)], where f̃(v) > −1 for all v ≥ 1
and limv→∞ f̃(v) = 0. Then, I(v) can be written in
terms of f̃(v) as follows1

I(v) = cons +

∫ v

1

˙̃f(z)

1 + f̃(z)
z dz. (22)

On the first hand and from the mean-value theorem
for integrals [8], it is derived that I(v) is a constant for
all 1 ≤ v < ∞ (it is the integration of a continuous
function in a finite interval). Hence, in order to obtain
a solution to the Nash condition, it is not necessary to
verify that I(v) > −∞ for all v ≥ 1 but to check that
limv→∞ I(v) �= −∞.

On the other hand, since limv→∞ f(v) = f∞, the
condition of efficiency is verified when limv→∞ q(v) �=
0. Then, from Eq. 9 is deduced that the efficiency is
guaranteed if and only if limv→∞ I(v) �= ∞.

1Notice that
˙̃

f(z)

1+f̃(z)
z is a continuous function, since the average

aggregate load f(v) was defined as twice derivable (recall that there
exists this freedom when the continuum limit is taken).



Therefore, there exists an efficient solution to the Nash
condition if and only if the condition limv→∞ I(v) �=
±∞ holds. That is, if and only if

∫
∞

1

˙̃
f(v)

1 + f̃(v)
v dv �= ±∞. (23)

In this section it is shown that, in general, not all
average aggregate load f(v) such that limv→∞ f(v) =
f∞ satisfies Eq. 23. However, it will be demonstrated
that there are two conditions which define the set of
efficient solutions.

Theorem 1 (Sufficient Condition): If f̃(v) is a twice
derivable function which behaves asymptotically as

˙̃
f(v)v ∼

1

v1+α
with α > 0. (24)

then, an efficient solution is derived.
Proof: By definition of f̃(v), it is easy to check

that
lim

v→∞

1

1 + f̃(v)
= 1. (25)

Thus, given any ε > 0, there exists some V ≥ 1 such
that, for all v > V ,∣∣∣∣ 1

1 + f̃(v)

∣∣∣∣ < 1 + ε. (26)

Then, it is deduced that∣∣∣∣∣
∫

∞

1

˙̃f(v)

1 + f̃(v)
v dv

∣∣∣∣∣ <

∫
∞

1

∣∣∣∣∣
˙̃f(v)

1 + f̃(v)
v

∣∣∣∣∣ dv

< B + (1 + ε)

∫
∞

V

|
˙̃
f(v)|v dv,

where B is a real number defined as
∫ V

1

∣∣∣∣∣
˙̃
f(v)

1 + f̃(v)
v

∣∣∣∣∣ dv. (27)

If ˙̃f(v)v ∼ v−(1+α) with α > 0, and taking into
account that the integration of a function which asymp-
totically behaves as v−(1+α) is a function which tends
to zero as v → ∞, it is straightforward to check that∫

∞

V

|
˙̃
f(v)|v dv = B’ with B′ being a constant. (28)

Thus, it is deduced the condition given by Eq. 23.
Namely,∣∣∣∣∣

∫
∞

1

˙̃
f(v)

1 + f̃(v)
v dv

∣∣∣∣∣ < B + (1 + ε)B’ < ∞. (29)

which implies that there exists an efficient solution.

Theorem 2 (Necessary Condition): If the Nash condi-
tion is verified efficiently, the following equation holds

lim
v→∞

˙̃
f(v)v2 = 0. (30)

Proof: Let us suppose that limv→∞

˙̃
f(v)v2 = A’ >

0. Then, for every A”∈ (0,A’), it is always possible to

find a V1 ≥ 1 such that ˙̃
f(v)v2 ≥A”, for all v > V1.

On the other hand, limt→∞ f̃(v) = 0. Thus for every
ε ∈ (0, 1) there exists a V2 ≥ 1 such that

1

1 + f̃
> 1 − ε, (31)

for all v > V2. Hence, it is deduced from Eq. 23 that,
for all v > max{V1, V2},

cons =

∫
∞

1

˙̃
f(v)v2

1 + f̃(v)

dv

v
≥ (32)

A + A”
∫

∞

V

1

1 + f̃(v)

dv

v
≥

A + A”(1 − ε)

∫
∞

V

dv

v
= ∞,

where A is defined as

A ≡

∫ V

1

˙̃
f(v)

1 + f̃(v)
v dv. (33)

Consequently, it is a constant. This is a contra-
diction which arises because it was assumed that
limv→∞

˙̃f(v)v2 > 0.

Similarly, when limt→∞

˙̃
f(v)v2 = −A’ < 0, for every

A”∈ (0,A’), there exists some V1 ≥ 1 such that ˙̃
f(v)v2 ≤

−A”, for all v > V1. In addition, limv→∞ f̃(v) = 0.
Thus given any ε > 0 there exists some V2 ≥ 1 such
that

1

1 + f̃
< 1 + ε, (34)

for all v > V2. Hence, it is derived from Eq. 23 that, for
all v > max{V1, V2},

cons =

∫
∞

1

˙̃
f(v)v2

1 + f̃(v)

dv

v
≤ (35)

A − A”
∫

∞

V

1

1 + f̃(v)

dv

v
≤

A − A”(1 + ε)

∫
∞

V

dv

v
= −∞.

Such contradiction only disappears when the condition
limv→∞

˙̃
f(v)v2 < 0 is rejected.

Notice that it is only possible to find an A”> 0 when
A’ is not zero. If A’ is zero the former reasoning fails



because the first case results in cons< ∞ and the second
one derives in cons> −∞ and nothing can be argued.

The previous results imply that, given an efficient
solution to the Nash condition, it is not feasible that
limv→∞

˙̃
f(v)v2 �= 0. But, it could be possible that the

condition limv→∞

˙̃
f(v)v2 = 0 was also rejected. In that

case, it would derive that there is no twice derivable f̃
verifying Eq. 23. That is, there is no efficient solution
to the Nash condition.

However, in the previous theorem was demonstrated
that the functions f̃(v) which behave asymptotically as
˙̃f(v)t ∼ v−(1+α), with α > 0, are efficient solutions. But

these functions verify that limv→∞

˙̃
f(v)v2 = 0, thus this

condition defines a non-empty set of efficient solutions.
Therefore, it can be affirmed that limv→∞

˙̃
f(v)v2 = 0

is a necessary condition to obtain an efficient solution to
the Nash condition.

Discussion

As it can be readily seen, the sufficiency condition
(Theorem 1) means that the set of efficient solutions is
bigger than the set of functions which asymptotically
behave as ˙̃

f(v)v ∼ v−(1+α) with α > 0. On its hand,
the necessity condition (Theorem 2) means that the set
of efficient solutions is smaller than the set of functions
which verify that limv→∞

˙̃
f(v)v2 = 0.

From a practical point of view this means that the set
of efficient solutions are functions such that asymptot-
ically behave as f(v) ∼ v−(1+α) with α > 0. Conse-
quently, this implies that any oblivious efficient policy
must have an aggregate offered load at equilibrium (λ∗)
falling asymptotically to a positive constant (c) when the
number of users (v) increases.

In terms of the offered load, this result tells us that, at
equilibrium, any efficient solution must have a λ∗ which
falls with v to a constant value at least as 1

v1+α
. As

our equilibrium is assumed to be symmetric, this implies
that, in the asymptotic limit, the load offered by any
of the hosts at equilibrium changes with v in the form
λ∗

i (v) ∼ c
v

. Hence, the sensitivity coefficient for any host
behaves like ∆i(v) ∼ c

v
− c

v−1 ∼ − c
v2 in that limit.

This allows us to conclude that, in situations where
the number of sessions changes rapidly (which are
very realistic situations), the efficient equilibrium of any
oblivious efficient policy is not easily reachable, because
the offered load of hosts depend strongly on the number
of current sessions.

V. CONCLUSIONS

In this paper it has been shown that when using
oblivious efficient policies of buffer management, hosts

cannot arrive properly at a stable equilibrium point (at
least, without any other additional mechanism). Such a
result is completely general since we have not made any
assumption, either about the behavior of p(λ∗) or about
the behavior of the sensitivity coefficient.

Currently, we are involved in making a similar anal-
ysis but, instead of taking as user’s utility its goodput,
taking the end–to–end delay to define it. Also, we are
considering introducing the loss rate, in combination
with either the goodput and the end–to–end delay, to
define the user’s utility.
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