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Abstract
This paper deals with the Helmholtz oscillator, which is a simple nonlinear
oscillator whose equation presents a quadratic nonlinearity and the possibility
of escape. When a periodic external force is introduced, the width of the
stochastic layer, which is a region around the separatrix where orbits may
exhibit transient chaos, is calculated. In the absence of friction and external
force, it is well known that analytical solutions exist since it is completely
integrable. When only friction is included, there is no analytical solution for
all parameter values. However, by means of the Lie theory for differential
equations we find a relation between parameters for which the oscillator is
integrable. This is related to the fact that the system possesses a symmetry
group and the corresponding symmetries are computed. Finally, the analytical
explicit solutions are shown and related to the basins of attraction.

PACS numbers: 05.45.−a, 02.30.lk, 02.20.Qs

1. Introduction

Oscillations and waves are ubiquitous in nature and are easily modelled with the help of
differential equations. The general equation for the one-dimensional oscillatory motion of
a unit mass particle can be easily understood using a mechanical analogy. Assume that the
particle moves in a force field which is generated by a potential V (x), then the general equation
of motion may be written as

ẍ +
dV

dx
= 0. (1)

Stating the problem this way, different oscillators may be obtained depending on the
potential V (x) acting on the particle. Assuming V (x) to be a polynomial function in x, very
few cases with analytical solutions have been studied. Among them are the Duffing oscillator,
with a nonlinear term of fourth order, and the Helmholtz oscillator [1] where the cubic term
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is used. Obviously, higher order terms may be considered, which in general lead to rather
complicated mathematical solutions. These are the nonlinear versions of the oscillator given
by equation (1). If only the quadratic term is taken into account, obviously, the harmonic
oscillator is derived. Another simple case with a non-polynomial potential V (x) = −cos x

is the pendulum equation. It is important to remark that from all these four model equations
complete analytical solutions are known in closed form. While circular functions are solutions
of the harmonic oscillator, Jacobian elliptic functions are, in general, the solutions of the
nonlinear oscillators considered here.

The study of an oscillator of this kind is worthwhile in spite of its apparent simplicity,
because many physical problems of application may be reduced to the analysis of this simple
nonlinear oscillator. The dynamics of the Helmholtz oscillator mimics the dynamics of certain
pre-stressed structures, the capsizing of a ship [2] and the nonlinear dynamics of a drop in
a time-periodic flow [3] or in a time-periodic electric field [4]. It appears also in relation to
the randomization of solitary-like waves in boundary-layer flows [5] and in the three-wave
interaction, also referred to as resonant triads [6].

If we include linear friction and a periodic force in equation (1), we obtain

ẍ + δẋ +
dV

dx
= γ cos ωt (2)

where the inclusion of friction and force in the system bestows a rather different dynamical
behaviour compared to the case without them.

Even though an analysis in the absence of friction has been accomplished for the pendulum
equation [7, 8] and for the Duffing oscillator [9], no similar results are known for the Helmholtz
oscillator. In spite of that, when friction is considered, this system has received some attention
by different authors [1, 2, 10].

A way of studying the Helmholtz oscillator is by means of computational methods.
Nowadays, the use of a computer allows the calculation of good approximations of the
solution of many problems. However, analytical methods give important information about
the dynamical behaviour of the system. Chaotic aspects of certain dynamical systems are
better understood when the analytical structure is known [11]. Actually, the analytical structure
comprises information about the integrability of the model, and this is useful to assure whether
chaos is possible or not. This link between integrability and chaotic motion has been analysed
for several models, for instance, the Lorenz model [12] or the Hénon–Heiles Hamiltonian
[13].

The Lie theory for differential equations is a powerful method to analytically study
a dynamical system. Actually, this theory was originally developed to study differential
equations. Different techniques developed to solve certain types of equations (i.e., separable
or exact equations) are regarded in this theory as special cases of a general integration method.
The Lie theory allows the determination of the equation is integrable and its symmetry group.
Basically, a symmetry group of a differential equation is a group which transforms solutions
to other solutions of the equation. In the case of an ordinary differential equation, it is useful
to integrate this since invariance under a symmetry implies that the order of the equation can
be reduced by one. Hence for a second order equation, such as the Helmholtz oscillator, two
symmetries are needed to integrate it and to write the solution in terms of known functions.

However, besides the exact formulae and expressions for a generic oscillator, it is important
to remark that new insights and intuitions can be derived from its study, which may help
understand the dynamics of other similar problems.

The organization of the paper is as follows. In section 2, the solution of the Helmholtz
oscillator without friction inside the single-well potential is carried out. Also, the construction
of the separatrix map and the expression of the stochastic layer width are shown. Section 3
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shows when the Helmholtz oscillator with friction is integrable by means of the Lie theory
of differential equations. The symmetries are calculated to obtain the general solution x(t)

and the first integral of motion is written and related to a Hamiltonian function. Also, the
physical behaviour of this oscillator is related to the analytical solutions. Finally, section 4
provides the concluding remarks.

2. Dynamics of the Helmholtz oscillator

2.1. Introduction

The equation of motion of a particle of unit mass which undergoes a periodic force in a cubic
single-well potential with friction, reads

ẍ + δẋ + αx − βx2 = γ cos ωt (3)

where δ, α, β, γ and ω are positive constants.
A Hamiltonian and Lagrangian formalism can be used [14] to derive the equation of a

particle in a potential V (x) with a linear friction and a periodic force. The particular case
given by equation (3) is derived from a time-dependent Hamiltonian and Lagrangian of the
following form:

H(p, x, t) = 1
2p2 e−δt + eδtV (x, t)

L(ẋ, x, t) = eδt
[

1
2 ẋ2 − V (x, t)

] (4)

where V (x, t) is the following generalized potential for the whole system:

V (x, t) = αx2

2
− βx3

3
− γ x cos ωt. (5)

In this section, it is considered that δ = 0 (i.e., there is no friction). Hence, the equation
to analyse is

ẍ + αx − βx2 = γ cos ωt (6)

and therefore, equation (4) becomes

H(p, x, t) = 1
2p2 + V (x, t)

L(ẋ, x, t) = 1
2 ẋ2 − V (x, t)

(7)

which will be particularly useful to compute the so-called separatrix map. This map yields a
lot of information about the effect of a periodic force on the Helmholtz oscillator. In particular,
about the possibility of transient chaos as a consequence of the force.

2.2. Single-well potential

When γ = 0, the equation of a conservative oscillator is obtained. This oscillator may be
understood as a particle which is situated in a single potential well V (x) defined as

V (x) = αx2

2
− βx3

3
. (8)

One important feature of this system, which can be easily seen in figure 1, is that according
to the initial condition and the energy of the particle, the orbits may be bounded or unbounded.
When the value of the energy Emin = 0 � E � Emax = α3

6β2 , then there exist possibilities of
bounded motions and hence, oscillations, while for E > Emax, the motion of the particle is
unbounded, i.e., the particle escapes to infinity.
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Emax = α3

6β2

x = α
β

E

x = − α
2β

Emin

V (x)

a b c

x

= 0

Figure 1. Potential energy associated with the Helmholtz oscillator, which may be seen as the
simplest potential with an escape. Note that the potential has been chosen to be V (x) = α

2 x2− β
3 x3,

because this way α and β are positive constants. The orbits will be bounded only when
− α

2β
< x < α

β
and 0 < E < Emax. For instance, the bounded orbit with energy E is comprised

within [a, b]. If x > c, then the orbit is unbounded.

When the particle has energy E in the range [Emin, Emax], then the cubic equation
E − V (x) = 0 provides three real roots a, b and c (a < b < c), which represent, physically,
the turning points, i.e., the points where the velocity of the particle changes sign. These roots
verifies the following relationships which will be important for further results:

a + b + c = 3α

2β
ab + bc + ac = 0 abc = −3E

β
(9)

and their general expressions are

a = α

2β
+ (−1 − m)

λ

3
b = α

2β
+ (2m − 1)

λ

3
c = α

2β
+ (2 − m)

λ

3
(10)

where to obtain the former results, the following parameters are used:

m = b − a

c − a
λ = c − a. (11)

If it is also defined

�2 = 1 − m + m2 (12)

then from equations (9), it is derived that

α

2β
= λ�

3
(13)

a useful expression which allows the values of the roots to be expressed in terms of only the
parameter m

a = α

2β
+ (−1 − m)

α

2β�
b = α

2β
+ (2m − 1)

α

2β�
c = α

2β
+ (2 − m)

α

2β�
.

(14)
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2.3. General exact solution

Now, the equation of motion, equation (3), can be exactly solved in the conservative case, i.e.,
in the absence of friction and periodic force. Hence, the analytical solutions of the periodic
orbits inside the single well will be derived.

The conservation of energy can be used to set the problem in terms of the three roots of
E − V (x) = 0 in the following way:

ẋ2

2
= β

3
(x − a)(x − b)(x − c). (15)

The terms can be rearranged into

dx

dt
=

√
2β

3

√
(x − a)(x − b)(x − c) (16)

and now, after a simple integration of the above equation, the following result is achieved:

t − t0 =
√

3

2β

∫ x

a

dx√
(x − a)(x − b)(x − c)

(17)

where it is assumed that the particle lies in x = a for the initial time t0. Now assume the
following change of variable:

x = a + (b − a) sin2 θ (18)

and introducing this result in equation (17) we obtain that

t − t0 =
√

6

β(c − a)

∫ φ

0

dθ√
1 − m sin2 θ

. (19)

The solution of the integral on the right-hand side is given by the sine amplitude of a
Jacobian elliptic function [15] from where it is deduced that√

β(c − a)

6
(t − t0) =

∫ φ

0

dθ√
1 − m sin2 θ

= sn−1(sin φ; m) (20)

where φ is the elliptic amplitude and m is the elliptic parameter. There is a lot of confusion
in the literature about the use of the elliptic parameter m and the elliptic modulus k, which
are related by the expression k2 = m. The notation of [15] is followed here, where sn(u; k)

represents the sine amplitude when the elliptic modulus is used, and sn(u; m) when the elliptic
parameter is used. For simplicity, the elliptic parameter is used throughout.

Thus, from the last equation, it is inferred,

sin φ = sn

{√
β(c − a)

6
(t − t0); m

}
(21)

and if the change of variable used before is taken into account, the following solution is
obtained:

x(t) = a + (b − a)sn2

{√
β(c − a)

6
(t − t0); m

}
(22)

which is the general solution for all the periodic orbits lying within the single well. Note
that all orbits are labelled by the elliptic parameter m. This parameter m which ranges from
0 � m � 1 is in fact the same as previously defined in equation (11) in relation to the turning
points of motion in the potential well. It labels the energy of each periodic orbit inside the
potential well.
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2.4. Period of the orbits

It is also interesting to calculate the period of each and every orbit inside the potential well.
For this purpose the following integral has to be worked out:

T (m) = 2

√
3

2β

∫ c

b

dx√
(x − a)(x − b)(x − c)

=
√

6

β(c − a)

∫ π
2

0

dθ√
1 − m sin2 θ

. (23)

The last integral represents exactly the complete elliptic integral of the first kind K(m)

[15], so that

T (m) =
√

24

β(c − a)
K(m). (24)

For orbits whose energy is very small in absolute terms, i.e., m → 0, the complete elliptic

integral of first kind K(m) → π
2 and then the period becomes T →

√
4
α
π . This is obviously

the period for the linear oscillations around the elliptic fixed point (0, 0). However for values
of the energy close to the separatrix, which means m → 1, the complete elliptic integral of
the first kind diverges logarithmically in this way,

K(m) ≈ 1

2
ln

(
16

1 − m

)
(25)

and this means that the period also diverges logarithmically for values of m close to unity

T (m) = 2√
α

ln

(
16

1 − m

)
. (26)

2.5. Equation of the separatrix

From the general solution obtained before, it is rather easy to derive the equation of the
separatrix orbit. In fact the separatrix orbit is the orbit with energy corresponding to the
parameter m = 1 and which possesses a period infinity. The sine amplitude of the Jacobian
elliptic function has two natural limiting functions depending on the limit values of m. These
limiting functions are sn(u; m) → sin u for m → 0 and sn(u; m) → tanh u for m → 1.

Moreover, if m = 1 then � = 1, a = − α
2β

and b = c = α
β

from equations (12) and (14).
Hence, the equations in phase space are given by

xsx(t) = 3α

2β

(
2

3
− cosh−2

{√
α

4
(t − t0)

})

ysx(t) = 3

2

√
α3

β2

sinh
{√

α
4 (t − t0)

}
cosh3

{√
α
4 (t − t0)

}
(27)

which has a fish-shaped form. Actually, it is easy to check that ysx(t) and xsx(t) are related as

y2
sx = 2

3
β

(
xsx − α

β

)2 (
xsx +

α

2β

)
. (28)

The bounded motions lie in the interior of the separatrix, while the unbounded motions lie
outside. In this case, the separatrix corresponds to a homoclinic orbit since the orbit connects
the hyperbolic fixed point

(
α
β
, 0

)
to itself.
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2.6. Stochastic layer

Once the Helmholtz oscillator has been analysed, it is interesting to study how the orbits
behave in the proximity of the separatrix when a periodic force is applied.

The time-dependent Hamiltonian in equation (7) can be used, as was explained in the
introduction of this section, to study the Helmholtz oscillator with a periodic force. This
time-dependent Hamiltonian can be seen as the sum of a time-independent Hamiltonian

H0(x, p) = 1

2
p2 +

α

2
x2 − β

3
x3 (29)

and a time-dependent Hamiltonian

H1(x, t) = −γ x cos ωt (30)

i.e., the Hamiltonian H(p, x, t) can be written as

H(p, x, t) = H0(x, p) + H1(x, t). (31)

The former Hamiltonian allows the effect of the force to be analysed by means of an area
preserving map, which is called the whisker map or the separatrix map. This map measures
the energy and phase change of a trajectory close to the separatrix for each period of the motion
[16].

In order to construct this map, the change of the Hamiltonian H0 must be evaluated. The
total derivative of H0 is the following:

dH0

dt
= {H0,H } = {H0,H1} = −∂H0

∂ẋ

∂H1

∂x
= γ ẋ cos ωt (32)

where {} is the Poisson bracket.
Since our main interest is to discuss the motion of the particle when its energy is close to

the separatrix, it is assumed that γ is small enough to consider that H1 is a small perturbation.
Then, it is close to the separatrix where big effects in the dynamics of the particle may be
expected. The effect of a small perturbation on the orbits of small energy is negligible.

The method used to obtain the separatrix map, when H1 is considered to be a small
perturbation, is a standard one [16]. The first step is the computation of the energy �E. This
energy accounts for the amount of the energy which an orbit close to the separatrix needs to
accomplish a complete cycle and is given through the integration of equation (32),

�E = γ

∫
�t

ẋ cos ωt dt (33)

where �t = T/2 = π/ω. Note that this integral signals the border of the stochastic layer.
This energy is usually written in the following way to be evaluated around the separatrix:

�En = γ

∫ tn+ T
2

tn− T
2

ẋ cos ωt dt ≈ γ

∫ +∞

−∞

dxsx

dt
cos{ω(t + tn)} dt . (34)

From the third equality in equations (9) and (10), a relationship between the energy E
and the parameter m is found. Expanding around m = 1 up to second order, the following
expression is obtained: 8E ≈ (1 − m)2. This approximation is used later to determine the
separatrix map and its corresponding stochastic layer.

The change of the phase is given by �φ = ωT . The expression for the energy relationship
found before in terms of m, when m is close to 1, suggests that the period of the orbits close
to the separatrix behaves like

T (m) ≈ 1√
α

ln

(
32

E

)
. (35)
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In this manner, the change of energy E and phase φ from the period n to the period n + 1
is given by the separatrix mapping [8]

En+1 = En + �En φn+1 = φn + ωTn+1 (36)

where the variables (E, φ) are to be understood as a canonical pair. This map contains in
principle the essential dynamics in the region close to the separatrix. Thus, the separatrix map
is given by

En+1 = En +
6πω2

β

γ sin φn

sinh
{

πω√
α

} φn+1 = φn +
ω√
α

ln

(
32

En+1

)
. (37)

Another way of measuring the instability is through the calculation of the following
parameter K, defined as [8]

K =
∣∣∣∣δφn+1

δφn

− 1

∣∣∣∣ (38)

from which the stochastic layer width is achieved as a by-product. It supplies the information
about how a small phase interval is stretched. The measure of the local instability is given by
K � 1, because close to the separatrix, a small change in frequency may cause a big effect in
phase. The stochastic layer width is given by the value

E ≈ 6πγω3

√
αβ sinh

{
πω√

α

} (39)

which corresponds to the width of the region close to the separatrix where it is likely to expect
chaotic motions.

3. Dynamics of the Helmholtz oscillator with friction

3.1. Introduction

In this section, the Helmholtz oscillator in equation (3) is analysed in the absence of the
periodic force, i.e., when γ = 0. Then, the equation of motion of a particle of unit mass
reads

ẍ + δẋ + αx − βx2 = 0. (40)

To investigate the integrability of this equation, the Lie theory of differential equations
will be used [17, 18]. However, it should be noted that the integrability of a differential
equation can also be analysed by means of Kowalewski’s asymptotic method (also called
the Painlevé singularity structure analysis) and the same result is achieved. For example, in
[19, 20] the Duffing oscillator is analysed in this manner. Nevertheless, the Lie theory is
used in this work because this approach, in addition to giving information about when the
equation is integrable, allows the problem to be reduced to canonical variables which eases
the integration of the equation in a more general and natural way.

It can be seen in [17, 18] that in order to find the symmetry group G admitted by a
differential equation with infinitesimal operator

X = η(t, x)
∂

∂x
+ ξ(t, x)

∂

∂t
(41)

it is needed to find an infinitesimal operator X+2 such that

X+2(ẍ + δẋ + αx − βx2) = 0. (42)
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The operator X+2 is

X+2 = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
+ A(t, x, ẋ)

∂

∂ẋ
+ B(t, x, ẋ, ẍ)

∂

∂ẍ
(43)

where A(t, x, ẋ) and B(t, x, ẋ, ẍ) are defined as follows:

A(t, x, ẋ) = ηt + ẋ(ηx − ξt ) − ẋ2ξx
(44)

B(t, x, ẋ, ẍ) = ηtt + ẋ(2ηxt − ξtt ) + ẋ2(ηxx − 2ξtx) − ẋ3ξxx + ẍ(ηx − 2ξt − 3ẋξx)

with the usual notation ωz ≡ ∂ω
∂z

.
All ξ(t, x) and η(t, x) that verify equation (42) generate infinitesimal operators X as in

equation (41) which comprise the symmetries of the differential equation. Also, it is known
that one symmetry can be used to reduce by one the order of a differential equation. Thus,
to integrate a second order differential equation two symmetries are needed. Hence, the
Helmholtz oscillator will be integrated only if ξ(t, x) and η(t, x) are such that they generate
two linearly independent infinitesimal operators.

3.2. Condition of integrability

Following the procedure to determine the symmetries of a differential equation mentioned in
the former section, equation (42) reads

X+2(ẍ + δẋ + αx − βx2) = η(α − 2βx) + δ(ηt + ẋ(ηx − ξt ) − ẋ2ξx) + ηtt + ẋ(2ηxt − ξtt )

+ ẋ2(ηxx − 2ξxt ) − ẋ3ξxx − (δẋ + αx − βx2)(ηx − 2ξt − 3ẋξx). (45)

This is a polynomial of third degree in [ẋ] which is zero if and only if the coefficients of
every monomial is zero

[ẋ3] : ξxx = 0 (46)

[ẋ2] : ηxx − 2ξxt + 2δξx = 0 (47)

[ẋ] : 2ηxt − ξtt + 3ξx(αx − βx2) + δξt = 0 (48)

[1] : η(α − 2βx) + δηt + ηtt − (ηx − 2ξt )(αx − βx2) = 0. (49)

From the condition in equation (46), it is obvious that ξ(x, t) = f (t) + k(t)x, and this
result in equation (47) implies that η(x, t) = (k′(t) − δk(t))x2 + xg(t) + h(t). If both results
are used in equation (48) it is deduced that

4(k′′ − δk′)x + 2g′ − (f ′′ + k′′x) + 3k(αx − βx2) + δ(f ′ + k′x) = 0. (50)

This is a polynomial of second degree in [x] which is zero if and only if the following
three equations are verified:

[x2] : 3βk = 0

[x] : k′′ + 3δk′ − 3αk = 0

[1] : 4k′′ − f ′′ + δf ′ + 2g′ = 0.

(51)

These three equations imply that k = 0, hence ξ(x, t) = f (t) and η(x, t) = xg(t) + h(t),
with the following relation between f (t) and g(t):

δf ′ + 2g′ − f ′′ = 0. (52)

According to these results, the condition in equation (49) is reduced to

(gx + h)(α − 2βx) + δ(xg′ + h′) + xg′′ + h′′ + (αx − βx2)(−g + 2f ′) = 0. (53)
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This is a polynomial of second degree in [x] which is zero if and only if the following
three equations are verified:

[x2] : g + 2f ′ = 0 (54)

[x] : 2αf ′ + δg′ + g′′ − 2βh = 0 (55)

[1] : αh + δh′ + h′′ = 0. (56)

The conditions in equations (52) and (54) imply that g = A e
1
5 δt , where A is a constant.

When this result is used in equation (55) it is obtained that h = 1
2β

(
6

25δ2 − α
)
g. And finally,

this result in equation (56) means that 1
2β

(
6

25 δ2 + α
)(

6
25δ2 − α

)
g = 0. But since it is supposed

that α > 0 and so 6
25δ2 + α > 0, there are only two options to verify all conditions.

The first one is when g = 0. In this case h = 0 and f = constant, and this means that
η = 0 and ξ = constant. Hence, only one infinitesimal operator is obtained, namely X = ∂t ,
and as a consequence the differential equation is partially integrable.

The second option in order to get two symmetries is when

α = 6

25
δ2. (57)

In this case h = 0 and g = A e
1
5 δt , which implies that f = B − 5

2δ
A e

1
5 δt and consequently

ξ = B − 5
2δ

A e
1
5 δt and η = Ax e

δ
5 t . Therefore two infinitesimal generators are found, namely,

X1 = ∂

∂t
X2 = − 5

2δ
e

1
5 δt ∂

∂t
+ x e

1
5 δt ∂

∂x
. (58)

In conclusion, only when it is verified that α = 6
25δ2, the Helmholtz oscillator with

friction is completely integrable. Therefore, there is a lot of information about the oscillator
in this particular case, but it should be noted that the information applies for just a two-
dimensional (2D) manifold in the parameter space {δ, α, β, γ }. When α �= 6

25δ2, the oscillator
is only partially integrable and there is no way to write down the solution in terms of known
functions.

3.3. Reduction to canonical variables

The infinitesimal generators X1 and X2 defined in equations (58) are a 2D algebra L2 since
[X1,X2] = δ

5X2, where [ ] is a commutator called a Lie bracket, defined in the following
manner: [X1,X2] = X1X2 − X2X1. This Lie algebra can be classified according to
its structural properties [17] as type III because [X1,X2] = δ

5X2 �= 0 and X1 ∨ X2 =
x e

1
5 δt �= 0, where ∨ is a pseudoscalar product defined as X1 ∨ X2 = ξ1η2 − ξ2η1,

if Xi = ξi∂1 + ηi∂2 for i = 1, 2. Actually, L2 is the algebra of the homothety
transformations of the real line R, where X1 is a homothety operator and X2 is a translation
operator.

Then, it is known that there exists a pair of variables w and z, called canonical variables,
which linearizes the action of the group G on R and reduces the algebra L2 to X1 = w∂w + z∂z

and X2 = ∂z.
Let w and z be

w ≡ Ax e
2
5 δt z ≡ B e− 1

5 δt (59)

where A and B are constants, then

X1 = 2δ

5
ω

∂

∂ω
− δ

5
z

∂

∂z
X2 = B

2

∂

∂z
. (60)
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Although it is not the canonical form, there is no need to introduce more changes because
it is simple enough to reduce the Helmholtz oscillator to an easily integrable equation.

From the definitions stated in equations (59) the following result is obtained:

w′′ = d

dz

(
dw

dz

)
= 25A

B2δ2
e

1
5 δt d

dt

((
ẋ +

2

5
δx

)
e

3
5 δt

)

= 25A

B2δ2
e

4
5 δt

(
ẍ + δẋ +

6δ2

25
x

)
= 25β

δ2AB2
w2. (61)

Therefore, if A and B are chosen such that

AB2 = 25β

6δ2
(62)

then w′′ = 6w2, which is easily integrated yielding

(w′)2 = 4w3 − g3 (63)

where g3 is a constant.
The solution of this differential equation is the Weierstrass function ℘(z; 0, g3), since

℘(z; g2, g3) verifies that (℘ ′)2 = 4℘3 − g2℘ − g3. Hence, the solution of the Helmholtz
oscillator with friction is w = ℘(z; 0, g3), which is called the equianharmonic case of the
Weierstrass function because g2 = 0 [15].

It should be noted that g3 = 4w3 − (w′)2 is a first integral of motion and when a change
of variables from (w, z) to (x, t) is carried out in equation (63), the first integral g3 becomes
I (t, x, ẋ) in this manner,[(

ẋ + 2
5δx

)2 − 2
3βx3] e

6
5 δt = �g3 = I (t, x, ẋ) (64)

where � = (
6B3δ3

125β

)2
and, consequently, is always a positive constant.

The former result is an explicitly time-dependent first integral which is analogous to
the first integral of the Duffing oscillator obtained in [20]. Also, it can be related to the
Hamiltonian function of the Helmholtz oscillator with friction in the following way. Define
two variables p and q as follows:

p =
√

2
(
ẋ + 2

5δx
)

e
3
5 δt q =

√
2x e

2
5 δt (65)

so the first integral I (t, x, ẋ) can be written as

I (p, q) = 1

2
p2 − β

3
√

2
q3. (66)

Define a function H(p, q, t) related to the first integral I (p, q) as

H(p, q, t) = I (p, q) e− 1
5 δt =

(
1

2
p2 − β

3
√

2
q3

)
e− 1

5 δt . (67)

This function verifies the Hamilton equations, namely,

∂H

∂p
= p e− 1

5 δt =
√

2

(
ẋ +

2

5
δx

)
e

2
5 δt = q̇

∂H

∂q
= − β√

2
q2 e− 1

5 δt = −
√

2βx2 e
3
5 δt = −ṗ

(68)

and hence H(p, q, t) is a Hamiltonian function. Moreover, by means of equations (68) it is
obtained that

q̈ =
(

ṗ − 1

5
δp

)
e− 1

5 δt = β√
2
q e− 2

5 δt − 1

5
δp e− 1

5 δt (69)
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which can be written in terms of (x, t) by using equations (65) as

√
2 e

2
5 δt

(
ẍ + δẋ +

6δ2

25
x − βx2

)
= 0. (70)

Therefore, H(p, q, t) is the Hamiltonian function of the Helmholtz oscillator with friction
for the integrable case since the solutions to ẍ + δẋ + 6δ2

25 x − βx2 = 0 and the solutions to the
Hamilton equations of H(p, q, t) are the same. Then, two remarks can be made. First, the
explicitly time-dependent Hamiltonian is not a first integral of motion, which is reasonable
since the energy is not constant in this system because of the friction. Second, the first integral
I (p, q) can be seen as the energy of a particle in a potential V (q) = − β

3
√

2
q3 and, thus, the

Helmholtz oscillator can be regarded as a system with energy I (p, q) at t = 0, which vanishes
exponentially with time.

3.4. Solutions of the integrable case

3.4.1. Case g3 = 0. The equation to solve is (w′)2 = 4w3, whose solution is w = (z− c′)−2

where c′ is an arbitrary constant. The definitions of w and z and the relation in equation (62)
imply that

x(t) = 6δ2

25β

(
1 + c2 e

1
5 δt

)−2
(71)

where c2 is an arbitrary constant because c′ is arbitrary.

3.4.2. Case g3 > 0. The Weierstrass function ℘ (z; g2, g3) for g2 = 0 and g3 > 0 can be
written in terms of the Jacobian elliptic cosine cn [15] as

w(z) = r + H
1 + cn(2

√
Hz + c2; m)

1 − cn(2
√

Hz + c2; m)
(72)

with c2 an arbitrary constant and where m = 2−√
3

4 	 0.067 and H = √
3r with r = 3

√
g3

4 .

Note that, as was explained in section 2.3., the elliptic parameter m is being used instead of
the elliptic modulus k, which are related as k2 = m.

By using the definitions of w and z and the relation in equation (62), the following result,
in terms of t, is obtained:

x(t) = 6δ2

100β
c2

1

(
1√
3

+
1 + cn

(
c1 e− 1

5 δt + c2; m
)

1 − cn
(
c1 e− 1

5 δt + c2; m
)
)

e− 2
5 δt (73)

where c1 = 2
√

HB and hence c1 is arbitrary because B is arbitrary.

3.4.3. Case g3 < 0. It is known [15] that ℘(z; g2, g3) = −℘(iz; g2,−g3). This relation
lets us apply the result in equation (72) for g3 < 0 in the following way:

w(z) = −r ′ − H ′ 1 + cn(2
√

H ′ iz + ic2; m)

1 − cn(2
√

H ′ iz + ic2; m)
(74)

where m = 2−√
3

4 and H ′ = √
3r ′ with r ′ = 3

√
|g3|
4 . By means of the relation

cn(iu; m) cn(u; m′) = 1 where m + m′ = 1, it is possible to write equation (74) as

w(z) = −r ′ + H ′ 1 + cn(2
√

H ′z + c2; m′)

1 − cn(2
√

H ′z + c2; m′)
. (75)
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g3 > 0

x(t) → ∞
x(t) → 0

g3 < 0

x

x

g3 = 0

c2 = 0
x → 6δ2

25β

Figure 2. Relation between the geometry of the basins of attraction and the analytical features
of the exact solutions when the Helmholtz oscillator is integrable. The grey region represents the
initial conditions which tend to (0, 0) and the white region represents the ones tending to infinity.
The boundary between both basins corresponds to the set of initial conditions tending to the local
maximum and whose solutions have c2 = 0. Also, the curve g3 = 0 is depicted and represents
the initial conditions whose solutions have the first integral of motion I (t, x, ẋ) = 0. Finally,
the region where there are bounded orbits in the absence of friction is shown in dark grey. It is
comparatively smaller than the region x → 0 because the integrable case implies a large friction
since α = 6

25 δ2 and, hence, dissipation makes more initial conditions end up inside the potential
well.

Hence, the solution may be written in terms of t by changing variables and using
equation (62),

x(t) = 6δ2

100β
c2

1

(
− 1√

3
+

1 + cn
(
c1 e− 1

5 δt + c2; m′)
1 − cn

(
c1 e− 1

5 δt + c2; m′)
)

e− 2
5 δt (76)

where m′ = 2+
√

3
4 	 0.933 and c1 = 2

√
H ′B and hence c1 is arbitrary because B is arbitrary.

3.4.4. Discussion. In figure 2, the two basins of attraction of the Helmholtz oscillator are
depicted in the phase space. The grey region represents the set of initial conditions which
end up in the attractor (0, 0). It corresponds to bounded orbits in the phase space which
asymptotically spiral inside the potential well. The white region is the set of initial conditions
which correspond to unbounded orbits, i.e., tending to infinity. The boundary between both
sets is formed by the stable manifold of an unstable periodic orbit. Actually, this orbit is the
one that stays forever on the local maximum

(
6δ2

25β
, 0

)
of the potential, which means that all

points in the boundary tend asymptotically to this point.
The basins of attraction are related to the analytical solutions via c2 and to check this, it is

necessary to study the asymptotical behaviour of the solutions. To calculate the limit t → ∞
when g3 > 0, the following change of variable z ≡ c1 e− 1

5 δt is carried out, so the former limit
becomes z → 0. This implies in equation (72) that

lim
t→∞ x(t) = lim

z→0

6δ2

100β

(
1√
3

+
1 + cn(z + c2; m)

1 − cn(z + c2; m)

)
z2. (77)



708 J A Almendral and M A F Sanjuán

x(t)

x → ∞

x → 0

x → 24δ2

100β

t

Figure 3. The phase space of the Helmholtz oscillator with friction has two basins of attraction
and hence there are three kinds of orbits. Orbits spiralling inside the potential well tending to
the minimum x → 0, orbits tending to infinity x → ∞ and orbits tending to the local maximum

x → 24δ2

100β
, which correspond to initial conditions upon the boundary of both basins. Note that

particles are so damped in the integrable case that inside the potential well they go straight to zero
instead of spiralling and so there are no oscillations in the curve x → 0.

It should be noted that the Jacobian elliptic function cn(z; m) is a periodic function since
cn(z+2K; m) = −cn(z; m), i.e., 2K plays a role similar to π in a circular function. In fact, cn
is periodic with period 4K where 2K 	 3.197 because m = 2−√

3
4 and, thus, c2 is comprised

within (−2K, 2K). Consequently, if c2 = 4NK with N ∈ Z, then

lim
t→∞ x(t) = lim

z→0

6δ2

100β

(
1√
3

+
1 + cn(z; m)

1 − cn(z; m)

)
z2

= lim
z→0

6δ2

100β

(
1√
3

+
4 − z2

z2

)
z2 = 6δ2

25β
(78)

where the following result has been used: cn(z; m) = 1 − 1
2z2 + o(z4) [15]. Therefore, the

boundary when g3 > 0 can be defined as the points in the phase space whose analytical
solutions have c2 = 0.

When g3 < 0, the result x(t → ∞) = 6δ2

25β
, is also achieved when c2 = 0. However,

now cn(z; m′) is a periodic function with 2K ′ 	 5.535 since m′ = 2+
√

3
4 , and thus c2 is

comprised within (−2K ′, 2K ′). Nevertheless, in this case also the boundary can be defined as
the points in phase space whose analytical solutions have c2 = 0. Also, it is easy to verify from
equation (71) that in the case g3 = 0 the solution tends to 6δ2

25β
when c2 = 0.

In summary, the condition c2 = 0 on the exact solutions yields the boundary between the
two basins of attraction, which links the geometry of these two regions in the phase space with
an analytical feature in the exact solutions.

Inside the grey region in figure 2, the region where there are bounded orbits in the absence
of friction can be seen in black. It is a small region compared to the integrable case because
α = 6δ2

25 and then dissipation is more important than its potential energy. In other words, many
initial conditions which were unbounded orbits without friction dissipate energy quickly in
this case and, as they go by the potential well, are trapped in it.
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The existence of a strong dissipation in the integrable case also explains why there is no
oscillatory behaviour in figure 3. When the orbit tends to the minimum inside the well, the
particle is so damped that it goes straight to that minimum.

4. Concluding remarks

The Helmholtz oscillator is a simple model for studying phenomena which under certain
conditions present a stable behaviour of oscillatory kind, but for other conditions, the behaviour
is unstable (i.e., this oscillator presents an escape). Then, a question of interest is what happens
close to the separatrix when a forcing term is introduced. The effect of force is not relevant for
an orbit with little energy (i.e., close to the minimum in the potential well), because essentially
its stable behaviour is not altered by the force. The width of the stochastic layer by using the
separatrix map has been computed here. This gives the width of the energy band around the
separatrix where it is likely that an orbit presents transient chaos.

An important aspect considered in this paper is the inclusion of friction. To solve the
equation of the Helmholtz oscillator with friction and without forcing the Lie theory for
differential equations is used. We show that the Helmholtz oscillator is completely integrable
only when a certain relation between the parameters is satisfied. When this relation is not
satisfied, the equation is partially integrable. Also, we calculate that the symmetries for the
completely integrable case are a translation and a homothopy. Moreover, these two symmetries
are the 2D algebra of the homothety transformations of the real line and the symmetry for the
partially integrable case is a translation.

A first integral of motion is obtained when the equation is integrated by using one
symmetry. We prove that this time-dependent integral of motion is related to a Hamiltonian
function. The second symmetry allows integrating the first integral of motion to obtain, as a
solution, the Weierstrass function. Finally, we write this solution in terms of Jacobian elliptic
functions to show that there exists a relation with the basins of attraction of the oscillator.
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