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Abstract

The theory of complex networks is used to study di/erent aspects of a topology that we
propose to describe the relationships between members of a social group. This model is a
generalized hierarchical model since relations between members of the same group are also
considered. We derive the existence of a natural limit in the size of a group, and besides, an
insight into hierarchical networks is given, which explains why they are so spread despite its
global ine2ciency.
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1. Introduction

Network analysis is a tool which has been successfully used in di/erent scienti>c
>elds, such as neurobiology [1], Internet [2], the >nancial markets [3], the social in-
teractions, etc. A network is just a set of entities, which interact among each other
following certain topology. These elements and the topology can be represented by a
graph. The elements are represented by a set of points, called nodes or vertices, and
the interactions are represented by a set of lines between them, called edges or links.
Then, in the de>nition of a network, the >rst step is to determine the vertices and
the property determining if there exists a connection between any couple of them (the
edges).
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It is indeed possible to use a network model to describe a company. Thus, the nodes
might be the employees and the links could be the social relations or the information
�ow. Actually, in this paper we are particularly interested in the study and characteri-
zation of the information �ow between the members of a company. The nodes are the
employees and the links represent the social or professional interactions among them.

2. Information �ow in social networks

Traditionally, the research in graph theory has assumed that information in a graph
travels through edges without degradation. This approach is useful to model some
particular types of phenomena, like disease spread [4] or virus infection in a group
and error propagation in computer networks [5].
Nevertheless, this is not appropriate when trying to model processes that take place

in collaborative social networks. In order to create a model for this particular situation,
we de>ne a quantity that we call the coordination degree, which measures the ability of
the vertices in a graph to interchange information. There are several manners to model
this magnitude, but one of the easiest ways is to consider the coordination degree to be
exponentially related to the distance between the vertices [6]. In this way, we de>ne
the coordination degree �ij between two vertices i and j as �ij = e−�dij , where dij is
the distance between the two vertices and � is a real positive constant, measuring the
strength of the relationship which we call the coordination strength.
Quantities similar to the coordination degree have been already discussed in the

literature. The most remarkable work in this >eld is the one by Katz [7], where the
author considers the sum of e−�dij over all paths to a particular vertex. However, our
model postulates that only the shortest paths are appropriate for this purpose. We think
that our model is more appropriate than the one proposed by Katz for several reasons.
First, the Katz measure can only be expressed in terms of the adjacency matrix of
the graph, making the analysis and computations much more complex. Second, the
fact that all the paths have the same priority for the spread of information produces
some inconsistencies in the interpretation of the results, mainly when considering closed
loops, where the information can be somehow ampli>ed using this approach. Opposite
to this, the coordination degree may be easily evaluated and can be considered as a
very good approximation in sparse graphs, just by considering that the information
travelling through secondary routes is negligible.
Accepting these assumptions, we can de>ne the total coordination degree of a vertex

i in a graph as the sum of all the coordination degrees between that particular vertex
and the rest. Namely, �i =

∑N
j=1 �ij, where N is the order of the graph (the total

number of vertices in that particular graph). The total coordination degree of a vertex
is a measure of the amount of information that the vertex is able to receive belonging
to that particular network.
In the same way, we de>ne the average coordination degree of the graph as

L� = 1=N
∑N

i=1 �i. This average can be interpreted as a measure of the e2ciency of a
particular community or organization, since it suggests how much an individual con-
tributes to the community.
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3. The law of diminishing marginal returns

When analyzing the e2ciency of social networks in terms of the average coordination
degree, an interesting phenomenon appears (see Fig. 1). The e2ciency of networks does
not vary linearly with the order, but it tends to saturate to a value which depends on
the topology of the network.
This result can be seen from the point of view of the well-known law of diminishing

marginal returns. This law states that when the amount of a variable resource is
increased, while other resources are kept >xed, the resulting change in the output will
eventually diminish. This is precisely what occurs in the models, more members in
the organization does not produce an increase in the average coordination degree. This
means that the increase in information of each individual diminishes as the number of
members grows. As a consequence, it is reasonable to think that there exist a maximum
group size, since values greater than a certain N imply marginal returns close to zero.
Actually, some scientists propose the existence of this limit in the maximum number

of members of a social group by other means. Probably the most important work in
this direction is the one carried out by the British anthropologist Dunbar [8], who
related the size of the neocortex (a part of the brain related to social and language
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Fig. 1. Average coordination degree for three di/erent graphs (all of them with k = 4 and �= 2). Case (a)
is a regular 2D lattice. Case (b) is made of di/erent small world networks. Case (c) is a random graph.
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capabilities) and the maximum group size for primates. When applying this relation
for the Homo sapiens, the group estimate maximum size is 147.8, or roughly 150.
Nevertheless, the analysis performed in this paper shows that the size of an organi-

zation cannot be only understood in terms of the intrinsic psychological properties of
its members. The relational structure and the properties of the information transfer on
the network may also play a de>nitive role.

4. Information in hierarchical networks

In this section, we focus on the analysis of social networks having hierarchical
topologies [9]. Examples of graphs having this structure are regular trees. A regular
tree is a regular graph (all vertices have the same degree c) that is connected (there
is a path joining any two of its vertices) and that contain no circuits (there is no path
going from one actor to itself that does not visit the same vertex twice). Every regular
tree has a particular vertex, called root node or top of the tree, that is the most central
vertex in the graph.
In order to generalize hierarchical topologies based on regular trees, we work with

a regular tree that each vertex has c − 1 order 1 lower neighbors and c − 2 order 1
neighbors in the same level (see Fig. 2). The edges that link vertices in di/erent levels
and the edges that link vertices in the same level, have di/erent coordination strength,
and hence, there are two di/erent coordination degrees.
Let � and � be the coordination strength which measures the strength of the relation-

ship between vertices in di/erent levels and vertices in the same level, respectively.
Then, the coordination degree between two vertices order 1 neighbors in the same
level is �=e−�, and the coordination degree between two vertices order 1 neighbors in
di/erent levels is 
= e−�. Our objective is to obtain a formula giving the information
�ow, for the former topology representing social networks, in terms of the coordination
degrees � and 
.
As it is mentioned in the introduction of this section, we assume that the information

travels through the shortest path. This implies that � has really an e/ect on the model
only when �¿
2. In that case, the following formula for the coordination degree

Fig. 2. Representation of a hierarchical topology with links between member of the same group. Notice that
there are two di/erent coordination degrees � and 
.
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is obtained:

�̃i(�; 
) =



(c−2)�
1−(c−1)


[

−
N−i

1−
 − 1−[(c−1)
2]N−i−1

1−(c−1)
2 (c − 1)i+1
i+2
]

+ 
−
N−i+1

1−
 + [1 + (c − 2)�] 1−[(c−1)
]i

1−(c−1)


 ; i6N − 1

1−[(c−1)
]i

1−(c−1)
 ; i = N :

(1)

When �¡
2, the shortest path is through the 1 order upper neighbor, as in a tradi-
tional hierarchical tree. Consequently, the former equation cannot be used to compute
the coordination degree. However, from Eq. (1) it is possible to derive the coordination
degree in a traditional hierarchical tree, by introducing the following change � → 
2.
Hence, the coordination degree in our model can be written in the following terms:

�i(�; 
) =

{
�̃i(�; 
); �¿
2 ;

�̃i(
2; 
); �6 
2 :
(2)

As a basic ingredient of our model, it is important to remark the common perception
that the number of close relationships a person may have within a community is
necessary limited to a quite small number, independently on the type of organization.
This may be the consequence of the fact that establishing close relationships with
people is normally very time consuming, and time is a limited resource for every
individual.
Therefore, it is reasonable to think that each member devotes time to his neighbors

proportionally to the information obtained. That is, each actor shares his time between
neighbors in the same level and neighbors in di/erent levels, proportional to � and 
,
respectively. Thus, there is a constraint on � and 
 given by (c − 2)� + c
 = const,
which is a plane in the space {�; 
; �i}. Hence, the coordination degree is a curve, the
intersection of that plane and the surface de>ned by �i (see Fig. 3). And the result
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Fig. 3. When the constraint (c − 2)� + c
 = cons: is included in the model, the coordination degree is a
curve depending on � and 
 whose maximum is at � = 0.
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is that the maximum information is received when each actor devotes all his time to
neighbors in upper levels.

5. Conclusions

The traditional hierarchical tree represents a topology globally ine2cient as compared
with others. However, it is rather spread because this structure arises when each actor
only looks for maximizing his information. The result is a structure which mainly ben-
e>ts the higher levels, by providing them a higher information centrality and improving
their dominance of information.
When edges, between vertices with the same upper neighbor, are added to a hier-

archical tree, we show that the information each actor manages decreases. This means
that a hierarchical tree is a stable network against relationships between members of
the same group. This stability can be seen as another reason which explains why hier-
archical trees are so spread in companies all over the world. A hierarchical tree backs
the leader’s superiority of information despite the strength of the relationship which
links the members of a group.
Nevertheless, it should be noticed that in our model edges between vertices in the

same level with di/erent upper neighbor are not included, or between vertices in dif-
ferent levels. This study may yield a di/erent result.
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