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A plausible model for coherent perception is the synchronization of chaotically distributed neural
spike trains over wide cortical areas. A recently introduced propensity criterion provides a tool for
a quantitative comparison of different neuron models in terms of their ability to synchronize to an
applied perturbation. We explore the propensity of several systems and indicate the requirements to
be satisfied by a plausible candidate for modeling neuronal activity. Our results show that the
conflicting requirements of stability and sensitivity leading to high propensity to synchronization
can be satisfied by a strongly nonuniform attractor made of two distinct regions: a saddle focus plus

a sufficiently separated saddle node. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2959101]

In exploring the dynamics of brain systems, it has been
established that neuronal information is coded by spikes
of electrical activity (each one around 100 milliVolts high
and lasting 1 millisecond) traveling along the neuron
axon. Since spikes are almost identical to each other, rel-
evant information is coded in their time positions, which
may be varied by mutual coupling or by other modula-
tion of the control parameters, leading eventually to col-
lective synchronization of large brain areas. A recent re-
view, mainly devoted to central pattern generators
(CPG),1 discusses the clever balance of positive and nega-
tive feedback (excitatory and inhibitory couplings, re-
spectively) on each neuron in order to achieve a stable
dynamical behavior. This is crucial for all autonomous
tasks such as the cardiorespiratory and digestive
rhythms, which have to be immune to external perturba-
tions. On the other hand, a cognitive module should be
ready to respond to different classes of stimuli and orga-
nize the response within a limited time interval. Accord-
ing to the feature binding hypothesis, this is achieved by a
temporary spike synchronization of all the neurons of a
specific cortical module. We aim to model the relevant
dynamical features of this synchronization. For this pur-
pose, a recently introduced criterion of ‘“propensity to
synchronization” is discussed for dynamical systems that
yield spikes with erratic interspike intervals. The first
model system where such a return has been studied in
detail was introduced to explain a similar behavior ob-
served in lasers. This is called the heteroclinic chaos
model (HC). In this paper, we study Hodgkin—-Huxley
equations (HH) with the control parameters tuned to val-
ues that also lead to this behavior of erratic interspike
intervals and the Hindmarsh—Rose (HR) model that was
introduced as a simplification of HH and in a suitable
parameter range that also provides spikes with erratic
repetition. A neurophysiologist would be inclined to
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model a neuron in a reductionist way, starting from its
component behaviors. We rather take a global approach
based on the relevant dynamical features, which are com-
patible with different classes of model equations. Thus a
cognitive neuron is broadly modeled as a chaotic spike
generator, whose interspike intervals depend upon an ex-
ternal signal (the bottom-up input stimuli) as well as the
setting of some control parameters driven by the top-
down perturbations from other brain areas.

I. INTRODUCTION

Quite a few papers have dealt with the time code in
neural processes, some relevant examples being Refs. 1-10.
Evidence for time correlations between cortical neurons has
been found in laboratory animals where local electrical ac-
tivity is explored by invasive techniques (microelectrodes
sensing the membrane potential of a single axon). In the case
of human subjects, noninvasive methods, such as EEG, are
used. The evidence for a time code in a neural assembly has
been established indirectly, in terms of phase synchronization
among filtered EEG signals from separate cortical areas.>!”

Looking at brain phenomena from a physicist’s perspec-
tive, feature binding is perhaps the most crucial aspect of
perception formation.”” The feature binding process is rep-
resented by the spread of a synchronized state over a wide
cortical area.’ Considering a specific area or module of the
cortex, feature binding consists of the fact that, even though
individual neurons of the module receiving different stimuli
from other modules are supposed to produce different spike
trains, when that module has to respond to a definite feature,
its neurons synchronize their trains of spike activity in order
to build a coherent collective state. A plausible explanation is
that top-down perturbations, provided by the previously
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stored information, combine with the bottom-up input to fix
the spike tirning.11

In Sec. II, we analyze the dynamical properties that ap-
pear sufficient to establish feature binding. In Sec. III, we
introduce the propensity and evaluate it for two dynamical
systems that are commonly used to model neurons. Conclu-
sive remarks are given in Sec. IV.

Il. DYNAMICAL PROPERTIES

We visualize a cortical module as made of one or more
input neurons receiving an external signal, and transferring
the information to the rest of the module by mutual coupling,
which we will take as nearest-neighbor coupling. The neu-
rons are modeled as identical dynamical systems. We con-
sider that the module has performed a recognition task when
all the neurons behave coherently, i.e., have the same firing
patterns. A relevant question is whether feature binding is the
result of phase synchronization or spike synchronization.
Considering phase synchronization from a dynamical point
of view,'*"” the associated time accuracy is rather poor, since
the phase correlation decays smoothly over a wide fraction
of the interspike interval (IST). In fact, if we rescale the ISI to
21, then the phase is defined by the trigonometric function
arctan (y/x), with y and x being two coupled dynamical
variables. Thus the phase changes smoothly over 7. Since
the membrane potential in the single neuron is a train of
spikes, coherent behavior means spike synchronization.
Standard spike trains have an average ISI much longer than
the spike duration (more than 10 times; in the gamma band
oscillations (IST) lasts 25 ms whereas the single spike dura-
tion is 1 ms). Therefore, synchronization implies accurate
spike timing, which is in general more stringent than phase
synchronization. In fact, phase synchronization is associated
with signals that have a prevailing harmonic component, and
hence a power spectrum peaked around a particular fre-
quency, whereas spikes are associated with broad spectra.

A neuron must fulfill two conflicting operational require-
ments, namely stability and sensitivity. By stability, we mean
that neurons should be able to withstand environmental dis-
turbances at room temperature and thus the model should
have a highly stable attractor. This conflicts with sensitivity,
which implies that a weak input should be effective in stimu-
lating the neuron. Furthermore, the interneuron coupling
should be weak enough not to alter the individual dynamics
of each neuron. These requirements can be reconciled by a
strongly nonuniform attractor made of two distinct regions.
These are a saddle focus singularity plus a larger regular
region that provides spikes. Indeed, the system is highly
stable away from the singularity, and yet very sensitive to an
external perturbation around the singularity, since the ap-
proach through the stable manifold is associated with a local
slowing down and hence has high response to a perturbation.

By adjusting the control parameters, the saddle focus
singularity neighborhood can provide either a locally peri-
odic or chaotic tangle as the two behaviors are closely nested
in parameter space.14 We will compare different models in
the chaotic regime since, in the periodic regime, the system
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FIG. 1. (Color online) (a) Time series of x; for the HC model in the chaotic
regime, (b) the phase-space projection over two dynamical variable, x; and
Xg-

will adapt to an external stimulus at a cost of time lethargy
and energy (high coupling).

We have given substance to these ideas by considering
the heteroclinic transfer back and forth between a saddle fo-
cus, where the local eigenvalues satisfy the Shilnikov condi-
tion for chaos'” and a saddle node. Such a structure underlies
spiking behavior in many neuron models.'*™"® It has also
been explored both experimentally19 and theoretically14 in
the context of a CO, laser with feedback. We will refer to
this model as heteroclinic chaos, or HC.? The dynamics of
this system is characterized by a sequence of spikes with
widely fluctuating ISIs and in between the spikes, an irregu-
lar signal at a scale much smaller than the spike height as
shown in Fig. 1(a). Although in Ref. 20 it was named “ho-
moclinic chaos,” the mere homoclinic return to a saddle fo-
cus would not assure a robust regularity (i.e., insensitivity to
small disturbances) away from the saddle focus. Instead, the
further presence of a saddle node gives the stability away
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from the saddle focus, which yields almost identical spikes.
The phase-space orbit for HC is a wide regular trajectory
with the exception of a small neighborhood of the saddle
focus as shown in Fig. 1(b). The exiting trajectories along the
unstable manifold reenter the stable one after a large orbit in
phase space, corresponding to the heteroclinic approach to a
saddle node. The erratic behavior is confined in a small
neighborhood of the saddle focus where the Shilnikov con-
dition is fulfilled. Once again, we note that this dynamics is
highly nonuniform, in the sense that the sensitivity to small
perturbations is large only in the vicinity of the saddle focus.
In a mutually coupled assembly of such dynamical systems,
only the large spikes become synchronized over the network,
whereas the small scales do not contribute to the spread of
synchronization.2l

We thus identify a condition for high propensity to syn-
chronization as the presence within each orbit of two very
different amplitude scales. These are a regular region that
includes the large spikes and a small chaotic background.zz’23
In the presence of an external driving signal, the spikes can
synchronize to this signal.20 In the case of many coupled
systems of this type located on an array, wide parameter
ranges can be found within which the individual sites mutu-
ally synchronize their spikes.23

In order to explore the applicability of this idea to neural
models, we study models that can be tuned to have irregular
spike intervals. The qualitative descriptions discussed above
are satisfied by the Hodgkin—Huxley (HH) model for action
potentiaxlsm’%25 when the parameters are suitably adjusted in
order to display a homoclinic return to a saddle singularity.18
Specifically, in the thermoreceptive version'®** of the
Hodgkin—Huxley equations, the parameters can be adjusted
to meet the Shilnikov condition for chaos. Although ther-
mosensitive neurons are not found to assemble in networks,2
we study this model since it displays the same features as the
HC model, which has already been shown to have high pro-
pensity to synchronization.

Another widely used model was introduced by Hind-
marsh and Rose (HR).® It is characterized by bursts of
spikes that occur periodically or chaotically. It has been used
to model many neuron processes, both autonomic and cog-
nitive. Even though the phase-space structure of the HR
model provides erratic burst intervals, it does not fully sat-
isfy the conditions described above for high propensity since
it does not have a saddle focus. However, we study the HR
model simply as a comparison to HH. Most of the other
single neuron models are lower dimensional, hence they do
not exhibit autonomous chaotic behavior. Our study of the
nonautonomous Fitz—Hugh—-Nagumo model®” in terms of its
propensity to synchronization resulted in very low (~0) pro-
pensity for all frequency ranges, hence it will not be dis-
cussed any further.

It should be noted that when considering HH, we will
characterize the time by measuring intervals between indi-
vidual spikes, while in the HR case, since this model exhibits
bursts of spikes, we will measure the interval between bursts.
The role of single spikes versus bursts in neural systems is
still controversial. Feature binding has been associated with
single spike synchronization,3 while, loosely speaking, the
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bursting behavior has recently been associated with central
pattern generators (CPG).28 However, no clear-cut associa-
tion between cognitive and motor tasks with single spikes
and bursts, respectively, has been given so far. A preliminary
comparison may be found in Ref. 29 and more recently dis-
cussed in Ref. 30. In fact, a different, very clever mathemati-
cal approach exists in considering synchronization of
bursts®' while the cognitive role of bursting mechanisms has
been explored in Ref. 32.

lll. THE PROPENSITY TO SYNCHRONIZATION

Propensity to synchronization is the key element for fea-
ture binding. Given a dynamical system generating a chaotic
train of spikes, the relevant question is, how sensitive is the
system to perturbations leading to a synchronized state? In
the case of a HC system, this question was addressed in
Ref. 21.

In order to study the propensity of a system, we perturb
one of the parameters of the model by a small-amplitude
periodic disturbance. In this approach, the dynamical behav-
ior is modified by tuning some control parameter, having in
mind the role of top-down perturbations that change the set-
ting of each neuron besides the bottom-up input stimuli. We
study a range of periods around the average ISI (interspike
interval) as a way of exploring the sensitivity in a frequency
range where any sensible time code should operate. As we
explore the sensitivity to a periodic perturbation, we have a
kind of Arnold tongue profile with maximum sensitivity
around the average ISI.

In order to build an indicator of successful synchroniza-
tion, we consider the coherence parameter

(18D
©8(1IS)°

where &(ISI) is the square root of the ISI variance, S(ISI)
=({(ISI=(ISI))*))"2. R is of the order of unity for a random
distribution of spikes, and very large for an almost periodic
sequence.

R is the inverse of the so-called coefficient of variation
and provides a sensitive test of synchronization to a periodic
perturbation, since it increases dramatically as the system
gets more periodic. Starting from the chaotic regime, R con-
veniently shows the degree of synchronization for each fre-
quency.

In a chain of coupled systems, R can differ in general
from site to site. However, above a critical coupling param-
eter for which the chain reaches full spike synchronization,
the same R value holds for all sites” and it becomes a col-
lective indicator for the whole chain.

We define the propensity P as the logarithm (base 10) of
the ratio of the R value under a small periodic perturbation of
a control parameter to the R value for the unperturbed sys-
tem,

R
P=10g10_p£t. (1)

free

Of course, P in general will be a function of the fre-
quency of the periodic perturbation. We would expect that
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for a synchronized chain, it is enough to establish P for a
single dynamical system, taken as the input neuron coupled
to an external environment; then for some amount of mutual
coupling, all the other neurons of the network synchronize to
the first one, assuming the same P value.?!

In a coupled array, there are thus two aspects to be con-
sidered:

(i) The propensity of a single system (neuron) with respect
to an external perturbation.

(ii) The propagation of the propensity in the chain of
coupled systems, starting from an input site where the
external perturbation is applied. In the following sec-
tions, we will compare the different models from both
viewpoints (i) and (ii).

When testing the indicator P for a single frequency per-
turbation w for any particular dynamical system, P will de-
pend on the separation between w and the “natural” fre-
quency w, associated with the average interspike interval
with no perturbation. As for the propagation of P(w) from
site to site, we will stress how P depends on the site position
x for each coupling strength, . Hence, our aim is to compare
P(w,x) for different amounts of input signals and coupling
strength.

We compare the propensity for the Hodgkin—Huxley
neural model (HH) in the thermoreceptive version'*** and
the Hindmarsh-Rose (HR)*® model. In the case of the
Hindmarsh—Rose model, we distinguish two different nu-
merical versions, used by different groups, which we denote
HR1% and HR2.*

The results for the two models reported in the following
section have been obtained by adding a sinusoidal perturba-
tion to one of the control parameters with an amplitude that
is ~10% of the parameter size. Each system of differential
equations has been numerically solved using the fourth-order
Runge—Kutta method. A threshold is applied to the output
signal to obtain the time intervals between spikes for the HH
model and the time interval between bursts for the HR
model.

A. Hodgkin—Huxley model (HH)

For our study, we use the thermosensitive version of the
Hodgkin—Huxley model,'®*** which has been proposed to
reproduce the spike patterns observed in several experiments
on temperature receptor neurons.”® These receptors codify
the temperature information into spike trains, and single neu-
rons show a variety of dynamics from excitability to ho-
moclinic chaos, going through periodicity and period dou-
bling chaos, with temperature being the only control
parameter. To account for all these behaviors, the classical
Hodgkin—Huxley model is modified to include two new slow
currents with subthreshold oscillations, independent of the
spiking dynamics, as found in the experiments.

The model consists of the following set of equations:

v _
dr
where I[=g[(V— V[),

1
_(E>(Il+ld+lr+lsd+lsr)7 (2)
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Ii=p(Tgaas(V-Vy), I,=p(Tga(V-V,),

Isd = p(T)gsdasd(V_ Vsd)v Isr = p(T)garasr(V_ Vsr)v

3)
ag= 1+ Vo)l g = (L Vo),
i = (14 &V Vo),
and
i = ¢(1)(a,i—a,) _ (D) (ays— aa)
' 7 no Tsd ’
(4)
_ d)(T) (_ led - eaxr)
* TW" ’
with temperature-dependent variables
¢(T) =A<2T_T0)/10, P(T) ZA(IT_TO)/IO. (5)

Here, V is the membrane potential of the neuron and C is the
membrane capacitance. /; is the leakage current and /,; and 7,
are currents representing Na and K channels, respectively. I,
and [, are the slow currents that account for the oscillations.
More details and the values of the parameters can be found
in Ref. 18.

This model yields a period doubling cascade for tem-
peratures greater than 7= 6.76°C,"® followed by homoclinic
bifurcation at 7=10.66°C, at which point the system satis-
fies the Shilnikov condition. In our study, we fix the tempera-
ture to T=15.5°C, i.e., in the range of homoclinic chaos.

The time series for the membrane potential V can be
seen in Fig. 2(a). The corresponding ISI histogram shows a
band centered around w,=0.03, as can be observed in Fig.
2(b). The continuous range in the natural frequencies of the
system indicates a sensitivity to be driven by an external
signal.

First, we study the response of a single neuron when the
system is perturbed by adding an external current of the form
1,=1, sin(wt). We considered a perturbation of 10% on the
variable V and therefore set /,=3.0 and computed the pro-
pensity P as a function of the external frequency w. The
system is found to be very sensitive for a continuous range of
external frequencies w above w,, as can be seen in Fig. 2(c).

Although thermosensitive neurons are not found to as-
semble in networks,2 for comparison with HC, we also con-
sider the propagation of propensity P along a bidirectional,
weakly coupled chain of 20 HH neurons. In all the cases, the
first element of the chain (i=1) is forced with an external
modulation 1,=1, sin(wt) where the forcing frequency w is
chosen to be 0.1, a frequency for which we have previously
obtained a high P for the single element [Fig. 2(c)]. The rest
of the neurons along the array, i.e., i=2,...,20, are not per-
turbed and [ is set to zero.

In Fig. 3, we show the value of P along the array for
several values of the coupling €. We observe that for weak
coupling, the information propagates along the chain as a
spike synchronized state. As the coupling becomes stronger,
the synchronized state reaches sites farther from the per-
turbed one, and for &>0.07 the synchronization is spread
along the whole chain. Therefore, as in the case of HC, the
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chaotic ISI provides a propensity for synchronization to an
external signal and a high enough coupling facilitates the
synchronization to be transmitted along a network.

B. Hindmarsh—-Rose model (HR)

The Hindmarsh—Rose model is described by the follow-
ing equations:

d.
d—f=y+3x2—x3—z+l, (6)

25

[
T

05

= ' ' 6 8 _ 10 12 14 16 18 20
site index

FIG. 3. Propensity for the HH model when 7=15.5°C vs array site number
for a forcing frequency of w=0.1; for coupling strengths £=0.01(*), 0.06
(0), 0.065 (), and 0.07 (o).
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o

FIG. 2. (Color online) Results for the HH model when
T=15.5°C. (a) Time series of the membrane potential
V, (b) frequency distribution, (c) propensity vs the nor-
malized distance of the forcing frequency from the
natural frequency w,.

b
d[_l 5 Y, (7)
%:s(4(x+ 1.6)-z). (8)

In HR1, the version in Ref. 33 s is 0.0021, and in HR2, the
version in Ref. 34 s is 0.006. For HR1, when [=3.281, the
system has a saddle node at (—0.6835,-1.3359,3.666)
with eigenvalues (-6.7003, 0.1913, 0.0044). For HR2,
when [=3.0 the system has a saddle node at
(-0.7882,-2.1063,-3.2472) with eigenvalues (-7.7565,
0.1428, 0.0147).

At this input (/) value, x shows bursting behavior with
chaotic interburst intervals (IBI). Here the relevant feature is
the interburst interval rather than the interspike intervals
(IST) within each burst. The natural frequency, w,, of the
HR1 system is 0.011 and the natural frequency of the HR2
system is 0.0431. A time series for the HR2 system is shown
in Fig. 4(a).

We add a sinusoidal perturbation with 10% amplitude to
the input parameter / and compute the propensity P as a
function of the frequency w of the perturbation. The results
for HR1 and HR2 are very similar, hence we only show the
HR2 results in Figs. 4(b) and 4(c). Figure 4(b) shows the
propensity of a single unit as the forcing frequency is varied,
and Fig. 4(c) shows the ratio of the system frequency to the
forcing frequency w. Perturbation of some of the other pa-
rameters produced similar results.

As can be seen in Fig. 4(b), HR2 shows a high propen-
sity for a number of frequencies. However, in contrast to HH,
the propensity is high only for a discrete set of frequencies.
The system responds with periodic bursting at twice the forc-
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1 FIG. 4. (Color online) Time series for the HR2 model
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ing period when the forcing period is smaller than the refrac-
tory period of the bursts. However since this time is much
shorter than the average IBI, this effect is seen at frequencies
larger than six times the natural frequency for HR1 and three
times the natural frequency for HR2 since the IBI for HR2 is
roughly one-third of the IBI for HR1.

Next, we couple 19 identical HR2 units with diffusive
coupling and perturb the input 7 in the first unit along the
array with a sinusoidal, 10% amplitude signal. The forcing
frequency is set to 0.043, the natural frequency of the model
for which high propensity is obtained for a single unit. All
the other units along the array are not perturbed. Figure 5
shows the propensity P as a function of array site number for
several coupling strengths. The propagation of burst synchro-
nization is not very effective compared to the spike synchro-
nization seen in HC and HH models. For weak coupling, the

|
005 o3 oS o2 025 o3 o35
Lo ]

propagation of propensity increases with increasing coupling
strength, reaching a maximum in the range £=0.01-0.025.
As the coupling strength is increased further, propagation of
propensity quickly drops to zero. At these higher coupling
strengths, the coupling between unperturbed units over-
whelms the influence of the perturbed unit. While the first
unit receiving the perturbation shows periodic bursting at the
period of the perturbation, the unperturbed units start syn-
chronizing among themselves with chaotic IBI finally reach-
ing full synchronization around a coupling of 0.5.

Using a coupled system of HR neurons, Dhamala et al. 3
have presented evidence of two successive transitions to syn-
chronized states, one associated with burst (slow dynamics)
and the other with spikes (fast dynamics) as the coupling
strength is increased. This is relevant for modeling midbrain
dopaminergic neurons, important in reward-mediated learn-
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FIG. 5. (Color online) Propensity for the HR2 model vs array site number
for a forcing frequency of w=0.043; for coupling strengths =0 (°), 0.01(*),
0.02 (0), 0.05 (¢ ), and 0.1 (X).

ing, which exhibit two modes of action potential firing: spike
firing, and burst 1“1ring.3 ¥ This behavior does not, however,
seem related to the feature binding, which has been associ-

ated with spike synchronization.>**

IV. DISCUSSION AND CONCLUSIONS

The main conclusion of this paper is that a saddle focus
can provide variable and easily tunable timing between suc-
cessive returns. If the return is homoclinic, then the spikes
also have a large variability in amplitude. The amplitude can
be regularized by adding the heteroclinic connection to a
saddle node, provided that the saddle node is sufficiently
separated from the saddle focus so that the attractor displays
a regular region that is clearly distinct from the chaotic
tangle around the saddle focus. These considerations led”' to
a comparison between HC and the Lorenz system, showing
how the propensity depends crucially on the topology of the
added saddle node. Precisely, the propensity will be high or
low depending on whether the added fixed point is located in
a regular or chaotic region of the attractor, respectively.

In the periodic regime, it is also possible to obtain results
similar to those obtained in the chaotic regime when the two
behaviors are closely nested in parameter space, but in this
case the propagation of synchronization requires stronger
coupling.

Thus, the broadband propensity obtained for the HH
model means that any feature with Fourier components
within the sensitivity range can be recognized. HR is conve-
nient if the time code is associated with interburst intervals,
but its semantic ability is limited only to a restricted number
of Fourier components. Furthermore, the timing accuracy in
the burst synchronization is reduced with respect to the
single spike synchronization in the ratio between the burst
duration to the single spike duration. Of course, a burst pro-
vides a driving signal more robust than the single spike. In-
deed, it is largely used by the neurons of CPG for controlling
repetitive actions.

Chaos 18, 033108 (2008)

It should also be noted that our study did not involve
inclusion of noise or diversity among the elements of the
array. In the case of noise, it is reasonable to expect that a
reliable perceptual task should be robust to noisy perturba-
tion (the so called “cocktail party effect,” whereby we detect
a meaningful conversation hidden in the presence of incoher-
ent disturbances). As for diversity, it has been shown*®*! to
influence the synchronization ability of a coupled array of
excitable systems. The property of excitability can emerge as
a collective one, by coupling nonexcitable, but HC, indi-
vidual elements; this matter is dealt with extensively in an-
other paper.42

We conclude with some comparisons between chaotic
and excitable dynamics as possible models for single neu-
rons. Reference 31 deals with excitable systems ruled by
only two coupled (fast and slow) equations. There are two
separate attractors, namely a fixed point (rest state) and a
limit cycle (repetitive firing), and the transition from one to
the other takes place due to the slow variable that moves the
fast one from rest to a limit cycle oscillation (burst). Various
synchronization regimes are then studied. These are either
burst synchronization or spike synchronization (in the latter
case, they are spikes within the burst), however no chaotic
phenomena occur. Our approach is totally different. Based on
the experimental evidence of single spike synchronization,3 ’
we study dynamical systems yielding single spikes separated
by chaotic ISIs and explore synchronization conditions. For
communication purposes, encoding associated with single
spikes has some virtues that are explored in Ref. 43.

Which one of the two (single spike or burst synchroni-
zation) is more plausible for cognitive purposes, or whether
the two mechanisms are both present in the brain but apply
to different tasks, is a matter that must be decided by neuro-
scientists. We just state that from the point of view of a time
code, single spike synchronization is faster than burst syn-
chronization, and we focused our study mostly on the former
case.
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