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Abstract

We experimentally study the polarization dynamics of a quasi-isotropic CO2

laser emitting on the fundamental and second order modes. We observe a
complex dynamics in which spatial modes and polarization competition are
involved. The observed dynamics is well reproduced by means of a model
which provides a quantitative discrimination between the intrinsic asymmetry
due to optical coherent coupling between sublevels, and the residual extrinsic
anisotropies, due to cavity misalignments.

1 Introduction

Laser dynamics is commonly studied considering the electric field as a scalar vari-
able, since in most systems the polarization state is imposed by anisotropies of the
cavity. However, in perfectly cylindrical laser cavities without any elements to se-
lect a preferred polarization, the study of the dynamics includes the necessity of
considering the vector nature of the electric field.

Several theoretical works have been devoted to the study of the polarization
dynamics of the quasi-isotropic laser, showing the important role played by the
material variables in the selection of the polarization state [1]. In particular, the de-
generacy of the angular momentum states of the laser transition sublevels has been
considered as the coupling source between different polarization states. Initial stud-
ies considered only stationary solutions [2, 3], but more recently dynamical models
have been developed to explore the role of the anisotropy due to the laser medium
[1, 4, 5, 6, 7]. These models show how the selection of circularly polarized or linearly
polarized emission depends on the value of the total angular momentum of the lasing
levels, and the relative magnitudes of the magnetic dipole and electric quadrupole
relaxation rates of the sublevels. These studies predict a rich phenomenology even
for the simplest transition, J = 1 → J = 0. Later versions of these models include
also linear and circular cavity anisotropies that we call extrinsic [8, 9], or different
level structure [10].

Experiments carried out on gas lasers reveal that in some systems it is necessary
to consider the dynamics of the matter variables to fully understand the polarization
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features of an isotropic system [3, 11]. In other cases, the observations could be
explained by a nonlinear coupling of the modes and residual cavity anisotropies
[12, 13].

Up to now, most of the experiments in gas laser are performed in class A laser sys-
tems with simple level structure as He-Ne or He-Xe [6, 8], showing a good agreement
for the steady state. In previous works, [14, 15], we have studied experimentally and
theoretically the polarization behavior of a class B system (low pressure CO2 laser),
which has a higher order transition (J=19→ J=20) than those previously studied.
We have shown that this complex structure makes the effective decay rate of the
coherences to be closer to the decay rate of the population inversion rather than to
the decay rate of the induced polarization [4, 15].

An intense research has been developed in the vectorial degrees of freedom of
solid state lasers [16], due to their great interest in applications. Gas lasers however
present some advantages when the interplay between spatio temporal dynamics and
polarization dynamics has to be considered. In particular, they easily allow intra-
cavity operation leading to tiny and controllable variations of extrinsic anisotropies.
Some theoretical works consider competition effects via diffraction [17], or frequency
anisotropies [13], but none of these studies consider the polarization competition
driven by material variables when several transverse modes are present.

The work is structured as follow: in Sec. 2, we present the experimental ar-
rangement used. In Sec. 3, we present the experimental results obtained for the
steady and transient states. The model and numerical results are presented in Sec.
4. Further details of the model are given in the Appendix.

2 Experimental Setup

The experiment has been performed using an unpolarized Fabry-Perot cavity as
shown in Fig. 1. The laser tube has a length of 35 cm and a transversal diameter
of 2.5 cm. A total reflective flat mirror (M1, reflectivity R1=1) and an outcoupler
mirror (M2) with a reflectivity R2 = 0.914 set the cavity length at L =75 cm. A
piezo translator (Pzt) is used to select the P(20) laser emission line and to adjust
the laser detuning. An intracavity diaphragm allow us to adjust the aperture of the
cavity in order to allow laser action just for the first two transversal family modes
of the only longitudinal mode which is active.

The active medium, a mixture of He (82%), N2 (13.5%) and CO2 (4.5%) at
a pressure of 25 mbar, is pumped by a DC discharge fixed at 6.1 mA when the
threshold current is 3 mA. Therefore, the pump strength is fixed at twice over the
laser threshold during the experiments.

The polarization state of the laser emission has been analyzed by means of a
wire grid polarizer (Pol), which has the property of reflecting one linear polarization
of the incident radiation and transmitting the orthogonal one, with an extinction
ratio of 1:180. The reflected and transmitted parts of the beam are directed to two
HgCdTe fast detectors (D1, D2, 100 MHz bandwidth), whose sensitive areas (104

µm2) are much smaller than the beam size. Both signals are recorded on a digital
oscilloscope (Lecroy LT423L) with 500 MHz bandwidth. The transverse intensity
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Figure 1: Experimental setup: M1: total reflecting flat mirror, W: additional intra-
cavity window, M2: outcoupler mirror, V: Vertical axis of the cavity, H: Horizontal
axis of the cavity, Pzt: piezo electro translator, Pol: wire grid polarizer, D1(V): fast
detector for the horizontal component, D2(H): fast detector for the vertical com-
ponent. A piroelectric camera sustitues D1(H) for the spatial transerve intensity
profile measurements.

profile is been recorded by means of an infrared pyroelectric videocamera (Spiricon
Pyrocam III, model PY-III-C-A) connected to a computer.

We observe that for any configuration, the laser has two possible linear polariza-
tion directions which are orthogonal as far as we can measure [15]. In Fig. 1 these
cavity eigendirections are called H and V respectively.

As we are also interested in the transient dynamics, an intracavity chopper is
eventually used to induce a switch-on event at a repetition rate of 200 Hz.

3 Experimental Results

Our aim is the study of the polarization dynamics in the steady state and the switch-
on transient of a CO2 laser, and the interplay between the polarization competition
and the spatial dynamics. For these purpouses, we perform two experiments. First,
we observe the polarization dynamics when just the fundamental mode TEM00 is
allowed to emit. In this configuration without spatial degrees of freedom, we can ob-
serve how the polarization dynamics is affected by losses and detuning anisotropies.
In a second experiment, the laser diaphagm is open such as both the fundamen-
tal and the second order modes TEM01 and TEM10 are allowed to emit. In this
configuration we observe how the polarization inestabilities coexits with the spatial
competition.

3.1 Dynamics of the fundamental mode

In the first experiment, the laser aperture is adjusted in such a way that only
the TEM00 mode emit. In the stationary regime, we observe that the laser has two
possible linear polarization directions which are orthogonal as far as we can measure.
In Fig. 1 these cavity eigendirections are called H and V respectively.
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Figure 2: Experimental intensity of both polarization components along a free spec-
tral range (Black triangles vertical polarization direction, gray squares horizontal
polarization direction) (a) quasi isotropic condition θ = 0 (b) θ = 6o (c) θ = 9o. It
is to be noted that a Pzt adjustement is required to recover the resonant condition
for each θ.

As we want to study the effect of the cavity anisotropies in the dynamics, the
introduce an intracavity window W that can rotate by an angle θ around the axis V.
When θ = 0, the polarization direction is determined by the detuning of the cavity,
as usual [3, 8, 19]. This is illustrated in Fig.2(a), where we plot the laser intensity
along both eigendirections when the detuning is varied around the line center. A
residual hysteresis around the transition is masked by the limited resolution of Pzt.
At the transition point near the line center there is not a preferred polarization
direction and the laser flips spontaneously from one to other due to noise, as shown
in Fig. 3.

We center our study of the polarization behavior in this bistable region. In
particular, we analyze the switch-on transient state, in which the total intensity
presents relaxation oscillations. In our system the pump strength, fixed at twice
over the laser threshold, imposes a relaxation frequency of 55 KHz.

When the two polarized components are separated, they show oscillations in
relative antiphase, which do not appear on the total intensity (Fig.4). The amplitude
of these oscillations depends on the angle between the polarizer axes with respect
to H-V, reaching a maximum when the analysis is performed at 45o.

In Fig.4(a) we report an example of these polarization oscillations, when the
cavity is tuned at the center of the line. The total laser output intensity (thick solid
line) is displayed together with its two orthogonally polarized components analyzed
at 45o (thin solid and dashed lines).

These oscillations are always damped until they disappear, with a damping rate



Polarization dynamics in a CO2 laser 115

Figure 3: Intensity of vertical polarization component when the cavity detuning is
chosen at the transition point near the resonance.

Figure 4: Experimental time intensity profiles of the total intensity (solid line) and
both polarization components (thin solid and dotted lines) for θ = 0 and slightly
different detuning condition : (a) resonance, (c) out of resonance. Numerical gen-
erated intensity profiles for θ=0, α = β = 0.01 and : (b) δ = 0 , (d) δ = 0.05. The
curves have been vertically shifted for a better observation.
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depending on the cavity detuning. Precisely the oscillations are more persistent the
closer is the detuning to the bistable region. This fact points to the competitive
origin of the oscillations. In Fig.4 (c) we show an example of the transient dynamics
when the cavity detuning is slightly moved from resonance. It is worth to note that
the system is so sensitive to noise that the duration of the oscillations suffers slight
variations, without apparent changes in the conditions.

Successively, we studied the response of the system to small linear anisotropies
driven by the tilt angle θ of the intracavity window W around the vertical axis.

Several parameters of the system are simultaneously affected by this action. As
a consequence of the common increasing of the optical path for both polarization
eigendirections, the line center moves with respect to the isotropic condition θ = 0.
In order to keep the bistable condition, the cavity length is varied to recover the
resonance.

In Fig.2((b) and (c)) we plot the intensity of both polarization components for
different θ values, showing that the gain profile is not significantly distorted with
respect to the isotropic condition θ = 0 (Fig.2(a)). The detuning anisotropies (i.e.
the slight frequency difference between the two eigenpolarization modes due to the
tilted window and other residual cavity anisotropies) are measured to be smaller
than 5% of the total change.

The other effect of the tilt angle θ is to increase the total cavity losses. Since the
gain profiles for the two polarization directions do not change due to the tilt angle
θ (Fig. 2), we can assume that the induced loss anisotropies remain a small effect (
' 1%) compared to the total loss change. The effect of the losses anisotropy can be
observed in the residual modulation in the total intensity (Figs.4 (a),(c)).

The dynamical effect observed when θ is increased is the growing of the frequency
of the polarization oscillations. Measurements made near the resonance condition
show that the frequency rises as the tilt angle increased(Fig.5 (a)). It can be seen
that a tilt angle of 12o is enough to rise the frequency from 100 KHz to 400 KHz.

Furthermore, we have also experimentally tested that, in contrast with the re-
laxation oscillation, the frequency of the polarization oscillation does not depend
on the discharge current when its value is increased from Ithre up to aproximatelly
3Ithre.

3.2 Dynamics of the second order modes

Once we know the system behaviour in the fundamental mode, we increase the laser
aperture to allow emission of the second order modes TEM01 and TEM10. Our next
goal is to observe simultaneous spatial and polarization dynamics in the system. In
order to simplify the analisys, in this case we do not use the intracavity window W, to
mantain the cilindrical symmetry, apart from the unavoidable residual astigmatism.
As in the previous case, the system is characterized first in the stationary regime,
then the transitory switch-on regime is studied [18].

In the stationary regime, measurements performed by means of the pyroelectric
camera reveal that the spatial profile of the intensity has a doughnut-like shape, as
usual. If the polarization state is analyzed along the H-V axes, we find two polar-
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Figure 5: Polarization oscillation frequency as a funtion of the tilt angle: (a) exper-
imental, (b) numerical (δ = 0, α=0.01 β=0.01)

ization configurations for this annular pattern, depending on the detuning value, as
it is well known [3, 8, 19]. Thus, when the cavity detuning is set around the center
of the gain line, the annular pattern consists of a TEM10 mode polarized along the
eigendirection H and a TEM01 mode polarized along the eigendirection V (Fig. 6
(a)). In the following, we will call this configuration splitted. The total intensity
presents a periodic modulation with at a frequency of 2.2 MHz, as shown in (Fig. 6
(b)). This pattern is stable in a quite narrow detuning range around the resonance
condition δ = 0. It is to note that we have never observed the opposite configura-
tion, i.e., a TEM01 mode polarized along the eigendirection V and a TEM10 mode
polarized along the eigendirection H.

When the cavity is set far from atomic resonance, the pattern change to a homo-
geneously polarized ring along the eigendirection V (Fig. 6 (c)). The total intensity
presents a periodic modulation at 2.6 MHz (Fig. 6 (d)), having a much larger
statility range than the splitted one. From now on, we call this the homogeneous
configuration.

We never observe spontaneous polarization flips, in contrast with in the case
of the TEM00 mode emission, in which spontaneous flips between both possible
polarization states (H-V) where found near resonance as stated in Sec. 3.1.

In both splitted and homogeneous configurations, the frequency of the described
oscillation of the total intensity is far from the beating of two consecutive transverse
order modes, which in our case is 72 MHz. [20]. Therefore, this periodic undamped
oscillation of the total laser output intensity corresponds to the mode beating of
the two second order modes, after their frequency degeneration is broken by cavity
astigmatism [21, 22].

Once the steady state has been characterized, we introduce the intracavity chop-
per in order to induce a switch-on transient. The observed transient behavior cor-
responds to the two configurations reported in Fig. 6, found around resonance
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Figure 6: Experimental steady configuration. (a,b) Around resonance: (a) Average
spatial profile polarized along the H eigendirection, (b) Laser total intensity time
dependence for (a). (c,d) Far from resonance: (c) Average spatial profile polarized
along the H eigendirection, (d) Laser total intensity time dependence for (c).

(splitted) and far from resonance (homogeneous), respectively.
In the splitted case (Fig. 7), the polarized intensity shows clearly the appearance

of two consecutive transients, about 0.5 ms apart, corresponding to the rising of the
fundamental and secondary modes respectively (Fig. 7 (a)). In both transients, we
find the same characteristic polarization competition oscillations already observed
in the fundamental case. These oscillations have the same frequency around 100
KHz for both the onset of the fundamental and the second order modes, which
allows us to discard a possible origin in spatial competition. In Fig. 7 (b) we detail
the transient corresponding to the birth of the second order modes, to show how
the polarization oscillation at 100 KHz and the beating modulation at 2.2 MHz are
simultaneously present.

After this second transient, the polarization competition dumps to disappear
and only the beating oscillation persists, as observed in steady state measurements.
Unfortunately, the temporal resolution of the pyrocamera is not fast enough as to
follow the evolution of the whole pattern during this transient.

In the second case in which the observation is performed far from resonance
(Fig. 8), we find again that same polarization oscillation at the onset of the first
and second order modes (Fig. 8(a)). The change in the detuning does not affect to
the frequency of the polarization competition, whereas the beating whose frequency
changes from 2.2 MHz to 2.6 MHz, as shown above. In Fig. 8 (b) we show how
during the transient of the second order modes the geometrical competition appears
as a stronger modulation to the polarization oscillation than in the resonant case
Fig. 7 (b).

In conclusion, our experiments seem to confirm the presence of a simultaneous
spatial and polarization competition during the transitory regime of a transverse
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Figure 7: (a) Intensity time profile of a polarized component during the transient
splited configuration. (b) Detail of (a) showing the transient of the secondary order
modes.

Figure 8: (a) Intensity time profile of a polarized component during the transient
homogeneous configuration. (b) Detail of (a) showing the transient of the secondary
order modes.
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multimode emission.

4 Model and numerical results

Our theoretical approach is based on the theory of the isotropic laser developed in
Ref. [4] where the optical coherences between upper levels are considered. This the-
ory was developed for the simplest case (J=1 → J=0), while the transition involved
in our system is much more complicated (J=19 → J=20). However, this theory has
been showed to predict also the behavior of lasers with a different level structure,
as shown in Ref. [8, 11], where an effective value of the coherence decay rate was
deduced.

Only first order coherences (∆m = ±1) will be considered. Therefore, indepen-
dently of the number of sublevels, there are only two kinds of possible transitions,
which generate a split of the population in two ensembles, in such a way that an
anisotropy is induced in the active medium [6]. Furthermore we introduce an ex-
trinsic linear anisotropy as done in Ref.[8], to reproduce the effect of the intracavity
window or any other astigmatism source.

The field will be decomposed in a circularly polarized basis. Just losses and
linear detuning anisotropies along the principal axes of the system will be included,
but not circular asymmetries since our system does not show signs of dichroism. It
reads [1]:

ĖR = κ(PR − ER) + iδER − (α + iβ)EL + ia(∆ − 4ρ2)ER

ĖL = κ(PL − EL) + iδEL − (α + iβ)ER + ia(∆ − 4ρ2)EL

ṖR = −γ⊥[PR − DRER − ELC],

ṖL = −γ⊥[PL − DLEL − ERC∗],

Ċ = −γcC −
γ‖

4
(E∗

LPR + ERP ∗
L) (1)

ḊR = −γ‖[DR − r +
1

2
(ERP ∗

R + E∗
RPR) +

1

4
(ELP ∗

L + E∗
LPL)],

ḊL = −γ‖[DL − r +
1

2
(ELP ∗

L + E∗
LPL) +

1

4
(ERP ∗

R + E∗
RPR)]

where ER(~r, t), EL(~r, t) are the slowly varying electric fields. PR(~r, t), PL(~r, t)
stand for the matter polarization fields, DR(~r, t) and DL(~r, t) are the respective pop-
ulation inversions and C(~r, t) is the coherence field. r(t) is the rescaled pump. The
transverse coordinates are rescaled as (ν, η) = (x, y)/w0, being w2

0 = λ
√

L(r2 − L)/π

the minimum beam waist. The factor ρ2 = ν2 + η2 is the transverse distance to the
mirror center. Therefore, ∆ = ∂2

ν +∂2
η is the transverse Laplacian and a=λc/(4πw2

0)
is the diffraction coefficient.

The parameter r(t), fixed to a value of 2.0, stands for the pump strength nor-
malized to its threshold value. The field C(~r, t) represents the coherence between
the upper sublevels. We recall that, in a density matrix treatment, the polarization
corresponds to off diagonal matrix elements between upper and lower level of the
radiative transition, whereas C is proportional to the off diagonal matrix elements
coupling different angular momentum states of the upper level [11]. The parameter
δ represents the detuning between the cavity and the atomic transition frequencies.
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The parameters α = (κV − κH)/2 and β = (δH − δV )/2 represent respectively the
linear anisotropies in the losses and detuning with respect to the cavity H-V axes,
where κV , κH , are the losses in the horizontal and vertical axis, and δV , δH are the
corresponding detunings.

In our low pressure CO2 laser, the polarization decay is γ⊥ = 4.4 · 108 s−1 and
the inversion decay rate as γ‖ = 1.95 · 105s−1 [14].

The parameter δ represents the detuning between the cavity and the atomic
transition frequencies. We denote by ωa the central frequency of the only active
atomic transition, which is the P(20) line. We denote as ω the field frequency
without taking into account the transverse contribution to the eigenfrequency. Thus
δ = (ωa − ω)/γ⊥ is the rescaled cavity detuning of the modes from the central
atomic transition frequency, apart from the transverse frequency shift, which will
be considered later when needed.

The parameters α = (κV − κH)/2 and β = (δH − δV )/2 stand for the linear
anisotropies in the losses and detuning with respect to the cavity H-V axes, respec-
tively. Here κV , κH , are the losses in the H an V axis respectively, and δV , δH are
the corresponding detunings.

4.1 Numerical results for the dynamics of the fundamental mode

When just the fundamental mode is included in the dynamics, the mirrors effect
can be neglected [20], or equivalently it can be supposed than the fields E, P , D
and C are spatially homogeneous. Therefore the Eqs. 1 become a set of ordinary
differential equations, already described in Ref. [1].

All the parameter have been defined above but γc, representing the coherence
decay rate, whose value should be chosen between γ⊥ and γ‖ [1]. However, this
parameter cannot be directly measured, and it will be used as control parameter in
order to fit the theory to the experimental results [8]. We find that the optimal value
is γc ' γ‖ in all cases, which is also consistent with the observation that just linearly
polarized states are found in the experiment. Indeed, a higher value of γc would give
rise to a periodic modulation of the total intensity which has never been observed
in our experiments [1]. Both the polarization and coherences decay rates are related
to molecular collisions, but how these affect the induced polarization and the inner
sublevel coherence can be different. A physical reason for the small effective value
for γc in the CO2 laser can be found in the complexity of the upper and lower
sublevel structures. The elastic collisional processes which interrupt the phase of
the emission (contributing to γ⊥) produce a minor effect on optical coherences as
compared with that induced in the simplest case (J=1 → 0). In this last situation
only a lower sublevel exists and collisions easily induce changes on the two population
ensembles.

Once we have fixed the value γc ' γ‖ to quantify the effect of the intrinsic
anisotropy, we proceed to quantify the effect of the extrinsic anisotropy driven in
the experiment by the tilted window W. As said in Sec. 3.1, from the experimental
observations we know that the most important effect of the window tilting is the
increase of the total losses, while loss and detuning anisotropies, as well as pump
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changes, represent a minor effect on the polarization oscillation. For the relevant
parameter κ we assume the following angular dependence [23]:

κ(θ) = κo(1 + ak sin4(θ)) (2)

where κo = − c
4L log(R) = 4.1 · 106 s−1 are the pump strength and total losses when

the tilt angle θ = 0. Here c is the speed of light, L = 0.75 m the cavity length and
R =

√
R1R2 = 0.956 the mirrors reflectivity. The parameter aκ consider the effect

of the multiple reflection on the intracavity window W over the total losses. It value
have been obtained by fitting the experimental data on the angular dependence of
the polarization frequency presented in Fig. 6 (a). The resulting value is aκ = 4500.

In Fig. 4 (b) and (d) the numerically generated intensity profiles are compared
with their experimental counterparts reported in Fig 4 (a) and (c), respectively.
It can be observed that the intensity profiles show antiphase oscillations for both
polarization components, while the total intensity remains unmodulated.

When δ=0, the polarization oscillations remain undamped for any degree of
anisotropy. For δ 6= 0, the oscillations are still undamped only in perfect cavity
symmetry conditions α = β = 0. In Fig.4 (d) it can be seen that for δ = 0.05, a
detuning or losses anisotropy of 0.5 % is sufficient to damp the oscillation in a few
hundred microseconds as observed in the experiment. In the experimental system
unavoidable residual anisotropies break the cylindrical symmetry, and therefore the
polarization oscillations are always damped.

Choosing the resonant condition δ = 0, we observe that the frequency of the
oscillations presents the same dependence on the total losses found in the experiment
described in Sec. 3.1. In Fig. 5 we compare the experimental and numerical angular
dependences of the polarization oscillation frequency (Fig. 5 (a),(b)), showing a
good agreement.

4.2 Numerical results for the dynamics of the second order modes

When the spatial degrees of freedom are included, the full spatio-temporal integra-
tion of Eqs. 1 would be prohibitive, taking into account the presence of several
fields and the stiffness of the problem. However, since the pump value is not far
from threshold, we can simplify the above system in a set of ordinary differential
equations, using the mode expansion technique for all the fields and the population
inversion [24, 25, 26]. From the experimental results we know that just the TEM00,
TEM01 and TEM10 take part in the dynamics, and therefore the general expression
of the variables as linear combination of these three modes is:

ER(L)(ν, η, τ) =
2∑

j=0

Aj(ν, η)ej,R(L)(τ)

PR(L)(ν, η, τ) =
2∑

j=0

Aj(ν, η)pj,R(L)(τ) (3)

DR(L)(ν, η, τ) =
5∑

k=0

Bk(η, ν)dk,R(L)(τ)
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C(ν, η, τ) =
5∑

k=0

Bk(η, ν)ck(τ)

where ej,R(L)(τ), pj,R(L)(τ), dk,R(L)(τ) and ck(τ) are the temporal evolution profiles
of the variables. The mode spatial functions Aj(ν, η), j = 0, 1, 2 are the standard
Gauss-Hermite modes TEM00, TEM01 and TEM10 respectively:

A0(ν, η) =
√

2
π

exp(−ρ2)

A1(ν, η) = 2ηA0(ν, η) (4)
A2(ν, η) = 2νA0(ν, η)

Likewise, the population inversions and coherence field have been expanded in the
orthonormal basis [26]:

B0(ν, η) =
√

πA2
0(ν, η) ,

B1(ν, η) =
√

π(A2
1(ν, η)− A2

2(ν, η)) ,

B2(ν, η) =
√

π(A2
1(ν, η) + A2

2(ν, η)− A2
0(ν, η)) (5)

B3(ν, η) =
√

2πA0(ν, η)A1(ν, η) ,

B4(ν, η) =
√

2πA0(ν, η)A2(ν, η) ,

B5(ν, η) =
√

4πA1(ν, η)A2(ν, η) .

Each transverse mode has a slightly different frequency, and therefore the detun-
ing δ has also to be splitted to take into account these differences. We denote by
Ω00, Ω01, Ω10 each mode frequency shift due to the curved mirrors, rescaled to γ⊥,
respectively. In the ideal case, the TEM01 and TEM10 modes are frequency de-
generated Ω01 = Ω10 = 2Ω00, but the breaking of this degeneracy is usual in the
experiment [12, 13, 21]. In this case, the second order modes symmetrically split
from their original frequency, 2Ω00. In order to take into account this symmetry
breaking, an additional parameter dω becomes necessary [27]. Finally, the frequen-
cies of each transverse mode are:

∆0 = δ + Ω00

∆1 = δ + 2Ω00(1 + dω) (6)
∆2 = δ + 2Ω00(1− dω)

Notice that in this way, each second order mode suffers two deviations in its fre-
quency, with respect to the ideal case. First, a frequency difference which apart each
other the TEM01 and TEM10 modes with the same polarization. This difference is
represented by the parameter dω [13, 21]. In addition, we have considered that the
cavity is astigmatic respect to the polarization, and therefore each vertically polar-
ized mode is separated in frequency from its horizontal homologous by a frequency
anisotropy represented in the model by β. We have choose to separate both effects
to give account of their respective importance in the dynamics.

The modelization of the transient dynamics includes the effect of the relatively
low speed of the intracavity chopper in the spatial distribution of the gain. In order
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to reproduce it, the fundamental mode gain (r0(t)) is going to be considered to have
a faster grow than the secondary mode gain (r2(t)), where:

r0(t) = r(1− e(t0−t)/a)
r2(t) = r(1− e(t2−t)/a) (7)

being r=2.0 the final gain value. Since in the model the lasing threshold value for
the fundamental mode is rth=1.0, this means a value approximately twice higher
than the fundamental mode threshold, as in the experiment. The other parameters,
t0 = 200γ⊥, t2 = 45000γ⊥ and a=150γ⊥ are chosen to fit the experimental rising
rates of the modes.

Inserting all these expansions in the Eqs. (1), we obtain a set of equations
describing the interaction among the 6 modes (3 for each polarization) present in
the dynamics. The complete set of equations, in the more general form, can be
found in the Appendix.

By means of this model we reproduce most of the experimental observations
reported in Sec. 3. In order to reduce the large numbers of parameters involved in
the simulations, we consider the cavity losses as perfectly isotropic, taking α = 0 in
all cases.

Numerical calculations of the steady state show a dependence on the detuning
similar to that observed in the experiment. The behavior of the total intensity
shows a periodic modulation whose frequency depends only on the value of dω, the
detuning difference anisotropy between the secondary order modes. Therefore, we
can associate this stable modulation to the degeneration frequency or the secondary
order modes. Unfortunately, we have not experimental control of this parameter, in
contrast with the case studied in the Ref. [21]. Accordingly to Tamm., a progres-
sive decrease of dω, approaching to resonance condition, yields a chaotic fluctuation
of the intensity which has been never observed in the experiment. This give us
a effective measure of the value of the symmetry breaking in our experiment. In
order to obtain the same frequency (around 2 MHz.) observed in the experiment,
we set this parameter to dω = 0.007, a very small percentage compatible with spon-
taneous symmetry breaking. As it was observed in the experiment, the modulation
percentage is smaller for small detuning value (δ = 0.1, Fig. 9(c)) than for large
detuning values (δ = 0.7, Fig. 9(d))which indicates that the symmetry breaking
slightly increases when δ increases.

Once the steady state has been characterized and contrasted with the experi-
ment, the reproduction of the transient dynamics is explored. In this case, the evo-
lution of the total intensity reproduces the two consecutive transients corresponding
to the onset of the fundamental and secondary order modes, respectively. When the
intensity of each polarized component is calculated, we observe in transients a out
of phase oscillations at ' 100 KHz.

The similarity between numerical results and experiments can be seen from Fig.
10 (a), where we plot the temporal evolution for a linearly polarized component,
in a case of relatively small detuning (δ=0.1), to be compared to its experimental
counterpart in Fig. 7 (a). Here both transients are presents, and a final state
slightly modulated can be observed. In Fig. 10 (b) we detail the dynamics around
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Figure 9: Numeric steady configuration. Near resonance for δ = 0.1, : (a) Average
spatial profile polarized along the H eigendirection, , (b) Laser total intensity time
dependence for (a). Far from resonance for δ = 0.7: (b) Spatial profile polarized
along the H eigendirection, (d) Laser total intensity time dependence for (c)static

the secondary transient. In Fig. 11 we plot the temporal evolution in the case of
large detuning (δ=0.7), to be compared to its experimental counterpart shown in
Fig. 8. In this case, it can be clearly observed in Fig. 10 (b) how the polarization
oscillation at 100 KHz is modulated by the faster beating oscillation at 2MHz.

The importance of the coherence term C to reproduce the observed dynamics
can be appreciated in Fig. 12. Here we plot the vertical polarized component for a
case analogous to that reported in Fig. 8 (δ = 0.7, dω = 0.007, dδ = 0.025), but in
which the coherence term is set C = 0. It can be appreciated that the out-of phase
polarization oscillations disappear, confirming that this dynamics observed in the
experiment depends on the interaction through the material variables.

5 Conclusions

In conclusion, we have reported an experimental and theoretical study of the spa-
tiotemporal polarization dynamics of a quasi-isotropic CO2 laser. The simultaneous
polarization and spatial competition dynamics observed can be reproduced by means
of a model including both vectorial and spatial degrees of freedom. The results point
out the important role played by optical coherence effects in spatio temporal laser
dynamics.

Acknowledgments

The authors are grateful to F.T. Arecchi for the fruitful discussions. I. Leyva and E.
Allaria wish to acknowledge the support of the European Project HPRN-CT-2000-
00158.



126 I. Leyva, E. Allaria, R. Meucci

Figure 10: (a)Numerical generated laser intensity evolution for a polarized compo-
nent, with δ = 0.1, ∆δ = 0.025, ∆ω = 0.007, (b) detail of (a) around the polarization
oscillation in the transient of the second order modes.

Figure 11: (a)Numerical generated laser intensity evolution for a polarized compo-
nent, with δ = 0.7, ∆δ = 0.025, ∆ω = 0.007. (b) Detail of (a) around the polariza-
tion oscillation in the transient of the second order modes
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Figure 12: Detail of the numerical generated laser intensity evolution for a polarized
component, with δ=0.7, d δ=0.025, ∆ω =0.007 and C = 0

*

A Appendix

In this Appendix we explicitly shown the equations for the modal amplitudes [26]:
ėj,R(L) = κ(bj,R(L) − ej,R(L)) + i∆jej,R(L) − (α + iβ)ej,R(L)

ṗ0,R(L) = −p0,R(L) + 1√
π

[
m(0, 0)R(L) + 1√

2

(
m(1, 3)R(L) + m(2, 4)R(L)

)]

ṗ1,R(L) = −p1,R(L)+ 1√
π
[ 1√

2
m(0, 3)R(L)+ 1

2(m(0, 1)R(L)+m(1, 1)R(L)+m(1, 2)R(L)

+m(2, 5)R(L))]
ṗ2,R(L) = −p2,R(L)+ 1√

π
[ 1√

2
m(0, 4)R(L)+ 1

2(m(2, 0)R(L)−m(2, 1)R(L)+m(2, 2)R(L)

+m(1, 5)R(L))]

ċ0 = −γcc0 −
γ‖

8
√

π

(
q(0, 0) +

1
2

(q(1, 1) + q(2, 2))
)

ċ1 = −γcc1 −
γ‖
16π

(q(1, 1)− q(2, 2))

ċ2 = −γcc2 −
γ‖

16
√

π
(q(1, 1) + q(2, 2))
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ċ3 = −γcc3 −
γ‖

8
√

2π
(q(0, 1) + q(1, 0))

ċ4 = −γcc4 −
γ‖

8
√

2π
(q(0, 2) + q(2, 0))

ċ5 = −γcc5 −
γ‖

16
√

π
(q(1, 2) + q(2, 1))

ḋ0,R(L) = −γ‖

[
d0 − 2

√
πr0(τ) +

1
2
√

π

(
h(0, 0)R(L) +

1
2
(h(1, 1)R(L) + h(2, 2)R(L))

)]

ḋ1,R(L) = −γ‖

[
d1 +

1
4π

(
h(1, 1)R(L) − h(2, 2)R(L)

)]

ḋ2,R(L) = −γ‖

[
d2 − 2

√
πr2(τ) +

1
4
√

π

(
h(1, 1)R(L) + h(2, 2)R(L)

)]

ḋ3,R(L) = −γ‖

[
d3 +

1
2
√

2π

(
h(0, 1)R(L) + h(1, 0)R(L)

)]

ḋ4,R(L) = −γ‖

[
d4 +

1
2
√

2π

(
h(0, 2)R(L) + h(2, 0)R(L)

)]

ḋ5,R(L) = −γ‖

[
d5 +

1
4
√

π

(
h(1, 2)R(L) + h(2, 1)R(L)

)]

where for the sake of clearness the dependencies in τ have been omitted, and we
have defined the auxiliary variables:

m(i, j)R(L) = ei,R(L)dj + ei,L(R)c
(∗)
j (8)

q(i, j) = ei,Rp∗
j,L + e∗i,Lpj,L + ej,Rp∗

i,L + e∗j,Lpi,R (9)

h(i, j)R(L) = ei,R(L)p
∗
j,R(L) + e∗i,R(L)pj,R(L) (10)

+
1

2
(ei,L(R)p

∗
j,L(R) + e∗i,L(R)pj,L(R))
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