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Competition of synchronization domains in arrays of chaotic homoclinic systems
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We investigate the response of an open chain of bidirectionally coupled chaotic homoclinic systems to
external periodic stimuli. When one end of the chain is driven by a periodic signal, the system propagates a
phase synchronization state in a certain range of coupling strengths and external frequencies. When two
simultaneous forcings are applied at different points of the array, a rich phenomenology of stable competitive
states is observed, including temporal alternation and spatial coexistence of synchronization domains.
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Synchronization of chaos refers to a process where
~or many! chaotic systems adjust a given property of th
motion to a common behavior@1#. The emergence of syn
chronized features has been investigated in nature@2#, in
controlled laboratory experiments@3,4#, and the interest ha
moved toward the characterization of synchronization p
nomena in spatially extended systems, such as large pop
tions of coupled chaotic units and neural networks@5#, glo-
bally or locally coupled mapped lattices@6#, and continuous
space extended systems@7#.

In this paper, we consider a one-dimensional chain
sites, each one undergoing a local homoclinic chaotic
namics, interacting via a bidirectional nearest neighbor c
pling. Homoclinic chaos consists of a train of nearly iden
cal spikes separated by erratic interspikes intervals~ISI!. In
phase space, this motion corresponds to the passage thr
a saddle focus, where stable manifolds collapse and an
stable manifold emerges, with the expansion rate larger t
the contraction one@8#. The saddle region displays a larg
susceptibility to an external stimulus, therefore such
chaotic system gets easily synchronized to a weak forc
signal.

The ability of such systems to synchronize to an exter
forcing was demonstrated in previous works@4#, finding that
it may constitute a reliable communication channel rob
against noise@9#. Furthermore, homoclinic chaos can be se
synchronized by feeding back a finite train of its own spik
via either a delayed feedback@10# or a low frequency filter
@11#; in this latter case obtaining a bursting behavior rem
niscent of the dynamics of neurons in central pattern gen
tors @12#.

However, when passing from a single system to an ar
a relevant problem emerges related to the ability of the a
to respond to external periodic perturbations localized at
end site, yielding synchronized patterns. The issue we
addressing is relevant for biological or artificial communic
tion networks.

For convenience, we refer to a chain of dynamical un
each one represented by a six-variable system modeling
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moclinic chaos in a single mode CO2 laser with feedback
@13#. The extension of the model to an array is the followi

ẋ1
i 5k0x1

i ~x2
i 212k1sin2x6

i !,

ẋ2
i 52g1x2

i 22k0x1
i x2

i 1gx3
i 1x4

i 1p,

ẋ3
i 52g1x3

i 1gx2
i 1x5

i 1p,

ẋ4
i 52g2x4

i 1zx2
i 1gx5

i 1zp,

ẋ5
i 52g2x5

i 1zx3
i 1gx4

i 1zp,

ẋ6
i 52bF x6

i 2b01r S x1
i

11ax1
i

1e~x1
i 211x1

i 1122^x1
i &!D G .

~1!

Here the index i denotes the i th site position (i
51, . . . ,N), and dots denote temporal derivatives. F
each site,x1 represents the laser intensity,x2 the population
inversion between the two levels resonant with the radiat
field, andx6 the feedback voltage which controls the cav
losses. The auxiliary variablesx3 , x4, and x5 account for
molecular exchanges between the two resonant levels
the other rotational levels of the same vibrational band.
consider identical units; as for the parameters, their phys
meaning has been already discussed@13#. Their values are
k0528.5714, k154.5556, g1510.0643, g251.0643, g
50.05, p050.016, z510, b50.4286,a532.8767,r 5160,
b050.1032.

The coupling on each site is realized by adding to thex6
equation a function of the intensityx1 of the neighboring
oscillators. The term̂x1

i & represents the average value of t
x1

i variable, calculated as a moving average over the wh
evolution time. The coupling strengthe.0 is our control
parameter. The system is integrated by means of a stan
fourth-order Runge-Kutta method with open boundary co
ditions.

We first study the emergence of synchronization in
absence of external stimuli, as the coupling strengthe in-
©2003 The American Physical Society09-1
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creases. Due to the coupling, a spike on one site induces
onset of a spike in the neighboring sites as discussed in
@14#.

In Figs. 1~a! and 1~b! we show the transition from unsyn
chronized to synchronized regimes by a space-time repre
tation of the array. A detection threshold isolates the spi
getting rid of the chaotic small interspike background, th
we plot only the spike positions as black dots. The transit
to phase synchronization is anticipated by regimes wh
clusters of oscillators spike quasisimultaneously@15#. Clus-
ters are delimited by ‘‘phase slips’’ or defects, easily seen
holes in the space-time fabric. More precisely, we introdu
a phase measuref i(t) for a time interval t between two
successive spikes of the same site, occurring attk21

i , tk
i , by

linear interpolation asf i(t)52p(t2tk21
i )/(tk

i 2tk21
i ) @1#.

A defect appears as a 2p phase slip in the difference betwee
the phases of two adjacent sites. Note that this mutual re
encing is the natural extension of measuring the regularit
a sequence against an external clock, whenever there i
external clock, but the time evolution of a site compares w
the nearest neighbor sites. Hence ‘‘phase synchronizat
denotes a connected line from left to right, not broken
defects. This definition of phase synchronization does
imply equal time occurrence, thus the unbroken lines are
isochronous as can be seen in Fig. 1~b!. The cluster size
increases withe extending eventually to the whole syste
@Fig. 1~b!#. The route to phase synchronization can be ch
acterized by the defect density, that is, the number of def
per site. In Fig. 1~c! we plot the average defect density
function of e, calculated for a long evolution time (T
533105). Full phase synchronization is reached when
defect density falls below one defect per site. The def
statistics has been studied for several chain lengths; we
that aboveN530 there are no appreciable size-depend
effects. Once phase synchronization is established, a fu
increasing ofe reduces the natural frequency of the syste

FIG. 1. Space-time representation of spike positions fore50.05
~a! and e50.2 ~b!. ~c! Average defect density vse, for different
chain lengths:N510 ~h!, 40 ~s!, 80~* !.
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vo(e)52p/@^ISI&(e)#. We will show that this slowing
down affects the capability of the array to synchronize to
external signal.

For this purpose, we explore the response of the syste
an external periodic stimulus applied to the first site of t
chain. Precisely, we periodically modulate the parameterbo

at the sitei 51 asbo
15bo(t)5bo@11A sin(vt)#. From pre-

vious work, we know that this driving can induce a pha
synchronization on a single oscillator@4#; here we explore
the ability of the system to transmit the periodic sign
through the chain.

The modulation amplitudeA does not affect the results
provided that it is sufficient to synchronize thei 51 site.
Therefore, we do not lose generality by fixing a consta
valueA50.3.

We will consider that the signal has been successfu
transmitted through the system when after a finite time
last element of the chain spikes with the same period of
external forcing, without defects, i.e.,DF5uFo(t)
2FN21(t)u is oscillating around a constant value wi
bounded oscillation width for a sufficiently long time. Th
implies that the number of spikes over a long time interva
equal on the leftmost and the rightmost sites of the chain
in Fig. 2~a!; whereas at high frequency@Fig. 2~b!# such a
number is different because of the occurrence of defects
Fig. 2 we give examples of partial signal transmission. Ifv is
too small@Fig. 2~a!# or too large@Fig. 2~b!# with respect to
the natural frequency of the system@vo(e)50.02 in the fig-
ure#, then only partial transmission is achieved.

We explore the~e,v! range over which transmissio
propagates over the whole chain. In the low frequency lim
we find thatv,vo(e) is not able to globally synchronize
the chain. Independent ofN, asvo is larger thanv, the last
sites tend to spike spontaneously between two consecu

FIG. 2. Response of theN540 chain withe50.13 andvo(e)
50.02 to an external periodic forcing:~a! v50.015,~b! v50.042.
9-2
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periods of the external driver before the synchronizat
propagates to them, and therefore synchronization is
@Fig. 2~a!#.

Whenv.2vo(e), the firstNp sites synchronize with the
driving frequency, but beyondNp a line of defects restore
the natural oscillation regime@Fig. 2~b!#. This ‘‘penetration
depth’’ Np for synchronization is invariant as we change t
whole array length. In Fig. 3 we plot the penetration de
versus the forcing frequency for different values ofe, tested
for chain lengths up to 160. If for a point~e,v! the penetra-
tion depth isNp , then one would observe complete synch
nization only for sizesN,Np , while incomplete synchroni-
zation would unavoidably take place forN.Np . As a result,
for a givenN, only a limited range of external frequencie
can be transmitted over the whole chain.

In Fig. 4 we plot the boundaries of the transmission ba
as a function ofe and v, for several chain lengths. The re
gion inside the curves contains all the~e,v! points for which
global transmission is allowed. It can be seen that for eace,
the transmission band extends fromvo ~black stars! to
'2vo . Note that the system starts to transmit for coupli
strengths above the ones leading to intrinsic synchroniza
~'e.0.11!. For weaker couplings, the presence of defe
breaks the continuity, while fore.0.35 the homoclinic dy-
namics is destroyed. The left boundary of the transmiss
range refers to perfect transmission of thev period up to the
end of the chain. If one is only interested in the transmiss
of the average frequency, this boundary is slightly smea
out.

Now we have sufficient background to address the m
question of how two different frequencies applied at the
ends of the chain compete in generating two separate sp
patterns of synchronization. The temporal competition
tween different synchronization states was recently inve
gated theoretically@16# and experimentally@17# in the con-
text of a single chaotic system forced by two extern
frequencies, finding competitive behaviors as alternation

FIG. 3. Penetration depth vsv for different coupling strengths
e50.12 ~* !, 0.15 ~L!, 0.2 ~h!, 0.25 ~s!, studied for chain lengths
up to N5160.
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synchronism to several frequencies (v1 ,v2, or a combina-
tion of the two!. Here we go further, addressing the proble
of spatial competition between synchronization regio
which is preliminary to controlling the dynamics of an e
tended system as well as to studying the response of ne
assemblies to competing external perturbations.

To answer this question, we apply to the first (i 51) @the
last (i 5N)] site a periodic perturbation with frequencyv1
(v2). For simplicity, we will take alwaysvo,v1,v2, so
that Np(v1).Np(v2) ~see Fig. 3!.

The emerging competition scenario can be described w
reference to Fig. 5. ForNp(v1),Np(v2).N, both frequen-
cies synchronize over the whole chain. However, after a s

FIG. 4. Curves delimiting the~e,v! range for synchronized
transmission in the arrays with lengthsN510 ~dotted lines!, N
520 ~dotted-dashed lines!, N540 ~dashed lines!, andN580 ~solid
lines!. The black stars indicate the average spiking frequencyvo(e)
of a site of the array in the absence of external perturbation. In
zoom of the area where the two external frequencies are selecte
studying the spatial competition between synchronization doma

FIG. 5. Competition between spatial synchronization regim
induced by external forcing:~a! v150.02,v250.021,e50.13, ~b!
v150.038, v250.042, e50.12, ~c! v150.04, v250.0405,
e50.11.
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FIG. 6. ~a! Diffusion velocity vs v for
e50.12.~b! Time evolution ofv(t) for i 51 and
i 540 ~dashed lines! and for the sitei 522 ~solid
line! located on the domain boundary for the ca
of Fig. 5~c!. ~c! Normalized locking time at the
frequenciesv1 ~* ! and v2 ~s! vs site index for
the whole chain.
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able transient time, the whole system synchronizes to
larger frequencyv2, with the only exception of the sitei
51 @Fig. 5~a!#. This is due to the fact that a wave with
higher frequency diffuses along the space faster than a
frequency one@Fig. 6~a!#. This property of the network is
related to the characteristic of single elements that respo
to the stimulus only when it occurs at the time when t
system is in the active state and that has a refractory t
following the spike. As a result, the wave coming from t
v2 source arrives first to induce a spike in thei th site, while
the v1 wave arrives to the same point when the oscillato
not receptive to the signal. Therefore, thei th site will oscil-
late at thev2 frequency and will induce the next site to spik
at the same frequency. This kind of ‘‘winner-takes-all’’ b
havior is the consequence of the extended character o
system, and is at variance with the single oscillator beha
for both forcing frequencies inside the Arnold tongue.
fact, in Ref.@16# the entrainment takes place at the frequen
closer to the natural frequencyvo .

For Np(v1).N,Np(v2),N, only the smaller frequency
synchronizes over the whole chain, while the larger f
quency is limited to theNp(v2) sites closest toi 5N. In this
situation, we find that permanent synchronization doma
for v1 andv2 are established, with an irregular domain w
@Fig. 5~b!#. If we increaseN, the v2 domain is always con-
fined to the lastNp(v2) sites, independent of the total leng
of the chain as well as of the value ofv1. The domains are
stable, as checked with a very long integration tim
(T.33107). For the case of Fig. 5~b!, we plot the instan-
taneous frequency@1# for i 51, i 540, andi 522 @Fig. 6~b!#.
It can be observed that the sitei 522 located on the domain
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boundary locks alternatively tov1 andv2. The locking pe-
riods are interrupted by defects. In Fig. 6~c!, we plot the
normalized locking time of all sites tov1 and v2, respec-
tively. The transition is smooth spacewise and the bound
layer has a width of approximately six sites, independen
of the chain length.

Finally, for Np(v1), Np(v2),N, neither of the two fre-
quencies stabilizes a synchronized pattern over the wh
chain. In this case, we observe alternation between sync
nization patterns with frequenciesv1 andv2, with intervals
of asynchrony filled with defects, as shown in Fig. 5~c!. The
duration of the synchrony and asynchrony intervals is irre
lar. This competitive behavior persists in time. An explan
tion for this behavior can be offered looking at Fig. 2~b!,
illustrating the transient state for a wave with penetrat
depth Np,N. Initially, the wave expands to the whole sy
tem but this transient state is eventually broken by a def
yielding a stationary regime in which the synchronizati
domain includes only the first Np sites. When two of these
waves compete, the respective transient states alternate.
consequence, the competition between the two frequen
has here a cooperative effect, insofar as it enhances the
ity of each single entrainment process to reach global s
chronization over finite time slots. Such domain alternan
can also be established for frequencies such thatvo
,v1 ,v2,2v2 around the critical coupling~e.0.11!. Then,
both frequencies can extend to the whole system, but sp
taneous defects allow the competing frequencies to take
vantage in the synchronization.

In summary, we have studied the response of a chain
nearest neighbor coupled homoclinic oscillators to perio
9-4
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stimuli. The array can propagate a synchronization state
range of couplings and external frequencies~e,v!. When two
simultaneous forcings are applied at different points of
array, a rich phenomenology of stable competitive state
observed. The features and stability of these states depen
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the intrinsic dynamics of the system independently of
chain size.

The authors are indebted to R. Meucci for fruitful discu
sions. I.L. and E.A. acknowledge support from the Europe
Contract CoSyC of SENS No. HPRN-CT-2000-00158.
-
.

.

s.

.I.

D

s.
@1# For a review of the subject see A. Pikovsky, M. Rosenblu
and J. Kurths,Synchronization: A Universal Concept in Non
linear Sciences~Cambridge University Press, Cambridg
2001!; S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, a
C. Zhou, Phys. Rep.366, 1 ~2002!.

@2# C. Schafer, M.G. Rosemblum, J. Kurths, and H.H. Abel, N
ture ~London! 392, 239 ~1998!; G.D. Van Wiggeren and R
Roy, Science279, 1198~1998!; B. Blasius, A. Huppert, and L.
Stone, Nature~London! 399, 354 ~1999!.

@3# C.M. Ticos, E. Rosa, Jr., W.B. Pardo, J.A. Walkenstein, and
Monti, Phys. Rev. Lett.85, 2929~2000!; D. Maza, A. Vallone,
H. Mancini, and S. Boccaletti,ibid. 85, 5567~2000!.

@4# E. Allaria, F.T. Arecchi, A. Di Garbo, and R. Meucci, Phy
Rev. Lett.86, 791~2001!; S. Boccaletti, E. Allaria, R. Meucci
and F.T. Arecchi,ibid. 89, 194101~2002!.

@5# S.H. Strogatz, R.E. Mirollo, and P.C. Matthews, Phys. R
Lett. 68, 2730 ~1992!; V.N. Belykh, I. Belykh, and E.
Mosekilde, Phys. Rev. E63, 036216~2001!.

@6# V.N. Belykh and E. Mosekilde, Phys. Rev. E54, 3196~1996!;
A. Pikovsky, O. Popovych, and Yu. Maistrenko, Phys. R
Lett. 87, 044102~2001!.

@7# S. Boccaletti, J. Bragard, F.T. Arecchi, and H. Mancini, Ph
Rev. Lett.83, 536 ~1999!; L. Junge and U. Parlitz, Phys. Re
,

-

.

.

.

.

E 62, 438 ~2000!.
@8# L.P. Sil’nikov, Sov. Math. Dokl.6, 163 ~1965!.
@9# I.P. Mariño, E. Allaria, R. Meucci, S. Boccaletti, and F.T. Arec

chi, Chaos13, 286 ~2003!; C.S. Zhou, J. Kurths, E. Allaria, S
Boccaletti, R. Meucci, and F.T. Arecchi, Phys. Rev. E67,
066220~2003!.

@10# F.T. Arecchi, R. Meucci, E. Allaria, A. Di Garbo, and L.S
Tsimring, Phys. Rev. E65, 046237~2002!.

@11# R. Meucci, A. Di Garbo, E. Allaria, and F.T. Arecchi, Phy
Rev. Lett.88, 144101~2002!.

@12# R.C. Elson, A.I. Selverston, R. Huerta, N.F. Rulkov, M
Rabinovich, and H.D.I. Abarbanel, Phys. Rev. Lett.81, 5692
~1998!.

@13# A.N. Pisarchik, R. Meucci, and F.T. Arecchi, Eur. Phys. J.
13, 385 ~2001!.

@14# I. Leyva, E. Allaria, S. Boccaletti, and F.T. Arecchi, Chaos14,
118 ~2004!.

@15# Z. Zheng, G. Huand, and B. Hu, Phys. Rev. Lett.81, 5318
~1998!.

@16# R. Breban and E. Ott, Phys. Rev. E65, 056219~2002!.
@17# R. McAllister, R. Meucci, D. DeShazer, and R. Roy, Phy

Rev. E67, 015202~R! ~2003!.
9-5


