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Competition of synchronization domains in arrays of chaotic homoclinic systems
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We investigate the response of an open chain of bidirectionally coupled chaotic homoclinic systems to
external periodic stimuli. When one end of the chain is driven by a periodic signal, the system propagates a
phase synchronization state in a certain range of coupling strengths and external frequencies. When two
simultaneous forcings are applied at different points of the array, a rich phenomenology of stable competitive
states is observed, including temporal alternation and spatial coexistence of synchronization domains.
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Synchronization of chaos refers to a process where twaonoclinic chaos in a single mode GQaser with feedback
(or many chaotic systems adjust a given property of their[13]. The extension of the model to an array is the following
motion to a common behavidd]. The emergence of syn-
chronized features has been investigated in naf@iein X5 = kox} (x5 — 1—kysinPxy),
controlled laboratory experimen{8,4], and the interest has
moved toward the characterization of synchronization phe- i i iy iy
nomena in spatially extended systems, such as large popula- Xe=~ Yo 2kt Ot X TP,
tions of coupled chaotic units and neural netwdr&k glo-
bally or locally coupled mapped lattic6], and continuous
space extended systefd.

In this paper, we consider a one-dimensional chain of Xy=— yoxh+2x+ gxs+ zp,
sites, each one undergoing a local homoclinic chaotic dy-
namics, interacting via a bidirectional nearest neighbor cou-
pling. Homoclinic chaos consists of a train of nearly identi-
cal spikes separated by erratic interspikes interd&$. In :
phase space, this motion correspo_nds to the passage throuqaj: e v e(Xil_l+Xi1+1—2<Xi1))) .
a saddle focus, where stable manifolds collapse and an un- 1+ ax)
stable manifold emerges, with the expansion rate larger than (1)
the contraction oné8]. The saddle region displays a large
susceptibility to an external stimulus, therefore such aHere the indexi denotes theith site position {
chaotic system gets easily synchronized to a weak forcing=1, ... N), and dots denote temporal derivatives. For
signal. each sitex, represents the laser intensigy the population

The ability of such systems to synchronize to an externainversion between the two levels resonant with the radiation
forcing was demonstrated in previous wofKs, finding that  field, andxg the feedback voltage which controls the cavity
it may constitute a reliable communication channel robustosses. The auxiliary variables;, x4, andxs account for
against nois¢9]. Furthermore, homoclinic chaos can be self-molecular exchanges between the two resonant levels and
synchronized by feeding back a finite train of its own spikesthe other rotational levels of the same vibrational band. We
via either a delayed feedba¢kO] or a low frequency filter ~consider identical units; as for the parameters, their physical
[11]; in this latter case obtaining a bursting behavior remi-meaning has been already discus§e8|. Their values are
niscent of the dynamics of neurons in central pattern generd=28.5714, k;=4.5556, y;=10.0643, y,=1.0643, ¢
tors[12]. =0.05, pp=0.016,z=10, 8=0.4286,04=32.8767,r = 160,

However, when passing from a single system to an arraypo=0.1032.

a relevant problem emerges related to the ability of the array The coupling on each site is realized by adding tosxtge

to respond to external periodic perturbations localized at onéquation a function of the intensity; of the neighboring
end site, yielding synchronized patterns. The issue we arescillators. The ternix}) represents the average value of the
addressing is relevant for biological or artificial communica-x} variable, calculated as a moving average over the whole
tion networks. evolution time. The coupling strengte>0 is our control

For convenience, we refer to a chain of dynamical unitsparameter. The system is integrated by means of a standard
each one represented by a six-variable system modeling héeurth-order Runge-Kutta method with open boundary con-

X3= = Y1X5+ gXpF X5+ P,

Xs=— yoX5+2X5+ gx,+ zp,

X

Xs—bg+r

ditions.
We first study the emergence of synchronization in the
*Electronic address: ileyva@ino.it absence of external stimuli, as the coupling strengtin-
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FIG. 1. Space-time representation of spike positions=fe0.05 1600 : =S

(@ and €=0.2 (b). (c) Average defect density ve, for different 20 4OSite In dex20 40

chain lengthsN= 10 (J), 40 (O), 80(*).
FIG. 2. Response of th=40 chain withe=0.13 andw,(€)

creases. Due to the coupling, a spike on one site induces tfie0-02 to an external periodic forcingg) ©=0.015, (b) »=0.042.
onset of a spike in the neighboring sites as discussed in Ref.
[14]. wo(€)=2m/[{ISI)(e)]. We will show that this slowing

In Figs. 1@ and Xb) we show the transition from unsyn- down affects the capability of the array to synchronize to an
chronized to synchronized regimes by a space-time represesxternal signal.
tation of the array. A detection threshold isolates the spikes For this purpose, we explore the response of the system to
getting rid of the chaotic small interspike background, thusan external periodic stimulus applied to the first site of the
we plot only the spike positions as black dots. The transitiorchain. Precisely, we periodically modulate the parameger
to phase synchronization is anticipated by regimes wherat the sitei =1 asb}=b(t)=b,[1+ A sin(wt)]. From pre-
clusters of oscillators spike quasisimultaneodl§]. Clus-  vious work, we know that this driving can induce a phase
ters are delimited by “phase slips” or defects, easily seen agynchronization on a single oscillatp4]; here we explore
holes in the space-time fabric. More precisely, we introducehe ability of the system to transmit the periodic signal
a phase measuré'(t) for a time intervalt between two  through the chain.
successive spikes of the same site, occurringat, 7, by The modulation amplitudé does not affect the results,
linear interpolation asp'(t)=2#(t—7,_,)/(7,— 7«_,) [1].  provided that it is sufficient to synchronize the1 site.
A defect appears as ardhase slip in the difference between Therefore, we do not lose generality by fixing a constant
the phases of two adjacent sites. Note that this mutual referalue A=0.3.
encing is the natural extension of measuring the regularity of We will consider that the signal has been successfully
a sequence against an external clock, whenever there is timnsmitted through the system when after a finite time the
external clock, but the time evolution of a site compares withlast element of the chain spikes with the same period of the
the nearest neighbor sites. Hence “phase synchronizationéxternal forcing, without defects, i.e., A®=|d°(t)
denotes a connected line from left to right, not broken by—®N~(t)| is oscillating around a constant value with
defects. This definition of phase synchronization does nobounded oscillation width for a sufficiently long time. This
imply equal time occurrence, thus the unbroken lines are ndtnplies that the number of spikes over a long time interval is
isochronous as can be seen in Figb)1l The cluster size equal on the leftmost and the rightmost sites of the chain, as
increases withe extending eventually to the whole system in Fig. 2(@); whereas at high frequendyig. 2(b)] such a
[Fig. 1(b)]. The route to phase synchronization can be charnumber is different because of the occurrence of defects. In
acterized by the defect density, that is, the number of defectBig. 2 we give examples of partial signal transmissiom i§
per site. In Fig. 1c) we plot the average defect density astoo small[Fig. 2(@)] or too large[Fig. 2(b)] with respect to
function of ¢ calculated for a long evolution timeT( the natural frequency of the systdm,(€)=0.02 in the fig-
=3x10°). Full phase synchronization is reached when theure], then only partial transmission is achieved.
defect density falls below one defect per site. The defect We explore the(e,w) range over which transmission
statistics has been studied for several chain lengths; we fingropagates over the whole chain. In the low frequency limit,
that aboveN=30 there are no appreciable size-dependentwe find thatw<w,(€) is not able to globally synchronize
effects. Once phase synchronization is established, a furthéne chain. Independent &, asw, is larger thanw, the last
increasing ofe reduces the natural frequency of the systemsites tend to spike spontaneously between two consecutive
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) ) . transmission in the arrays with lengtihé=10 (dotted lineg, N
FIG. 3. Penetration depth us for dn‘feren_t coupling _strengths 20 (dotted-dashed lingsN =40 (dashed lines andN=80 (solid
€=0.12(*), 0.15(¢), 0.2(0J), 0.25(C), studied for chain lengths lines). The black stars indicate the average spiking frequesyy)
up toN=160. of a site of the array in the absence of external perturbation. Inset:
zoom of the area where the two external frequencies are selected for
periods of the external driver before the synchronizatiorstudying the spatial competition between synchronization domains.
propagates to them, and therefore synchronization is lost
[Fig. 2@)]. synchronism to several frequencies;(w,, or a combina-
Whenw>2w,(€), the firstN, sites synchronize with the tion of the twg. Here we go further, addressing the problem
driving frequency, but beyontll, a line of defects restores Of spatial competition between synchronization regions,
the natural oscillation reglmEF|g 2(b)]. This “penetration  Which is preliminary to controlling the dynamics of an ex-
depth” N, for synchronization is invariant as we change thetended system as well as to studying the response of neural
whole array length. In Fig. 3 we plot the penetration depthassemblies to competing external perturbations.
versus the forcing frequency for different valueseptested To answer this question, we apply to the first=1) [the
for chain lengths up to 160. If for a poilit,w) the penetra- last (=N)] site a periodic perturbation with frequeney;
tion depth isN,,, then one would observe complete synchro-(wz). For simplicity, we will take alwayso,<w;<w,, S0
nization only for sizetu< N, while incomplete synchroni- thatNp(w1)>Ny(w,) (see Fig. 3.

zation would una\/o|dab|y take p|ace fN|>N . As a result, The emerglng competltlon scenario can be described with
for a givenN, only a limited range of external frequencies reference to Fig. 5. FONy(w1),Np(w2)>N, both frequen-
can be transmitted over the whole chain. cies synchronlze over the whole chain. However, after a suit-

In Fig. 4 we plot the boundaries of the transmission band
as a function ofe and w, for several chain lengths. The re-
gion inside the curves contains all thew) points for which
global transmission is allowed. It can be seen that for each
the transmission band extends from),, (black stary to 200
~2w,. Note that the system starts to transmit for coupling
strengths above the ones leading to intrinsic synchronizatiorg a0
(=~e>0.11). For weaker couplings, the presence of defectsc
breaks the continuity, while foe=>0.35 the homoclinic dy- g 600
namics is destroyed. The left boundary of the transmission®
range refers to perfect transmission of th@eriod up to the E
end of the chain. If one is only interested in the transmission™ &%
of the average frequency, this boundary is slightly smearec
out. 1000
Now we have sufficient background to address the main
question of how two different frequencies applied at the far 1209
ends of the chain compete in generating two separate spatit
patterns of synchronization. The temporal competition be-
tween different synchronization states was recently investi- F|IG. 5. Competition between spatial synchronization regimes
gated theoretically16] and experimentally17] in the con-  induced by external forcinga) w;=0.02, w,=0.021,e=0.13, (b)
text of a single chaotic system forced by two externalw,;=0.038, w,=0.042, ¢=0.12, () w;=0.04, w,=0.0405,
frequencies, finding competitive behaviors as alternations 0é=0.11.
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FIG. 6. (a) Diffusion velocity vs o for
€=0.12.(b) Time evolution ofw(t) fori=1 and
i =40 (dashed linesand for the sité =22 (solid
line) located on the domain boundary for the case
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able transient time, the whole system synchronizes to thboundary locks alternatively t@; and w,. The locking pe-
larger frequencyw,, with the only exception of the site  riods are interrupted by defects. In Fig(cg we plot the
=1 [Fig. 5@)]. This is due to the fact that a wave with a normalized locking time of all sites t@; and w,, respec-
higher frequency diffuses along the space faster than a lowively. The transition is smooth spacewise and the boundary
frequency ondFig. 6@]. This property of the network is layer has a width of approximately six sites, independently
related to the characteristic of single elements that respondsf the chain length.
to the stimulus only when it occurs at the time when the Finally, for Ny(w;), Ny(w2) <N, neither of the two fre-
system is in the active state and that has a refractory timguencies stabilizes a synchronized pattern over the whole
following the spike. As a result, the wave coming from the chain. In this case, we observe alternation between synchro-
w, source arrives first to induce a spike in iftle site, while  nization patterns with frequencies;, and w,, with intervals
the w; wave arrives to the same point when the oscillator isof asynchrony filled with defects, as shown in Figc)s The
not receptive to the signal. Therefore, tilk site will oscil-  duration of the synchrony and asynchrony intervals is irregu-
late at thew, frequency and will induce the next site to spike lar. This competitive behavior persists in time. An explana-
at the same frequency. This kind of “winner-takes-all” be- tion for this behavior can be offered looking at FigbhR
havior is the consequence of the extended character of thBustrating the transient state for a wave with penetration
system, and is at variance with the single oscillator behaviodepth N,<N. Initially, the wave expands to the whole sys-
for both forcing frequencies inside the Arnold tongue. Intem but this transient state is eventually broken by a defect,
fact, in Ref.[16] the entrainment takes place at the frequencyyielding a stationary regime in which the synchronization
closer to the natural frequeney, . domain includes only the first Nsites. When two of these
For N,(@1)>N,Ny(w2) <N, only the smaller frequency waves compete, the respective transient states alternate. As a
synchronizes over the whole chain, while the larger fre-consequence, the competition between the two frequencies
quency is limited to thé\,(w,) sites closest to=N. In this  has here a cooperative effect, insofar as it enhances the abil-
situation, we find that permanent synchronization domaingty of each single entrainment process to reach global syn-
for w, andw, are established, with an irregular domain wall chronization over finite time slots. Such domain alternance
[Fig. 5b)]. If we increase\, the w, domain is always con- can also be established for frequencies such thgt
fined to the lasN,(w,) sites, independent of the total length <w,,w,<2w, around the critical couplinge=0.11). Then,
of the chain as well as of the value &f,. The domains are both frequencies can extend to the whole system, but spon-
stable, as checked with a very long integration timetaneous defects allow the competing frequencies to take ad-
(T>3x10"). For the case of Fig.(6), we plot the instan- vantage in the synchronization.
taneous frequendy] for i=1, i =40, andi =22 [Fig. 6b)]. In summary, we have studied the response of a chain of
It can be observed that the site 22 located on the domain nearest neighbor coupled homoclinic oscillators to periodic

066209-4



COMPETITION OF SYNCHRONIZATION DOMAINS IN . .. PHYSICAL REVIEW E568, 066209 (2003

stimuli. The array can propagate a synchronization state in the intrinsic dynamics of the system independently of the
range of couplings and external frequendie®). When two  chain size.

simultaneous forcings are applied at different points of the The authors are indebted to R. Meucci for fruitful discus-
array, a rich phenomenology of stable competitive states isions. I.L. and E.A. acknowledge support from the European
observed. The features and stability of these states depend @ontract CoSyC of SENS No. HPRN-CT-2000-00158.
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