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Time Resolved Pattern Evolution in a Large Aperture Laser
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We have measured quasiinstantaneous transverse patterns in a broad aperture laser. Nonordered pat-
terns yielding to boundary determined regular structures in progressive time-integrated recording are
observed. The linear analysis and numerical integration of the full Maxwell-Bloch equations allow us to
interpret the features of the experiment. We show that this system being far from threshold cannot be
fully understood with a perturbative model.

PACS numbers: 42.65.Sf, 42.60.Jf, 42.60.Mi, 47.54.+r
Pattern formation in systems which exhibit spatiotempo-
ral chaos has been a field of intense research in the last few
years. An averaging process from chaotic to boundary-
selected ordered patterns has been observed in hydrody-
namics [1,2]. A similar behavior is foreseeable in other
pattern forming systems, such as large aperture lasers.

In fact, this phenomenon has been predicted for lasers
from the basis of the Maxwell-Bloch equations [3–5].
However, due to its extremely fast evolution, the time re-
solved spatiotemporal dynamics of a broad area laser has
never been observed. So far, the experimental work only
analyzes averaged patterns, mainly in cw CO2 [3,6–8] and
semiconductor lasers [9], since the minimum reachable ex-
posure time was about 1 ms, too long to obtain information
about the pattern history.

In this Letter we study, both experimentally and theoreti-
cally, the time resolved dynamics of a large Fresnel number
pulsed laser. The measurements were carried out with a
system that we have recently developed to obtain infrared
snapshots with a short exposure time (minimum �1 ns).
This setup has been described in detail in Ref. [10], and
it allows us to record virtually instantaneous transverse in-
tensity laser patterns.
FIG. 1 (color). Instantaneous patterns at different times of the laser pulse. Experimental: (a) 150 ns, (b) 300 ns, and (c) 500 ns
delay from the gain-switch pulse. Numerically generated: (e) 500 ns delay with Qmax � 18.0 and d � 0.6. Time-integrated patterns
[experimental (d) and numerical (f )]. Experimental pattern dimension 20 3 20 mm.
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The source was a transversely excited atmospheric
(TEA) CO2 laser, with Fresnel number F �

b2

lL � 10,
where 2b � 20 mm is the laser aperture, L � 1 m is the
resonator length, and l � 10.6 3 1026 m is the lasing
wavelength. This laser emits about 15% of the output
energy in a gain-switch pulse ��70 ns�, followed by a
long collisional transfer tail ��2 3 ms� [11]. Being a
pulsed laser, it offers interesting characteristics such as
high pumping far from threshold and wider detuning,
which allow the exploration of additional features of the
class B laser behavior.

In order to study the dynamics of the system, we take
snapshots all along the duration of the laser pulse. A
sample of recorded patterns taken with a 6 ns temporal
resolution at different times along the pulse is shown in
Fig. 1. Note that all the instantaneous patterns are disor-
dered and are nonreproducible from shot to shot (Figs. 1a,
1b, and 1c).

However, such irregular appearance masks some kind of
regularity, since the averaged patterns integrated all along
the pulse length are ordered and reproducible (Fig. 1d),
having eight or nine rolls parallel to the almost flat laser
electrodes. The transverse spatial period of those bands
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is �1.8 mm, similar to the size of the intensity maxima
appearing in the disordered patterns. No sign of two
spatial structure scales can be observed, contrary to the
predictions of Ref. [3]. It is remarkable that the same
regular structure is recovered by averaging over many
equivalent instantaneous patterns, an observation that was
suggested by the results in Ref. [12]. In this sense, a sort of
ergodicity is observed.

We have also studied the temporal evolution of the in-
tensity in one small area ��1 mm2�, for which a photon-
drag detector was used �rise time � 1 ns�. We find that
the local intensity oscillates in a completely irregular form
(Fig. 2a), with a period of 10 ns approximately. Further-
more, the cross correlation between the local oscillation
measured at two different points of the patterns is very
low, even if they are as close as 6 mm [13].

As the characteristic period of the intensity local fluctua-
tions is about 10 ns, in order to record true instantaneous
snapshots it would be convenient to reduce the width of
the temporal window as much as possible below this value.
But, if the window width is too small we do not get enough
photons to be recorded by our system. On the other hand, a
snapshot recorded with a much longer exposure integrates
the pattern over several periods and it cannot be considered
instantaneous any longer. That justifies the 6 ns choice that
we have made for the temporal window width.

Nevertheless, it would be interesting to know how much
recording integration time is necessary to obtain a suffi-
ciently ordered pattern. Therefore, in order to follow the
averaging process, we have also measured sequences of
progressively integrated patterns by varying the temporal
window (Fig. 3). These measurements were made in the
first 150 ns of the laser pulse, in which the intensity is
several times larger than in the pulse tail, and therefore the
limitation due to the small intensity disappears. That al-
lows us to reduce the time window down to 2 ns (Fig. 3a),
showing a small number of intensity maxima which con-
trast deeply with the background. We see that the longer

FIG. 2. Time evolution of the local intensity: (a) measured;
(b) numerically generated for Qmax � 18.0, d � 0.6.
884
the exposure, the bigger the number of maxima observed
(Figs. 3b and 3c), approaching progressively the ordered
pattern, whose rolls are already clearly recognizable when
the time integration is about 100 ns (Fig. 3d), yet much
shorter than the total pulse duration.

Our theoretical approach to the problem includes both
numerical simulations and a linear stability analysis of the
full Maxwell-Bloch laser equations.

Hence, in order to reproduce the spatiotemporal dy-
namics, we directly integrate the two-level Maxwell-Bloch
equations [4]:

≠E
≠t

� 2k

∑
�1 2 id� 2 i

a
2

Dt

∏
E 2 kQP , (1)

≠P
≠t

� 2g��DE 1 �1 1 id�P� , (2)

≠D
≠t

� 2gk

∑
D 2 1 2

1
2

�EP� 1 E�P�
∏

, (3)

where E � E�x, t� is the slowly varying electric field,
P � P�x, t� is the polarization, D � D�x, t� is the popu-
lation inversion, Q � Q�x, t� is the rescaled pump, k �
2c
2L ln�R� representing the cavity losses with R �
p

R1R2 � 0.78 the resonator reflectivity, a �
c

2kLF is a
diffraction coefficient, d �

v212v

g�
is the rescaled detun-

ing, and Dt is the Laplacian in the adimensional transverse
coordinates of the system x � �x, y�. In an atmospheric
laser, the decay rates can be chosen as g� � 3 3 109 s21,
gk � 107 s21, and k � 3.9 3 107 s21.

The transversal pumping profile is taken to be homoge-
neously distributed along one transverse axis and Gaussian

FIG. 3 (color). Experimental patterns with different exposure
time: (a) 2 ns, (b) 6 ns, (c) 30 ns, and (d) 100 ns.
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in the other, in order to reproduce the experimental current
spatial distribution of the discharge. Likewise, the tem-
poral form of the pumping was simulated by a function
approximating the pulsed excitation, with typically large
pumping parameters in the maximum �Qmax � 15 25�.
Null boundary conditions, equivalent to the experimental
ones, were used.

The patterns and local intensity temporal evolution ob-
tained by a standard numerical method look very similar
to those recorded experimentally. In the spatial domain,
the instantaneous patterns (Fig. 1e) are well reproduced, as
well as the time integrated (Fig. 1f). In both of them, only
one spatial scale of structures is found, in accordance with
the experimental records. The numerical temporal evo-
lution (Fig. 2b), although completely irregular, presents a
characteristic time of the same order as its experimental
counterpart (Fig. 2a).

As has been mentioned, this time scale of the irregular
oscillations measured in the local dynamics is around a few
nanoseconds (Fig. 2), whereas the typical evolution time of
the pulsed pumping is a few microseconds �2 3 ms�. A
good approximation is to consider the dynamics measured
in the slow varying pulse tail to be quasistationary [14].
Thus, we can still use the properties of a linear stability
analysis to gain some deeper insight into the observed
irregular dynamics. Taking this consideration into account,
we undertake the stability study linearizing Eqs. (1)–(3).
As is known, the Liapunov exponents of the equations are
the real parts of the five roots of the corresponding secular
quintic equation, which cannot be solved analytically, and
therefore it is not possible to obtain algebraic expressions
for the eigenvalues. However, it is known that, for class B
lasers, out of the five roots, one is real and the rest come
in complex conjugated pairs [4,6].

It can be shown that the resonator can develop the insta-
bility associated to the real root only when the condition

d
Q 2 �1 1 d2�

Q
¿

2p

4F ln�R�
(4)

is satisfied [4]. In a TEA-CO2 laser, only one molecular
transition oscillates (P20 line, Ref. [15]). In the present
case, it includes a large number of axial modes simul-
taneously (15–20), with a free spectral range of c

2L �
150 MHz [13]. Hence, most of the values of d lie in the
interval 21 # d # 1. Since Q ¿ 1, the condition (4) is
not satisfied for most of the oscillating axial modes. Thus,
we conclude that this instability does not actually affect
the laser, or does so very weakly.

In addition, two of the complex conjugate roots can
be approximated as 2g��1 6 id�, being their real part
always negative and therefore not associated to any
instability.

The detuning value determines whether the real parts of
the two remaining conjugate roots are negative for every
transverse wave-vector k, or positive for an interval around
a value ko�d�, the wavelength vector at which the Liapunov
exponent is maximum and positive (Fig. 4). Each set of
system parameters has a certain critical detuning dc; such
as for d . dc, there is an interval of wave numbers k for
which the real part of the root is positive. In the present
case this critical value is rather low �dc � 0.06�. Then,
for most of the axial modes with d . 0, the instability
associated to those complex conjugate roots shows up.

Summarizing, in this kind of laser most of the axial
modes with positive detuning bear the short-wavelength
instability due to the pair of complex conjugate roots,
whereas that associated to the real root is not supported be-
cause of the diffraction (Fig. 4). Therefore, the observed
irregular spatiotemporal behavior can be justified only by
the action of the remaining instability, in contrast with [6].

On this basis, it is possible to estimate the expected spa-
tial and temporal scales. The spatial scale of the instabili-
ties associated to the complex root will be around k21

o .
By solving numerically the secular equation with d � 0.6
and Q � 6.0 (a reasonable mean value in the pulse tail),
we obtain ko � 3225 m21. Then the size of the generated
structures should be

S0 � 2pk21
0 � 1.94 3 1023 m . (5)

The average size of the experimentally measured in-
tensity maxima in the instantaneous patterns and, conse-
quently, the spatial period of the bands appearing in the
time integrated patterns is

Sexp � 1.8 3 1023 m . (6)

The agreement between (5) and (6) relates the observed
dynamics with the remaining instability.

Furthermore, the imaginary part of these eigenvalues
gives the oscillation frequency of the solutions. Hence, for
the same ko , we obtain v � 360 3 106 s21, correspond-
ing to a period of 16 ns, very close to both the experimental
and the numerically obtained fluctuation period of �10 ns
(Figs. 2a and 2b). Thus, the time scale is also well pre-
dicted by the stability analysis.

FIG. 4. Real �l� for several d values, Klim being the diffraction
limit for the instabilities, and Kexp the experimentally found
mean wave number.
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FIG. 5 (color). Numerically generated instantaneous pattern
for Qmax � 2.0, d � 0.6.

Concerning the physical interpretation of the irregular
observed dynamics, in the present case the suppression of
the instability coming from the real root invalidates its be-
ing considered as the origin of the disordered instantaneous
pattern. Thus we found that even though the distance to
the threshold is moderate here �Q � 6�, an analysis based
on the order parameter equation seems to already be in-
sufficient. To test this, the same numerical integration has
been carried out for a hypothetical case nearer threshold
�Qmax � 2�, where the order parameter equations must
dominate the amplitude behavior [4]. In agreement with
this perturbative approach, since the phase instability is
inhibited here, the instantaneous patterns show a large de-
gree of order (regular rolls which oscillate periodically;
Fig. 5). However, in the far threshold pumping case they
are disordered, and, therefore, the present problem does
not seem suitable for reduction to a perturbative one, as is
usual in the theoretical approaches. In other words, in the
observed dynamic it is not possible to distinguish between
phase and amplitude fluctuations. This result is a test of
the validity range of the order parameter equations, which
was not easily verified experimentally. As a more prob-
able origin of the phenomenon, a secondary instability of
the traveling wave solutions can be suggested [16].

In conclusion, in this Letter we report the measurement
of time resolved intensity patterns in a large aperture laser,
by means of an experimental system developed in our
laboratory. A rich irregular intensity spatiotemporal
dynamics, usually masked under time-integrated mea-
surements, has been uncovered. We show experimental
evidence of how this local irregular dynamics averages
886
to boundary determined order, as had been observed in
other pattern forming systems but so far predicted only
theoretically for lasers. Besides, a numerical integration
of the two-level full Maxwell-Bloch equations and its cor-
responding stability analysis reproduces the experimental
observations with outstanding agreement.
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