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a b s t r a c t 

Bipartite networks are related to non-linear and ecological approaches where, at least, two different kinds 

of entities are considered. In sports, we can consider players as entities that base their decisions (actions 

and reactions) on opponents and their own actions. Incorporation of bipartite networks into modelling 

of racket sport performances may bridge the gap between the performance analysis sub-discipline and 

coaches for greater preparation of training sessions and competitions for enhanced success. Thus, the 

main aim of this study was to create badminton stroke networks (BSN), from the match activities of a 

player and their opponents, to describe and quantify the performance of elite Olympic badminton play- 

ers. The use of a Network Science approach required the development of a series of methodologies that 

accounted for strokes played by all medallists within an Olympic tournament and included: (i) the con- 

struction of BSN; (ii) the one-mode projections of bipartite networks (self- and opponent- networks); 

(iii) the centrality of one-mode projections; and (iv) the identifiability of badminton players. The BSN 

identified different playing patterns for medallists with the Silver medallist categorised with the less 

predictable and defined style of play, the Bronze medallist exhibiting the most defined style; and the 

Gold medallist exhibiting the greatest predictability, but only when losing points (self-networks). The use 

of Network Science enabled the identification of distinctive styles of play (self- and opponent–related), 

based on stroke performance, during successful and unsuccessful points within an Olympic tournament. 

Specifically, the identifiability of each player’s network and its associations with point outcome, provided 

a better understanding of stroke performances and individual features of world-class badminton players. 

The use of non-linear approaches (such as bipartite networks) to measure and visualize player’s per- 

formances, accounting for the specific nature of badminton and opponents, may support coaches and 

players with the contextualized demands of playing patterns and their performances (i.e., winning and 

losing points) for future success. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Performance analysis studies of racket sports such as squash

1–4] , paddle [ 5 , 6 ], tennis [7–9] and table tennis [10–12] have fo-

used on the importance of players’ spacing and tactics to de-

ne patterns for players’ match-related performance. In contrast,

otational analysis of badminton performance has examined key

erformance indicators (KPI, e.g. distribution of strokes, zones of

he court used, frequency of technical actions and their effective-

ess) to identify player’s patterns during competition [13] as well

s identify differences between sexes [14–16] , elite and sub-elite
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layers [17] and competition stages [ 18 , 19 ]. These analyses high-

ighted vital player actions and strategies for success (e.g. hitting

he shuttlecock to the least favorable area for the opponent). Suc-

ess in badminton is achieved by forcing the opponent to perform

trokes under spatial pressure, with shots located to the corners of

he court, or close to the net, generating future open spaces and

aps to play the shuttlecock towards [ 20 , 21 ]. Despite this general

actical pattern, each player’s individual features (i.e., handedness,

eight, physical fitness, etc.) may also modify their behavior and

laying patterns to counteract a specific opponent [22–24] . Under-

tanding the temporal, technical, tactical and movement contribu-

ors to how each individual plays may improve identification and

ecognition of “performance profiles” [25] and a clear visual inter-

retation of strengthens and weaknesses for sport science (e.g. an-

lysts) and practice (e.g. coaches and players). 

https://doi.org/10.1016/j.chaos.2020.109834
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109834&domain=pdf
mailto:miguelangel.gomez.ruano@upm.es
https://doi.org/10.1016/j.chaos.2020.109834
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Table 1 

Example of the collected information for each stroke. We identified the (i) set, 

(ii) point, (iii) stroke number in the point, (iv) player who made the stroke, (v) 

zone from where the stroke was made, (vi) X-axis coordinate of the stroke, 

(vii) Y-axis coordinate of the stroke and (viii) the stroke’s outcome classified 

as one of 2 different results: (a) point won, and (b) point lost when the shut- 

tlecock was out of the court or hit net. 

Set Point Stroke Player Zone x y Outcome 

… … … … … … … …

1 3 3 Player 1 8 −14 −35 Point won 

1 3 4 Player 2 1 −15 14 Point won 

1 3 5 Player 1 9 −13 55 Point won 

1 3 6 Player 2 6 1 −24 Point lost 

… … … … … … … …
One of the most intriguing analyses in badminton has been

modelling the evolution of positional information about players

and the strokes performed. In fact, the visualization of performance

patterns has been reported to generate a better interpretation of

opponent-related contexts for success [13] . Only a few studies have

examined match-related performances from a video-analysis per-

spective, focusing attention on the extraction of shuttlecock trajec-

tories, and classifying the serve and strokes used during matches

[26] . Recently, Chu and Situmeang [13] employed video analysis to

document badminton player’s strategies according to space, oppo-

nent strength, and type of stroke (i.e., technical actions) with per-

formance models generated based on classification and detection

statistics. Despite this initial approach to analyze player’s perfor-

mance patterns/profiles, consideration of opponent-related actions

based on space and success has yet to be incorporated for bad-

minton [ 15 , 24 ]. 

Badminton is a unique sport that differs from other racket

sports (i.e., tennis or paddle) due to the rapid responses required

during high-intensity actions involving a shuttlecock flying at high

speeds that does not make contact with the ground (i.e., simi-

lar to volleyball). Consequently, performance analysis and inter-

pretations must consider multivariate, contextual-related and non-

linear methods relevant to the opponent’s performances [27] . The

use of isolated variables (e.g., technical-tactical indicators) with-

out contextual interpretation of player’s positioning during perfor-

mances may provide misleading information. According to Hughes

et al. [25] racket sports, such as badminton, require the inter-

related analysis of pace, space, playing actions and players’ mod-

ified attacking/defending actions in response to their opponent’s

constraints. 

From a statistical point of view, linear approaches have been

used predominantly in prior racket sport studies [25] however,

these simplistic models neither adequately quantify nonlinear be-

haviors between badminton counterparts, nor provide a visual-

ization tool for coaches and players [ 25 , 28 ]. Indeed, the use of

non-linear approaches within sport science analyses would of-

fer an improved approach to address complex sport performance

research questions (e.g. interdependence of counterparts’ perfor-

mances according to space and success) while providing valu-

able data visualization regarding each specific match-context (i.e.

player’s characteristics) [29–31] . Perl [30] highlighted the utility of

non-linear models, such as neural networks and fuzzy logic, to pre-

dict player’s performance with consideration of match-related fac-

tors (e.g., accumulated fatigue and environment conditions: tem-

perature or fan support) in racket sports. For example, Perl and

Baca [29] used neural networks (Kohonen Feature Maps, KFM)

that considered the time-series actions performed during rallies

to identify performance patterns of table tennis players based on

space and frequency. However, this model only accounted for the

time-dependent aspects of performance without consideration of

the relationships with opponent’s performance, success or context

(set or match). Therefore, understanding the effect of oppositional

play is essential to define and predict typical performances (tacti-

cal nature) for match effectiveness [ 25 , 32 , 33 ]. The use of complex

and non-linear analyses, such as Network Science [34] , may pro-

vide a unique approach to model performances from an ecological,

multivariate and context-related perspective. 

Different methodologies grounded in Network Science have

been used to analyse a variety of sporting contexts including the

structure of the transfer market in football [35] (Li et al., 2019), the

success probability of a rugby team [36] and development of an

all-time ranking of national football teams based on their scores

during world championships [37] . Importantly, Network Science

has been proposed to quantify and resolve the particular playing

patterns of teams [38] or players [39] . For example, using spatio-

temporal coordinates of all passes made during a football match, it
as possible to construct the passing network of both teams and

nalyze its topology related to the team’s performance [ 40 , 41 ]. Fur-

hermore, certain network parameters, such as the flow centrality

42] , the eigenvector centrality [39] or the participation of a player

n the construction of network motifs [43] , have been associated

ith identification of playing patterns’ similarities/differences be-

ween specific football players. The use of Network Science to char-

cterize playing patterns appears to be an important and emerging

pproach for sport analyses including that of badminton players

35–42] . 

In particular, bipartite networks can be related to non-linear

nd ecological approaches that consider players as organisms who

ase their decisions (actions and reactions) on opponents and

heir own actions [44] . Previous studies have examined football

nd rugby teams using this ecological approach and considered

hem as superorganisms [ 45 , 46 ]. The use of bipartite networks may

ridge the gap between the performance analysis sub-discipline

nd coaches modelling performances and predicting player’s pat-

erns [25] . Therefore, our ultimate purpose was to construct bad-

inton stroke networks (BSN) , from the match activities of a player

nd his/her opponents, to describe and quantify the performance

f elite badminton players. Using a Network Science approach, a

eries of methodologies (i) the construction of BSN; (ii) the one-

ode projections of bipartite networks (self- and opponent- net-

orks); (iii) the centrality of one-mode projections; and (iv) the

dentifiability of badminton players) could be developed to assist

lite badminton coaches and athletes in the preparation of training

essions and competitions for enhanced success. 

. Methodology 

.1. Dataset 

The dataset examined included all rallies (N r = 1052) and strokes

N s = 11,158) of 14 matches played by the three female medallists

uring the singles competition of the 2016 Olympic Games (Rio de

aneiro, Brazil). Each player played up to 6 matches with all match

ata examined in the current study, except for the bronze medal

atch where the medallist incurred an injury and performed sub-

ptimally. Subsequently, each player contributed data from 5–6

lite matches, in accordance with the recommended number of

atches (3–7) to establish normative profiles of performance [21] .

trokes made during a match were sequentially ordered with the

ollowing information obtained per stroke: (i) set, (ii) point, (iii)

troke number in the point, (iv) player who made the stroke, (v)

one from where the stroke was made (12 zones each player’s

ourt, see Fig. 1 A), (vi) X-axis coordinate of the stroke, (vii) Y-

xis coordinate of the stroke and (viii) the stroke’s outcome (point

in or lose). Table 1 shows an example of four consecutive strokes

ade during the 2016 Olympic final. 
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Fig. 1. A) Position of all strokes made during the final of the 2016 Olympic Games. All strokes made by the gold medallist (Player #1) were plotted at the bottom part of 

the court while all strokes made by the silver medallist (Player #2) were shown in the upper part. B) The corresponding badminton stroke network (BSN) for the final of 

the 2016 Olympic Games is displayed. For Player #1, nodes inside her part of the court were labelled from 1 to 12. Nodes 13, 14 and 15 corresponded to "out", "hit net" and 

"win", respectively. For Player #2, nodes were labelled from 16 to 27, while nodes 28, 29 and 30 were labelled "out", "hit net" and "win", respectively. The nodes located at 

coordinates 0,0 were disregarded during the network analysis. Size of nodes was proportional to the importance of that position in the network with the value corresponding 

with the eigenvector centrality [34] . The width of the links, which are unidirectional, was proportional to the number of times the shuttlecock went from one node to the 

other. Finally, the position of the nodes corresponded to the average number of all strokes belonging to each region. 

 

a  

a  

g  

c  

f  

s  

t  

e  

a  

i  

v

 

a  

(  

a  

t

2

 

a  

s  

c  

e  

o  

b  

t  

m

 

(  

n  

I  

(  

b  

i  

(  

t  

s  

w  

#  

n  

t  

b  

a  

t  

fl  

t  

r  

j  

n  

n  

s  

a  

w  
All match recordings were obtained from matches publicly

vailable on TV, imported into Dartfish (Friburgo, Switzerland) and

nalysed independently by four trained observers (Sports Science

raduates with ten years of national experience as badminton

oaches). The inter- and intra-rater reliability values between the

our observers were very good for outcome (Kappa: > 0.85). The

patial classification was automatically made by the software iden-

ifying the x/y measures for each zone of the court (there was

nough resolution to include each stroke in one zone). Addition-

lly, there was calculated the Weighted Kappa for spatial variables

n order to check the data reliability for zones of the court with

ery good values ( > 0.81) [ 47 , 48 ]. 

Overall, a series of procedures were undertaken for this study

s follows: (i) the construction of Badminton stroke networks

BSNs); (ii) the one-mode projections of bipartite networks (self-

nd opponent- networks); (iii) the centrality of one-mode projec-

ions; and (iv) the identifiability of badminton players. 

.2. From strokes to badminton stroke networks (BSN) 

Badminton stroke networks (BSN), whose fundamental nodes

re the regions of the badminton court where a player makes a

troke and the links arising from the trajectories of the shuttle-

ock between two areas of the court, which are located on differ-

nt sides of the net, were developed. Fig. 1 A shows the position

f all strokes that occurred during the Olympic final. Strokes made

y Player #1 (the winner and gold medallist) have been placed at
he bottom part of the court, while those of Player #2 (the silver

edallist) are in the upper part. 

Next, we obtained the corresponding BSN of the match

 Fig. 1 B). To do so, the first step was to define the nodes of the

etwork, which corresponded to the different areas of the court.

n our case, we divided each side of the court into 12 regions

 Fig. 1 A). Nodes placed at the bottom part of the court were la-

elled n i = 1,2,..,12 and contained the strokes of Player #1. We also

ncluded 3 nodes that did not correspond to any area of the court

nodes 13, 14, 15; located at coordinates 0,0) but were related to

he outcome of each point such as “out”, “hit net” and “win”, re-

pectively. In the same way, nodes of the upper part of the court

ere labelled n i = 16,17,..,27 and corresponded to nodes of Player

2. All nodes located at coordinates 0,0 were disregarded from the

etwork analysis since we were concerned about the movement of

he shuttlecock during the game. Therefore, our initial analysis was

ased upon a network of N = 24 nodes. Links between the nodes

nd their corresponding weight were then determined. Unidirec-

ional links connected two nodes (areas) when the shuttlecock

ew from one region of the court to a region on the other side of

he net. The weight w jk of a link connecting node j to node k rep-

esented the number of times the shuttlecock was hit from region

 to region k . It is worth noting that the position of the nodes was

ot exactly the same on both sides of the court as we placed each

ode at the average position of all strokes contained in the area as-

igned to that specific node. As a consequence, it was possible that

 node was missing, which occurred when no successful strokes

ere made from that specific region (e.g., node #26). In order to
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include as much information as possible in the representation of

the BSN, node sizes were proportional to the eigenvector centrality

of each node [34] , which was a measure of the importance of the

node in the global structure of the stroke network. 

2.3. Constructing the one-mode projections of BSN 

Note that BSN are a paradigmatic example of bipartite networks

where nodes are grouped into two disjoint sets, with nodes of the

same set devoid of a direct link between them [34] . For BSN, each

disjointed set of nodes corresponded to the nodes located on the

same side of the court with links only connecting nodes located on

different sides. 

When analysing bipartite networks, it is possible to project the

information into two, different one-mode projections [ 38 , 49 ], con-

taining the activity of what is happening on each side of the court.

In one-mode projections, links between nodes of the same kind

are created, which in our case was the same side of the court.

With this aim, an area j was connected to another area k on the

same side if the shuttlecock departed from area j, went to an area

i on the other side of the net and, then went back from area i to

k . Note that, in addition to the path the shuttlecock moved, we

captured the routes followed by a given player when they hit the

shuttlecock from regions j to i and then received it back to region

k to make the next stroke. Fig. 2 shows the one-mode projections

(one per player) of the BSN plot in Fig. 1 B and included the or-

der of displacements during the match. The number of nodes was

N 1 = N 2 = 12 for each one-mode projection with the projection cor-

responding to Player #1 shown in the bottom part while the upper

part represented the projection for Player #2 ( Fig. 2 ). The size of

the nodes was proportional to their importance in the one-mode

projection network with the width of the links proportional to the

number of times a specific path was repeated. 

We focused on the properties of unique one-mode projections

that were developed for each player and represented their playing

pattern against a specific opponent. In order to characterize the

structural properties of the one-mode projections, we computed

the following network parameters: 

2.3.1. Clustering coefficient (C) 

In general, the local clustering coefficient of a node i was ob-

tained as the percentage of the nodes directly connected to i that,

in turn, were connected between themselves [34] . This measure

was averaged over the N nodes of a network to obtain the average

clustering coefficient, C . However, when the network is weighted

and directed, then the distribution of these weights and directions

should be included in the calculation of the clustering coefficient.

This was the case for BSN, where the number of connections be-

tween the areas of the court was not constant. Therefore, we use

the weighted clustering coefficient C w 

(i) to measure the likelihood

that neighbours of a given area i were also connected between

themselves [50] as follows: 

 w 

(i ) = 

∑ 

j,k w i j w jk w ik ∑ 

j,k w i j w ik 

where j and k are any two areas of the court and w ij and w ik are

the number of times the shuttlecock flew between area i and both

area j and k . Finally, the clustering coefficient of the network was

obtained as follows: 

 = 

1 

N 

∑ N 

i =1 
C w 

(i ) 

In short, the weighted version of the clustering coefficient char-

acterized the tendency of a badminton player moving within trian-

gular patterns between areas of the court. 
.3.2. Shortest-path length (d) 

In a BSN, the shortest path length d is the minimum number

f areas that must be traversed by the shuttlecock to go from one

rea to any other. Since BSN networks are weighted networks, we

ust take into account the different weights of the links, consider-

ng that, the higher the weight of the link connecting two nodes,

he shorter the topological distance between them. Therefore, the

opological length l ij of the direct link between areas i and j is

efined as the inverse of the link weight, l ij = 1/w ij . Importantly,

hen computing the shortest-path length between two nodes in

eighted networks, it may not be a direct link between them as

 shorter path could exist by combining two (or more) alternative

inks whose topological lengths summed are lower than the length

f the direct path. Therefore, we computed the minimal shortest-

ath p ij between any node i and j using Dijkstra’s algorithm [51] ,

hich obtained the path (or combination of paths) between all

airs of nodes, for the lowest topological distance. We defined the

verage shortest path d of the whole network as: 

 = 

1 

N(N − 1) 

∑ 

i, j i � = j 
p i j 

here N = 24 for BSN and N = 12 for each of the one-mode pro-

ections. 

.3.3. Largest eigenvalue ( λ1 ) 

The largest eigenvalue λ1 of the weighted adjacency matrix A of

 network is a measure of the network strength [34] . The weighted

djacency matrix A is a N × N matrix whose elements { a ij } contain

he weight of the links connecting area i with area j . The largest

igenvalue of A was bounded by the average weight of the network

 w ij > and the maximum number of times the shuttlecock con-

ected any two areas w max , with w max ≥ λ1 ≥ max{ < w ij > , 
√ 

w max , }

52] . As a rule of thumb, networks with higher weights would

ave a higher λ1 while networks with strong connections between

odes (known as assortative networks) would also have higher λ1 

ompared with networks where the hubs (i.e., areas with the high-

st weights) were not directly connected. 

.3.4. Eigenvector centrality [ec(i)] 

The eigenvector centrality ec(i) of an area i is a measure of

ode importance that takes into account the number of all di-

ected connections within an area. It is calculated from the eigen-

ector v 1 associated to the largest eigenvalue λ1 of the weighted

djacency matrix A [34] . Furthermore, two factors contribute to a

reater eigenvector centrality: (i) a greater number of direct con-

ections to different areas of the court (note that connections are

eighted); and (ii) a greater number of connections to areas that,

n turn, also have a high centrality. In other words, important

odes are those areas of the court that are (highly) connected to

ther important areas of the court. Eigenvector centrality is one of

he most important metrics to evaluate the importance of a node

n a network [34] with a modified version, the PageRank algo-

ithm, utilised by Google to quantify the importance of webpages

53] . 

.3.5. Network randomization and normalized parameters 

In order to interpret the values of the network parameters, we

onstructed the randomized versions of the original networks and

alculated their corresponding network parameters. First, we ran-

omized the weights of the links of a BSN, reshuffling (randomly)

he elements of the adjacency matrix A . The randomized version of

he adjacency matrix A was termed A ran . Second, we calculated all

etwork parameters for the randomized versions of matrix A . Next,

e repeated the process 100 times and obtained an average value

 X ran > of each parameter X ran of the randomized networks. Finally,

e obtained the normalized parameters of the original networks,
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ividing the original parameter X by < X ran > (e.g. the normalized

lustering coefficient was obtained as C norm 

= C/ < C ran > ) . Note that

ormalized parameters have two advantages: first, they allowed

s to determine if a network was close to a random one (which

ould be the case when values of X norm 

were close to one); and

econd, they allowed comparison between the parameters of net-

orks with different number of nodes and links. 
.3.6. Small-worldness parameter (SW) 

The small-worldness parameter was calculated from the combi-

ation of two network parameters: the normalized clustering coef-

cient and the normalized shortest-path length [54] . Specifically, it

as defined as SW = ( C/ < C ran > )/ ( d/ < d ran > ) . Values of SW greater

han one indicated that a network was small-world, while values

lose to one suggested that the network may be random. The SW
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Fig. 3. Network metrics of the three Olympic medallists: Gold medal (blue), Silver 

medal (red) and Bronze medal (orange). (A) the largest eigenvalue of the one-mode 

projection adjacency matrix λ1,norm , which was normalized by the value of the cor- 

responding random ensemble; (B) the normalized clustering coefficient C norm ; (C) 

the normalized shortest path d norm and (D) the small-worldness parameter SW. 
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parameter has been computed in a diverse range of social, biolog-

ical and technological networks with values greater than one re-

ported for the majority of networks [ 55 , 56 ]. 

2.3.7. Centrality of one-mode projections 

The centrality (i.e., importance) of each node during the match

and how it was related to winning or losing a point was calcu-

lated for each player/opponent. Specifically, we first obtained the

winning and losing BSN, and then computed the corresponding

one-mode projections. Next, we calculated the eigenvector cen-

trality of all areas of the court for each winning/losing network

( ec win (i) and ec lost (i), respectively). Finally, for each area, we sub-

tracted the centrality obtained for the losing network from the

one obtained for the winning network, leading to the centrality

difference �ec(i) = ec win (i) – ec lost (i). Positive values of �ec(i) for

a given area i indicated that this area contributed importantly in

winning the point, compared to when the point was lost. On the

contrary, negative values of �ec highlighted areas that were impor-

tant for losing a point. This analysis provided a novel perspective

that could help (i) detect weak and strong areas of the court for

players; and (ii) prepare for a badminton match against specific ri-

vals (by analyzing their corresponding networks). 

2.3.8. Identifiability of badminton players 

Finally, we examined whether the playing style of a player

could be identified by the structure of their corresponding BSN.

With this focus, we computed the identifiability of the networks

[ 57 , 58 ] by evaluating the correlation between the adjacency ma-

trices A of the one-mode projections of a given player, and then

comparing it with the correlations between the networks of other

players. As explained in the previous section, each BSN can be de-

composed into two one-mode projections, one per each player of

the match. Therefore, we first obtained the adjacency matrices of

the one-mode projections of a player { A self (k)} and their oppo-

nent { A opp (k)} for the k matches played by each player. Next, we

computed the correlation coefficients between all { A self (k)} j of a

given player j and obtained the self-identifiability I self (j) of player j

as the average of the k(k-1)/2 possible combinations. This parame-

ter indicated how similar the matrices of a player were with values

of I self (j) close to one indicating a greater, playing style similarity.

Next, we calculated the opponent-identifiability I opp (j,r) of a player

j with an opponent r as the average correlation between matrices

A self (j) (of player j ) and matrices of A self (r) (of player k ). As stated

earlier, values of I opp (j,r) close to unity indicated a similar playing

style between player j and their opponent player r . 

Note that the ideal performance combination for a player was

a high value of I self (j) and a low value of I opp (j,r). Finally, a player’s

identifiability I(j) was calculated as: 

I ( j ) = I sel f ( j ) − 〈 I opp ( j, r ) 〉 
Finally, we carried out a series of analyses dividing the self-

networks according to the outcome of the point in order to relate

the playing pattern with the performance during the point (win

or lost). For example, we considered only those strokes that re-

sulted in winning the point, and defined the self-win-networks ac-

cordingly. Likewise, we obtained the self-lost-networks considering

strokes that resulted in losing the point. 

3. Results 

3.1. Network parameters 

The average values for the λ1,norm 

, the C norm 

, the d norm 

and the

SW metrics (during the tournament) for each player are shown in

Fig. 3 . 
Interestingly, the λ1,norm 

of the three medallists was consis-

ently greater than one indicating that (i) the one-mode projec-

ion network of each player was not purely random and (ii) the

reas of the networks with greater numbers of connections were,

n turn, highly connected. Concerning the C norm 

, all players exhib-

ted a value that was greater than unity, indicating that triangular

ovements within the court were prominent ( Fig. 3 ). 

The normalized shortest-path length d norm 

was, contrary to the

revious metrics, lower than unity (i.e. random networks) and in-

icated that the distance (i.e., areas to traverse) covered by players

as lower than that covered randomly ( Fig. 3 ). 

Finally, the SW was overall greater than one ( Fig. 3 ) for all play-

rs, which highlighted that one-mode projections of BSN digressed

rom being random and, in turn, players’ court displacement pat-

erns exhibited better organizational properties than their equiva-

ent random networks. 

.2. Centrality of one-mode projections 

Based upon the one-mode projections of the networks and

oint outcome ( Fig. 4 ), positive values of �ec(i) at a given area i

reen circles of Fig. 4 identified important areas for winning points

hile negative values of �ec red circles of Fig. 4 highlighted ar-

as that were important when losing the point. Results shown in

ig. 4 correspond to the average values during the tournament ob-

ained for the three medallists. 

.3. Identifiability of badminton players 

Positive identifiability I(j) of all three medallists is shown in

ig. 5 . Interestingly, the bronze medallist exhibited the most de-

ned style while the silver medallist was the one with the least

efined style. In turn, Fig. 5 B shows the identifiability parameters

btained at the opponents’ networks. Interestingly, values were

lightly lower for opponent’s networks compared to those obtained

or self-networks. However, when obtaining the identifiability I(j)

f each player, we observed some higher values than those of the

elf-networks (see Fig. 5 C and D). 
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Fig. 4. Relevance of player position according to point result during the final of the 2016 Olympic Games with the gold (A), silver (B) and bronze (C) medallists. �ec(i) is the 

average (during the tournament) of the difference between the importance (i.e., eigenvector centrality) ec win (i) of each area when a point was won, minus the importance 

ec lost (i) of the same area in the network obtained when the point was lost. Green circles indicate those areas with higher centrality during winning points, while red circles 

correspond to areas that were more important during points that were lost. Size of the circle is proportional to the magnitude of the differences between centralities �ec(i). 

Average values of the medallists are plot at the bottom part of the court, while the averages of their opponents during the tournament are plot in the upper part. 

Fig. 5. Identifiability of different one-mode projection networks of the three 

Olympic medallists (Gold medal: blue, Silver medal: red and Bronze medal: or- 

ange): (A) self-networks of each player, (B) self-networks of the opponent for each 

match, (C) self-networks during points won, (D) self-networks during points lost. 

 

h  

a  

m  

l  

s

4

 

t  

q  

a  

j  

t  

o  

n  

i  

f  

h  

m  

l  

n  

c  

m  

t  

m  

i  

t

 

f  

p  

t  

m  

t  

v  

t  

i  

n  

p  

t  

o  

i  

p  

i  

m  

p  

s  

i  

m  

i

 

m  

w  

i  

r  

f  
Finally, Table 2 showed the style of playing for each player with

igh values of the diagonal correlation corresponding to the I self (j)

nd low, off-diagonal correlation values I opp (j,r) noted for the three

edallists ( Table 2 ). Irrespective of the point result (winning or

osing point), the absolute correlation values for all strokes of the

elf-network were greater ( Table 2 ). 

. Discussion 

The aim of the current study was to construct networks from

he match activities of badminton players in order to describe and

uantify their performance. The development of BSN based on the

reas of the badminton court used by players during points (tra-

ectories of the shuttlecock between two areas of the court) iden-

ified different and unique measures of player’s performances: (i)

ne-mode projections of bipartite networks (self- and opponent-
etworks); (ii) the centrality of one-mode projections; and (iii) the

dentifiability of badminton players. These measures identified dif-

erent playing styles for medallists with the silver medallist ex-

ibiting the least predictable and defined style of play, the bronze

edallist exhibiting the most defined style, and the gold medal-

ist exhibiting greater predictability, only when losing points (self-

etworks). Further, Network Science methodologies were able to

learly describe and quantify the point performance of elite bad-

inton players including self and opponent related networks, and

heir association to winning and losing points. Specifically, the BSN

odels indicated the need to account for individual features (play-

ng patterns) with coaches and performance analysts encouraged

o be aware of the opponent’s style of play [59] . 

The utility of novel analytical approaches are of great interest

or coaches and players with the current one-mode projections

roviding clear profiles for a given player and their rival. In par-

icular, these analyses identified the idiosyncratic, playing style of

edallists from positional, stroke and outcome related perspec-

ives. Further, the current approach of using bipartite networks un-

eiled tactical performance patterns of each player and improved

he utility of this model when assessing performance trends dur-

ng different contexts and tournaments [60] . The use of bipartite

etworks was in accordance with non-linear and ecological ap-

roaches, where athletes are considered as organisms that base

heir decisions (movements and behaviors) on opponents and their

wn actions [44] . Similar approaches have been widely developed

n team sports (such as football or rugby) under the ecological ap-

roach (i.e., considering teams as superorganisms) with concluding

mplications and applications to training design and competition

anagement established [ 45 , 46 ]. Collectively, these complex ap-

roaches and analyses have assisted in bridging the gap between

ports sciences (performance analysis sub-discipline) and coach-

ng to predict future player’s patterns/ performances in subsequent

atches (contexts) accounting for opponents’ features/ character-

stics [25] . 

The current results confirm prior work that individuals’ perfor-

ances were affected by the opponent who is the core of the net-

ork model and a major source of player’s performance variabil-

ty [ 33 , 61 ]. Therefore, the recognition of strengths and weaknesses

elevant to opponents will allow players to maximize their per-

ormances, exploit the opponent’s weaknesses (e.g., use of zones,
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Table 2 

Correlations between players’ self-networks, opponents’ networks, and players self-network during winning 

and losing points, for each of the three medallists. Note that values in the diagonal (in bold), indicating the 

average correlation of each player with themselves, were always greater than correlations between each 

player and the other two (off-diagonal values). 

Player Gold medallist Silver medallist Bronze medallist 

Player’s self-network 

Gold medallist 0.780 0.676 0.694 

Silver medallist 0.694 0.697 0.667 

Bronze medallist 0.669 0.670 0.797 

Player’s opponents-network 

Gold medallist 0.766 0.701 0.702 

Silver medallist 0.701 0.720 0.686 

Bronze medallist 0.702 0.686 0.798 

Player’s self-network during winning points 

Gold medallist 0.726 0.610 0.633 

Silver medallist 0.610 0.637 0.605 

Bronze medallist 0.633 0.605 0.753 

Player’s self-network during losing points 

Gold medallist 0.673 0.537 0.572 

Silver medallist 0.537 0.578 0.640 

Bronze medallist 0.572 0.640 0.642 
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strokes and point pace based on those tactical patterns that ended

with a point won) and avoid situations where the opponent is

strong. As demonstrated in the current study, the bipartite net-

works allowed establishment of performance pattern analyses as

follows: 

(i) The strokes to badminton networks produced a visual tactical

pattern that was based upon match context (opponent-related)

and could be used by players when preparing matches against

specific opponents (i.e. playing pattern trends); 

ii) The use of one-mode projections of a bipartite strokes network

revealed the importance of each player’s individual features. For

example, Fig. 2 showed those paths that had been crossed the

most (by means of the links’ thickness) and those areas that

had been most influential to the stroke network (indicated by

the node size), both for a player and their rival. 

ii) Tactical patterns during matches including the positional di-

mension and strokes played during points were identified for

both players with players’ predictive performance improved

when the following four network properties were examined

collectively: λ1,norm 

eigenvalues and C norm 

coefficients (control-

ling for randomness network and triangular movements along

the court, respectively), the d norm 

(the number of steps to go

from one zone to another of the court during the point), and

SW parameters (the ratio between the normalized clustering

and normalized shortest path). This unique and comprehen-

sive analysis confirmed that the silver medallist of the 2016

Olympic Games was the player with the greatest random play-

ing patterns compared with the gold and bronze medallists (see

Fig. 3 ). 

v) Centrality of one-mode projection provided valuable informa-

tion of player’s effectiveness according to point outcome with

the most important nodes identified for both players. For exam-

ple, Fig. 4 displayed the areas of the court where a player was

at a higher risk of losing a point. Such reconnaissance about

opponents would assist players in preparation of match tactics

when they competed. 

v) Identifiability of badminton players identified the style of play

of a given player based on their own, and opponents, struc-

ture of one-mode projections of the stroke network. Therefore,

identifiability enables a clear identification of the similarity of

the playing styles of a player and their opponent In the cur-

rent study, again, the silver medallist was acknowledged as the

player whose style was the most difficult to be identified. On
the contrary, the bronze medallist was the player with the most

defined patterns and greatest identifiability. 

We employed a non-linear model into practice and competi-

ions in line with the Interacting Performance Theory as defined

y O’Donoghue [33] . Specifically, this non-linear model allowed us

o control for: (i) how performance was affected by a particular

pponent (i.e., visual representation of strokes network); (ii) how

he outcome of player’s performances were influenced by quality

nd type of opposition (i.e., individual’s performance described us-

ng one-mode projections); (iii) how the process of performances

points and strokes) were influenced by the quality and type of

pposition (i.e., centrality of one-mode projection): and (iv) how

ifferent players were influenced by the same opponent in dif-

erent ways (i.e., the use of identifiability measures). Others have

lso suggested that performance patterns in a racket sport like

adminton should recognize and identify the key measures that

est comprehend the player’s characteristics based on their op-

onents with successful collaboration between scientists (perfor-

ance analysts) and practitioners (coaches and players) essential

 25 , 29–31 ]. The use of bipartite networks for badminton offers a

ovel perspective of performance analysis accounting for context

i.e., opponent-related performances) and applicability of results

nto practice. 

.1. Limitations of the proposed methodology 

Some limitations of the current study need to be highlighted.

ur model utilized only a fraction of the performance indica-

ors traditionally used in badminton [23–25] . Therefore, the addi-

ion of other indicators, such as the type of serve, type of stroke

r other contextual variables (e.g., match type, score-line or set),

ould possibly provide greater clarification of players’ networks

nd their performance. Further, the network analysis was limited

o specific outcome measures (e.g. centrality, etc.). Inclusion of

ther measures stated below could provide comprehensive infor-

ation for coaches and players to enhance playing performance:

he (Euclidean) distance covered between strokes and zones of the

ourt during the point, the analysis of shuttlecock trajectories with

oronoi diagrams, the interplay between the number of strokes

ithin a point, the speed of a player, and the fatigue status of play-

rs during the match. 

In summary, the use of Network Science enabled the delin-

ation of player’s playing patterns (self- and opponent–related),

ased on stroke performance, during successful and unsuccessful
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oints. In addition, the identifiability of each player’s network and

ts associations with point outcome, provided a better understand-

ng of stroke performances and individual features of badminton

layers. Therefore, the use of non-linear approaches (such as bi-

artite networks) to measure and visualize player’s performances,

ccounting for the specific nature of badminton, may support

oaches and players with the contextualized demands of playing

atterns and their performances (i.e., winning and losing points). 
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