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A B S T R A C T

Synchronization plays a fundamental role in healthy cognitive and motor function. However, how synchronization depends on the interplay between local dynamics,
coupling and topology and how prone to synchronization a network is, given its topological organization, are still poorly understood issues. To investigate the
synchronizability of both anatomical and functional brain networks various studies resorted to the Master Stability Function (MSF) formalism, an elegant tool which
allows analysing the stability of synchronous states in a dynamical system consisting of many coupled oscillators. Here, we argue that brain dynamics does not fulfil the
formal criteria under which synchronizability is usually quantified and, perhaps more importantly, this measure refers to a global dynamical condition that never holds
in the brain (not even in the most pathological conditions), and therefore no neurophysiological conclusions should be drawn based on it. We discuss the meaning of
synchronizability and its applicability to neuroscience and propose alternative ways to quantify brain networks synchronization.
1. Introduction

Consider a network in which each node is a dynamical system, e.g. an
oscillator, and the links are couplings between these nodes. Can these
oscillators synchronize with each other creating a coherent state and, if
so, under what circumstances is this state stable? Given a particular
dynamical system and coupling scheme, the Master Stability Function
(MSF) formalism (Pecora and Carroll, 1998; Boccaletti et al., 2006;
Arenas et al., 2008) allows relating the stability of the fully synchronized
state to the spectral properties of the underlying matrix of connections,
and assessing which network structures can maintain complete syn-
chronization of the whole network.

At the macroscopic scales of typical non-invasive neuroimaging
techniques, brain activity can be thought of as the collective dynamics of
a set of coupled dynamical units. Synchronization among these units has
been suggested to be a basic mechanism of healthy brain functioning
(Varela et al., 2001). Thus, at first glance, the problem abovemay seem to
apply to brain activity, justifying the use of the MSF formalism to
quantify brain network synchronizability. However, all formalisms are
created to address very specific questions and come with their own set of
formal and theoretical assumptions, the compliance with which ulti-
mately decides whether they can be used in a given context.

In the remainder, we argue that some essential characteristics of the
brain render the MSF framework difficult to apply to neuroscience, review
some misunderstandings about the synchronizability construct, and pro-
pose alternative ways to understand synchronization in brain networks.
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2. Brain synchronizability

The use of synchronizability, initially designed to study theoretical
models, rapidly extended to the analysis of real datasets and, in the
context of neuroscience, to quantify the ability of anatomical (Chavez
et al., 2011; Zhao et al., 2011; Ton et al., 2014; Phillips et al., 2015; Tang
et al., 2017) and functional (de Haan et al., 2012; Bassett et al., 2006;
Reijneveld et al., 2007; Stam and Reijneveld, 2007; Schindler et al.,
2008; Deuker et al., 2009; van Wijk et al., 2010; Jalili and Knyazeva,
2011; van Dellen et al., 2012; Tahaei et al., 2012; Bialonski and Lehnertz,
2013; Lehnertz et al., 2014; Niso et al., 2015; Khambhati et al., 2016)
brain networks to synchronize. For example, Tang and co-workers (Tang
et al., 2017) investigated how the human brain's anatomical organization
evolves from childhood to adulthood by measuring changes in the syn-
chronizability parameter, and proposed that during the course of devel-
opment human brain anatomy evolves towards an organization that
limits synchronizability (Tang et al., 2017). The authors suggested that as
the brain evolves towards its mature state, it reduces its ability to syn-
chronize, and that this reduction would help increase brain controlla-
bility. Furthermore, a few studies focused on the effects of different
pathologies on brain synchronizability, such as epilepsy (Schindler et al.,
2008; van Dellen et al., 2012; Tahaei et al., 2012; Bialonski and Lehnertz,
2013; Lehnertz et al., 2014; Niso et al., 2015; Khambhati et al., 2016),
Alzheimer's disease (Phillips et al., 2015; de Haan et al., 2012), or
schizophrenia (Jalili and Knyazeva, 2011), showing statistically signifi-
cant changes in the synchronizability parameter in association with these
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Fig. 1. Master Stability Function Ψ(ν) as a function of the parameter ν. ν is
related to the (N–1) non-zero eigenvalues λiof the network Laplacian matrix as
νi ¼ σλiwhere σ is the coupling strength. The synchronization manifold is stable
when all νi lie in a region where the MSF is negative. MSFs can be classified as
(Boccaletti et al., 2006): class I (always positive), class II (always negative above
a threshold ν2) and class III (negative only within a specific region ½ν2;νN �). Note
that, when the MSF has several minima and maxima, the stability region may
not be unique (Huang et al., 2009); these MSF classes are not depicted in the
figure. (a) Qualitative example of νi of a network that would synchronize class I
and II dynamical systems, but not class III (assuming thatλN=λ2 > νN=ν2Þ: The
interval ½ν2; νN �contains the eigenvalues of the Laplacian matrix corresponding
to a given network. Note that in this particular example only for the class II
system are values of the MSF corresponding to the set of νi all negative, indi-
cating that the synchronization manifold is locally stable. (b) Counter-example
showing that defining synchronizability parameter as the inverse of the

D. Papo, J.M. Buldú NeuroImage 196 (2019) 195–199
diseases. Interestingly, epilepsy was associated with an increased syn-
chronizability during interictal activity (Lehnertz et al., 2014), while it
decreased during ictal activity (Schindler et al., 2008). Functional net-
works synchronizability has been reported to decrease the electroen-
cephalographic (EEG) activity of schizophrenic patients (Jalili and
Knyazeva, 2011). Studies using magnetoencephalography (MEG)
showed that synchronizability values depend on the frequency band
considered when constructing functional networks (Bassett et al., 2006).

While changes in synchronizability clearly exist, is this particular
metric measuring what it is supposed to measure?

3. The master stability function formalism

The meaning and scope of the synchronizability construct should be
understood in the MSF theoretical context it is predicated upon.

Given a group of N diffusively coupled dynamical systems whose dy-
namics in isolation follows _x ¼ FiðxiÞ, the evolution of the whole system
is given by the equation:

_xiðtÞ ¼ FðxiðtÞÞ � σ
XN

j¼1

aij
�
H
�
xj
��HðxiÞ

�
; i ¼ 1;…;N (1)

where xi is the m-dimensional state vector of the ith oscillator, σ the
coupling strength,HðxÞ a vectorial output function and aij the elements of
the adjacency matrix A, with and aij ¼ 1 if system (i.e., node) i and j are
connected and zero otherwise. Since oscillators are coupled in a diffusive
way, i.e., with a linear coupling proportional to the difference between
their state variables, we can introduce into equation (Pecora and Carroll,
1998) the Laplacian matrix defined as L ¼ D� A, where D is a diagonal
matrix whose elements lij are the degree (i.e., the number of neighbours)
of each node (Boccaletti et al., 2006). Equation (Pecora and Carroll,
1998) then reads

_xiðtÞ ¼ FðxiðtÞÞ � σ
XN

j¼1

lijH
�
xj
�
; i ¼ 1;…;N (2)

and the coupling term is basically dependent on the coupling strength σ
and the elements of the Laplacian matrix lij 1. Here we consider the
Laplacian matrix to be symmetric (which ensures that its eigenvalues are
real), as it simplifies the definition of the MSF and, in turn, it is the most
common situation in the neuroscience literature using the MSF meth-
odology. For identical systems with the same coupling functionHðxÞ, the
synchronized state is a solution of _xs ¼ FðxsÞ, with x1 ¼ x2 ¼… ¼ xN ¼
xs. Next, a linear stability analysis around the synchronization manifold
can be carried out. This involves checking whether the Lyapunov expo-
nents corresponding to phase space directions transverse to the syn-
chronization manifold are all negative. To do so, a deviation
δxiðtÞ ¼ xiðtÞ � xsðtÞ from the synchronous state xs is introduced and the
linear stability of the whole system evaluated, obtaining an m-dimen-
sional variational equation, m being the number of variables of the
dynamical system x (Pecora and Carroll, 1998; Boccaletti et al., 2006;
Arenas et al., 2008):

_ξ ¼ ½JFðxsÞ � νJHðxsÞ�ξ; (3)

where J is the Jacobian operator and the independent variable ν is
defined as νi ¼ σλi , λi being the non-zero eigenvalues of the Laplacian
matrix. Finally, the stability of the synchronization manifold can be ob-
tained by studying the parametrical behaviour of the maximum Lyapu-
nov λmax ðνÞ as function of ν.ΨðνÞ ¼ λmaxðνÞwith ν 2 ½0; ∞Þ is referred to
as the master stability function (Pecora and Carroll, 1998; Boccaletti et al.,
1 An adaptation to weighted networks can easily be obtained by including the
weights of the connections in A and replacing the node degree by the node
strength (i.e., the sum of the weights of node's links).
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2006). Importantly, the MSF as a pure function of ν is independent of the
network of connections between the dynamical systems. However,
considering a specific network of connections determines particular
values of νi, which can be related to the MSF, ultimately determining the
conditions for the stability of the synchronization manifold of that spe-
cific network. Overall, the MSF tells how (i) the dynamical system,
through F and (ii) the network topology, through the second term on the
right side of equation (Boccaletti et al., 2006) concur in determining the
stability of the synchronization manifold. Note that, the term synchro-
nizability refers to the stability of the global synchronization state.

The synchronization manifold is stable when all νis associated with
the non-zero eigenvalues of the Laplacian matrix lie in a region in which
the MSF is negative. However, different dynamical systems with different
coupling functions lead to qualitatively different MSFs (see Fig. 1a for
details), which can be classified as (Boccaletti et al., 2006): class I (always
dispersion of the eigenvalues can be misleading: network A has lower dispersion
(i.e., higher synchronizability) but lies in the region of the MSF where the
synchronization manifold is unstable, while network B, has higher dispersion
(and lower synchronizability) but can synchronize. In this qualitative example,
we consider the Laplacian matrix to be symmetric.
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positive), class II (always negative above a threshold) and class III
(negative only within a specific region). Interestingly, in the context of
brain networks, synchronizability is commonly evaluated as if the brain
were a class III system, although no proof of it exists. Thus, the lower the
ratio r between the largest and smallest (non-zero) eigenvalues (i.e. r ¼
λN=λ2Þ; the more packed the eigenvalues of the Laplacian are and the
highest the ability to fall within a window where the MSFs is always
negative. In that sense, brain networks’ synchronizability is sometimes
(Tang et al., 2017) quantified by the dispersion of the eigenvalues of the
Laplacian matrix L 2.
3.1. Synchronizability: some common misconceptions

The meaning of synchronizability and the questions it allows
addressing are a matter of frequent confusion and numerous
misconceptions.

An important issue is whether synchronizability can be measured
when ignoring the characteristics of the dynamics. Stability under per-
turbations exists when all eigenvalues of the combinatorial Laplacian
matrix fλig fall within the region of stability due to the fact that the
coupling is strong enough to guarantee that the MSF enters the region but
weak enough to guarantee that it does not leave this region from the
other side. Thus, the value of the coupling strength σ is crucial to
determine νi once the values of λi are obtained from the network
structure. Synchronizability is ultimately determined by the sign of the
MSF evaluated at points that are indeed given by the spectrum of the
Laplacian matrix and an overall coupling strength. The functional form of
the MSF crucially depends on the dynamics of the coupled oscillators and
the function that couples its state variables to those of other oscillators
(Nishikawa and Motter, 2010; Huang et al., 2009). Depending on the
shape of the MSF, dynamical systems may never synchronize, always
synchronize above a certain coupling strength or synchronize only for
coupling strength values within a certain range (Boccaletti et al., 2006;
Huang et al., 2009). While the MSF for various families of dynamical
systems is typically convex for generic oscillator systems, its exact shape
depends not only on the dynamical systems but also on the kind of
coupling between them. Thus, quantifying the synchronizability of
anatomical brain networks using a parameter based on the eigenvalues of
the Laplacian matrix alone, without information about the underlying
dynamical oscillators and their coupling function and strength cannot
ensure that the whole system falls within MSF's stability region. In other
words, it is not the network structure per se that is synchronizable, but the
particular combination of dynamical systems, coupling strength and
network structure formed by the connections between these systems.
While the eigenvalues of the Laplacian matrix likely contain potentially
valuable information of some sort (Phillips et al., 2015; de Haan et al.,
2012), eigenvalue dispersion of the anatomical network alone without at
least some information on node dynamics cannot determine the system
class one is dealing with, and conclusions on its MSF are no more than
guesses (see Fig. 1a). Furthermore, the stability region may not be unique
(Huang et al., 2009), and the MSF classes may not be limited to the three
depicted in Fig. 1a, further complicating the interpretation of MSF
theory's r.

Two related important questions are: what are high or low synchro-
nizability values telling us? When can synchronizability values be
compared? The bare comparison of synchronizability values across
dynamical systems and the characterization of a given topology as being
more or less synchronizable than another are potentially problematic:
insofar as different dynamical systems haven't necessarily got similar
2 The dispersion of the eigenvalues of the Laplacian matrix is given the

following expression: 1=s2 ¼ σ2ðN � 1Þ= PN�1

i¼1

��λi � λ
��2 with λ ¼ ð1=N� 1Þ PN�1

i¼1
λi,

σ being the coupling strength of the N nodes in the anatomical network and λi
the i-th eigenvalue of the Laplacian matrix.
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MSFs, the synchronizability parameter of a brain network cannot be
compared with others as long as its MSF is unknown.

Perhaps at the root of most other ones, a major problematic issue
relates to the frequent confusion between synchronizability and synchro-
nization. The synchronizability parameter does not tell if the system is
synchronized or not: a system can be highly synchronizable without
being synchronized, and synchronized with a low synchronizability
parameter (see Fig. 1b).

Finally, it is worth stressing that the synchronizability construct only
applies to anatomical networks. This is because the MSF formalism relies
on a structural property, i.e. the connectivity pattern between dynamical
units, which should be complemented by the coupling strength. How-
ever, the construction of functional networks relies on the reported co-
ordination between brain regions, i.e. a dynamical property. Therefore,
functional networks are not the cause of a certain level of synchroniz-
ability, but their consequence.

3.2. Why synchronizability should not be used (in neuroscience)

Even discounting the technical issues discussed above, fundamental
reasons make the MSF-based synchronizability inapplicable to
neuroscience.

Crucially, in its original formulation (Pecora and Carroll, 1998), the
MSF applies to diffusively-coupled identical dynamical systems, i.e. all
interacting units of the network should have the same variables and in-
ternal parameters. However, irrespective of the scale at which it is
observed, the brain is dynamically highly heterogeneous, ruling out an
application of the MSF. While the MSF formalism can be generalized to
heterogeneous systems, this comes at the price of rather restrictive con-
ditions hampering its application to brain data (Nishikawa and Motter,
2010; Sun et al., 2009; Zhang andMotter, 2018). No less importantly, the
condition of diffusivity, is also grossly violated in the brain.

Perhaps the most fundamental obstacle to the use of the MSF in brain
sciences is represented by two issues related to the definition of syn-
chronization. First, while various kinds of synchronization, including
phase (Varela et al., 2001), generalized (Stam and van Dijk, 2002), and
relay synchronization (Vicente et al., 2008) have been reported for brain
dynamics, and may even coexist (Malagarriga et al., 2017), synchroniz-
ability refers to a specific synchronization mode, complete synchroniza-
tion. Complete synchronization requires that all dynamical units have
exactly the same phase and amplitude once the synchronization manifold
is reached, a state that has never been reported in the brain (not even in
its most pathological conditions). Second, physics and neuroscience un-
derstand synchronization in fundamentally different ways: in the former,
synchronization refers to a global and stable state, while in the latter to a
local and transient one. While local complete synchronization may be a
relevant mechanism or a reasonable modelling representation of func-
tionally segregated regions or circuits, its dynamics is necessarily tran-
sient. Brain dynamics has in general a complex phase space geometry,
and possibly no stricto sensu attractor at all (Rabinovich et al., 2008;
Tognoli and Kelso, 2014), a scenario that cannot be dealt with using the
MSF in its current form.

4. Towards neurophysiologically plausible alternatives to
synchronizability

Several technical systems, e.g. power grids, wireless communication
systems, require stable synchronization of their units (Kinzel et al., 2010;
Tyrrell et al., 2010; Rohden et al., 2012, 2014; Motter et al., 2013).
Synchronizability represents, to good approximation, a construct that can
be used to model and regulate their dynamics and function. However,
synchronizability refers to a type of synchronization that the brain does
not, certainly should not, and possibly cannot achieve in a stable way. In
addition to being incompatible with the dynamical and functional het-
erogeneity of normal brain functioning, a completely synchronized state
represents a considerable loss of complexity, and would likely be
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associated with an unphysiological energetic cost (Torrealdea et al.,
2009; Moujahid et al., 2011).

Before figuring out possible alternatives to the MSF-based synchro-
nizability, one should perhaps address the following question: why is the
MSF framework used although it so evidently at odds with neurophysi-
ological stylized facts? What makes the MSF a convenient tool? While a
unique coupling function for all network nodes and some hypotheses on
the coupling matrix are convenient mathematical conditions which
ensure the existence of an invariant set representing the complete syn-
chronization manifold and considerably simplify the analysis of its sta-
bility, using steady state dynamics and complete synchronization
dispenses with defining spatial topography and temporal scales of the
target process.

To figure out possible alternatives to the MSF-based synchronizability
construct one needs to understand both the role played by synchroni-
zation within this conceptual framework and the objective pursued by
the studies using it and the problems that they aim to address. On the one
hand, while in neuroscience synchronization typically refers to transient
bivariate coupling between two neuronal ensembles, the synchronization
referred to by synchronizability is in fact better thought of as a (steady-
state) process on a network. On the other hand, from a teleological view-
point, resorting to the MSF formalisms can be understood in terms of the
need to address the relationship between structure (or, more precisely,
the topology defined on it) and dynamics in complex systems (Arenas
et al., 2008; Skardal et al., 2014; Menck et al., 2013; Ponten et al., 2010).
Furthermore, this relationship must be understood at all meaningful
spatial scales of the brain (Kelso et al., 2013). Given an observed dy-
namics and topological organization, a construct teleologically equiva-
lent to synchronizability may possibly be framed in terms of a networked
system's propensity to enter a functionally desirable state or regime, as in
(Wang and Slotine, 2005). But what dynamical states or regimes may
represent a valuable target, the distance from which may be used as a
neurophysiologically meaningful benchmark?

The true difficulty in finding alternatives to the MSF-based synchro-
nizability is that one loses the uniqueness and task-invariance of the
complete synchronization state and needs to cope with brain dynamics'
spatial heterogeneity and temporal multiscaleness, and brain function's
translational invariance. To define a valid equivalent of synchronizability
will likely require three key ingredients: neurophysiologically plausible
and functionally meaningful order parameters describing collective brain
activity; mechanisms through which they may emerge; and, no less
importantly, those through which they may wane. On the one hand, this
should for instance involve considering networks of heterogeneous os-
cillators and plausible synchronization processes, compatible with
metastable dynamics (Tognoli and Kelso, 2014; Deco et al., 2017; Roberts
et al., 2019). On the other hand, the mechanisms through which neural
assemblies interact and their role in human brain function at various
scales of brain anatomy and dynamics should be better understood at
both functional/computational and algorithmic/dynamical levels. These
mechanisms are likely context-specific, and various ones may even
coexist (Malagarriga et al., 2017). As a consequence, the definition of a
dynamical target may vary as a function of the putative role of synchrony
lato sensu in the target activity. On the one hand, dynamical references
may be associated with different dynamical regimes, e.g. cluster syn-
chronization, in which patterns or sets of synchronized elements emerge,
chimera-like states, i.e. spatiotemporal patterns with coexisting coher-
ence and incoherence, or partial synchronization, where only some parts
of the network synchronize, while others do not (Zhou and Kurths, 2006;
Abrams et al., 2008; Bi et al., 2016). Importantly, these dynamical re-
gimes would induce spatial scales. On the other hand, rather than sta-
tistically stationary states, what is needed is an analysis of their
dynamics, stability, bifurcations, and symmetries (Abrams et al., 2008;
Pecora et al., 2014). Importantly, a reference regime should also replicate
the temporal scales of some (task-specific or task-independent) reference
brain activity. The construct may for instance contain predictive infor-
mation on the properties of and on the conditions under which these
198
clusters form and dissolve. Defining meaningful dynamical target pro-
cesses and some sort of distance from them to given observed ones, un-
derstanding whether and the extent to which these may emerge from
interactions between local dynamics and network topology are all highly
non-trivial but fundamental questions, finding answers to which will
likely keep the neuroscience community busy for some time to come.

5. Concluding remarks

We have argued that not only is the synchronizability construct an
inadequate tool to quantify brain networks' ability to synchronize, but
the problem itself to which it is supposed to provide an answer appears to
be ill-posed when studying brain dynamics. More generally, the brain
differs in many essential ways from the systems (e.g. the electrical power-
grid or the Internet) most network theory constructs were originally
designed to account for. Neuroscience, a field where network theory has
only relatively recently come to the foreground (Bullmore and Sporns,
2009), has so far mainly borrowed its tools and concepts without
inspiring fresh theory, and this has exposed it to the risks inherent in such
an application: over-, under- and misuse of existing tools (Papo et al.,
2014, 2016). The brain's unique properties can help promoting a
fundamental reformulation of network neuroscience for benefit of both
neuroscience and graph theory.
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