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a b s t r a c t 

We introduce Ordinal Synchronization ( OS ) as a new measure to quantify synchronization between dy- 

namical systems. OS is calculated from the extraction of the ordinal patterns related to two time series, 

their transformation into D -dimensional ordinal vectors and the adequate quantification of their align- 

ment. OS provides a fast and robust-to noise tool to assess synchronization without any implicit assump- 

tion about the distribution of data sets nor their dynamical properties, capturing in-phase and anti-phase 

synchronization. Furthermore, varying the length of the ordinal vectors required to compute OS it is pos- 

sible to detect synchronization at different time scales. We test the performance of OS with data sets 

coming from unidirectionally coupled electronic Lorenz oscillators and brain imaging datasets obtained 

from magnetoencephalographic recordings, comparing the performance of OS with other classical metrics 

that quantify synchronization between dynamical systems. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Since the seminal work of Huygens about the coordinated mo-

tion of two pendulum clocks (refereed to as “an odd kind of sym-

pathy”) [1] , the study of synchronization in real systems has been

one of the major research lines in nonlinear dynamics. From fire-

flies to neurons, synchronization has been reported in a diversity

of social (e.g., human movement or clapping) [2,3] , biological (e.g.,

brain regions or cardiac tissue) [4,5] and technological systems

(e.g., wireless communications or power grids) [6,7] , being in many

cases a fundamental process for the functioning of the underlying

system. However, despite being an ubiquitous phenomenon, the

detection and quantification of synchronization can be a difficult

task. The main reasons are the diversity of kinds of synchronization

[8] , the complexity of interaction between dynamical systems [9] ,

the existence of unavoidable external perturbations [10] or the in-
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bility of observing all variables of a real system [11] , just to name

 few. 

As a consequence, there is not a unique way of quantifying the

mount of synchronization in real time series and a series of met-

ics have been proposed with this purpose. As a rough approxi-

ation, these metrics can be classified into three main groups: (i)

inear, (ii) nonlinear and (iii) spectral metrics. While linear metrics,

uch as the Pearson correlation coefficient, are the most straight-

orward to be calculated and less time consuming, they suppose

he existence of a linear correlation between time series, an as-

umption that is not fulfilled in the majority of real cases. On the

ther hand, nonlinear metrics asume a certain nonlinear coupling

unction f n between a variable X and a variable Y , such as X =
f n (Y ) . However the estimation of the nonlinear function renders

mpossible in the majority of cases and certain assumptions have

o be assumed for quantifying synchronization. Measures such as

he mutual information or the phase locking value are examples

f nonlinear metrics, the former assuming a certain statistical in-

erdependency between signals and the latter considering only a

hase relation. Finally, spectral metrics, such as the coherence or

he imaginary part of coherence, translate the problem to the spec-

ral domain, analyzing the relation between the spectra obtained

rom the original time series assuming linear/nonlinear relations

see [12] for a thorough review about metrics quantifying synchro-

ization in real data sets). 

https://doi.org/10.1016/j.chaos.2018.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.12.006&domain=pdf
mailto:javier.buldu@urjc.es
https://doi.org/10.1016/j.chaos.2018.12.006
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Fig. 1. Qualitative example of ordinal vectors extraction from two time series. Here 

D = 4 is the length of the ordinal patterns. From each time series, an ordinal vector 

containing the desired number of samples is obtained by ranking its D values at 

time t , inside the vector. 
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In the current paper we are concerned about using ordinal pat-

erns, a symbolic representation of temporal data sets, to define

 new metric that is able to reveal the synchronization between

ime series. This representation is grounded on the transforma-

ion of time series into ordinal vectors of a given length D, where

he elements of the vector correspond to the order, from the low-

st to the highest, of the values of the time series (see Materi-

ls and Methods for details). The analysis of the ordinal patterns

as been traditionally applied to quantify the amount of stochas-

icity and determinism in real time series [13,14] , allowing to de-

ermine the existence of forbidden patterns , which consists on spe-

ific ordinal patterns that do not appear along the time series un-

er study. This methodology has been applied in a diversity of real

ystems, since, once the time series are projected into ordinal pat-

erns, the subsequent analysis does not take into account the ori-

ins of the patterns. In this way, ordinal patterns of cardiac signals

15] , electroencephalographic recordings [16,17] , climate networks

18] or lasers [19] have been extracted with the aim of quantify-

ng the entropy and complexity of the time series. However, the

nalysis of ordinal patterns can also be used to characterize the

nterplay between dynamical systems. For example, Bahraminasab

t. al. [20] used a symbolic dynamics approach to design a di-

ectionality index parameter. Transforming the increment between

uccessive points within a times series into ordinal patterns, au-

hors calculated the mutual information between a process X 1 at

ime t and a process X 2 at time t + τ and next obtained the di-

ectionality index as defined in [21] . Applying this methodology to

espiratory and cardiac recordings it is possible to quantify how

espiratory oscillations have more influence on cardiac dynamics

han vice-versa [20] . More recently, Li et al. used a similar indi-

ator to evaluate the directionality of the coupling in time series

onsisting of spikes [22] . Using the Izhikevich neuron model [23] ,

uthors showed how that methodology was robust for weak cou-

ling strengths, in the presence of noise or even with multiple

athways of coupling between neurons. More recently, Rosário et.

l. [24] used the ordinal patterns observed in EEG datasets, also

nown as “motifs” [25] , to construct time varying networks and

nalysed their evolution along time and the properties of the aver-

ged functional network. Specifically, the amount of synchroniza-

ion between a pair of recorded electrodes of an EEG was obtained

y evaluating the number of ordinal patterns co-ocurring at the

ame time but also at a given lag λ = 1 time steps. Using both

ositive and negative values of λ authors were able to quantify the

irection of the interaction between the two time series, i.e., the

ausality, to further construct temporal time networks. Next, they

howed how the resulting time varying functional networks were

ble to identify those brain regions related to information process-

ng and found differences between healthy individuals and patients

uffering from chronic pain [24] . 

In this paper, we also propose the use of symbolic dynamics to

valuate the level of synchronization between time series. How-

ver, our methodology consists in a measure of synchronization

hat does not take into account the existence of a delay time be-

ween time series, despite further adaptation to this case is also

ossible (see Section Conclusions). As in the case of [20,24,25] ,

e take advantage of the transformation of a time series into a

oncatenated series of D -dimensional ordinal patterns [13] that al-

ow us to quantify the amount of synchronization between two (or

ore) symbols sequences. The main advantage of our methodol-

gy is that it takes into account both the in-phase and anti-phase

ynchronization of two dynamical systems, the latter being disre-

arded in the aforementioned proposals based on ordinal patterns.

We have calculated the OS of two kind of data sets: (i) uni-

irectionally coupled Lorenz electronic systems and (ii) magne-

oencephalographic (MEG) recordings measuring the activity of 241

ensors placed at the scalp of an individual during resting state.
ext, we compared the amount of synchronization computed by

S with respect to those obtained from classical metrics like phase

ocking value (PLV), mutual information (MI), spectral coherence (SC)

nd Pearson correlation ( r ). To ensure the results obtained from OS

re due to the real underlying synchronization between time se-

ies, and not to statistical noise, we have ran a surrogate validation

or both datasets. A complete explanation of the procedure can be

ound in Appendix D . 

. Materials and methods 

.1. Defining ordinal synchronization 

To compute the (OS) between two time series X and Y , we first

xtract their D -dimensional ordinal patterns [13] . In this way, we

hoose a length D and divide both time series of length M into

 = M/D equal segments. Next, we obtain the order of the values

ncluded inside each segment, also called the ordinal patterns : 

 t = { x 1 , x 2 , . . . , x D } �→ V t = { v 1 , v 2 , . . . , v D } (1) 

 t = { y 1 , y 2 , . . . , y D } �→ W t = { w 1 , w 2 , . . . , w D } (2) 

here V t and W t are the ordinal vectors inside the segment given

y { t, t + 1 , . . . , t + D − 1 } , elements refer to the ordinal position of

he values in X t and Y t , respectively. Note that the elements in V t 

nd W t are natural numbers ranging from 0 to D − 1 . The higher

he value in the time series, the higher the corresponding element

n the ordinal vector. Following the example depicted in Fig. 1 ,

here D = 4 , we obtain: 

 t = {−1 . 22 , 0 . 44 , 0 . 91 , 0 . 63 } �→ V t = { 0 , 1 , 3 , 2 } (3) 

 t = { 1 . 34 , 0 . 12 , 0 . 78 , 0 . 57 } �→ W t = { 3 , 0 , 2 , 1 } (4) 

Then, we take the euclidean norm of each ordinal vector. 

| V t || = 

√ 

v 2 
1 

+ v 2 
2 

+ . . . + v 2 
D 

= 

√ 

0 

2 + 1 

2 + . . . + (D − 1) 
2 

(5) 

nd we call V N t = V t / || V t || and W 

N 
t = W t / || W t || the normalized vec-

ors. Note that this step only depends on the length D . 

Now, we define the raw value of the instantaneous ordinal syn-

hronization at time t ( IOS raw 

t ) as the dot product between both

rdinal ordinal vectors IOS raw 

t = 

∑ D 
i =1 v i,t w i,t (i.e., V N t · W 

N 
t ). For a

ore intuitive interpretation, we linearly rescale the value of

OS raw 

t to be bounded between −1 and 1: 

 OS t = 2 

(
I OS raw 

t − min 

1 − min 

− 0 . 5 

)
(6) 

here min is the minimum possible value of the scalar product

etween two ordinal vectors. Note that, since the elements of the

rdinal vectors are always positive and have only one component

qual to zero, the lowest possible scalar product between V t and
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Fig. 2. Schematic representation of Lorenz systems in a master-slave configuration. Signals are measured through a DAQ card (Ports AI0-AI3) and stored in a PC. Digital 

output (P00-P01) ports and XDCP control the value of coupling strength κ . Analog output ports (AO0-AO1) introduce the external noise signals ξ 1 and ξ 2 perturbing the x 1 
master (M) and x 2 slave (S) variables, respectively. 
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Fig. 3. Synchronization against coupling strength κ as measured with PLV (red stars), SC (yellow crosses), MI (light blue circles), r (purple squares). OS (triangles) is plotted for 

D = 3 (A) (black downward-pointing), D = 500 (B) (turquoise right-pointing) and D = 10 0 0 (C) (green upward-pointing). For comparison purposes, plot (D) shows OS against 

κ for different vector lengths, D = 3 , D = 500 and D = 10 0 0 . The inset shows the results for the permuted time series for D = 3 , D = 500 and D = 10 0 0 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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W t is obtained when the order of the elements of vector V t is in-

verted in W t . In our example: 

min = 

0(4) + 1(3) + 2(2) + 3(1) + 4(0) 

0 

2 + 1 

2 + 2 

2 + 3 

2 + 4 

2 
(7)

In general, for any vector of length D : 

min = 

0(D − 1) + 1(D − 2) + . . . + (D − 2)1 + (D − 1)0 

0 

2 + 1 

2 + . . . + (D − 1) 
(8)

Following the normalization in 6 ), we ensure that two ordinal

vectors that follow opposite evolutions will unambiguously lead to

a value of IOS t = −1 , and two vectors whose elements have the

same order will have an IOS t = 1 . Being L = M/D the total number
f ordinal vectors in time series of M points, the final value of the

rdinal synchronization OS { X, Y } for a given pair of time series X

nd Y is obtained averaging the instantaneous values of IOS t along

he whole time series: 

S{ X, Y } = 〈 IOS t 〉 (9)

Since we consider the IOS t of consecutive (i.e., non-overlapping)

ime windows, the value of t in Eq. 9 is given by the expression

 = 1 + iD, with i being a natural number bounded by 0 ≤ i ≤ L − 1 .

ote that it is also possible to define a sliding OS just by increas-

ng t in one unit for every IOS t instead of considering consecutive

indows. 
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Fig. 4. Panel (A) shows the average correlation ( ρ) between each synchronization measure and OS depending on the vector length D . Panels (B)-(D) show the correlation 

between OS and all other synchronization measures varying the coupling strength (from 0 to 100), for D = 3 (B), D = 500 (C) and D = 1000 (D).Following the same notation 

as in Fig. 3 , synchronization measures are (MI; blue), (r; purple), (SC; yellow) and (PLV; red). The red line corresponds to y = x . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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.2. Experimental results: Electronic lorenz systems 

We analyzed the transition to the synchronized regime of two

oupled Lorenz oscillators [26] . We implemented an electronic

ersion of the Lorenz system, whose equations are detailed in

ppendix B . Two Lorenz circuits are coupled unidirectionally in a

aster-slave configuration (see Fig. 2 ) with a coupling strength κ
hat can be modified. Our experiments include two conditions: in

he first one, κ is modified in the absence of external noise; in
he second one, κ varies in presence of Gaussian noise with band

election. The (AI0-AI3) input ports of a data acquisition (DAQ)

ard are used for sampling the x and z variables of each circuit,

hile the output ports AO0 and AO1 generate two different noise

ignals ( ξ 1 , ξ 2 ) that perturb the dynamics of the Lorenz circuits

hrough variable x of each circuit. In this way, an external source

f noise can be introduced to check the robustness of the exper-

ments. The circuit responsible of the coupling strength κ is con-

rolled by a digital potentiometer XDCP, which is adjusted by dig-
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and anti-correlated (C and F). Upper panel shows part of the raw signals recorded at the sensors while bottom panel shows OS depending on the length D . 
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ital pulses from ports P00 and P01. Noisy signals were designed

in LabVIEW, using a Gaussian White Noise library [27] that gen-

erates two different Gaussian-distributed pseudorandom sequences

bounded between [-1 1]. All the experimental process is controlled

by a virtual interface in LabVIEW 2016 (PC). 

The experiment works in the following way: First, κ is set to

zero and digital pulses (P00 and P01) are sent to the digital poten-

tiometer until the highest value of κ is reached. Second, variables

x and z of the circuits are acquired by the analog ports (AI0-AI3)

in order to compute the synchronization metrics. Initially, we have

obtained all results for ξ1 = ξ2 = 0 , i.e., in the absence of external

noise, and then, after a moderate amount of noise is introduced,

all synchronization metrics are calculated again (See Appendix C ).

Every signal, with or without noise, has a length of 30,0 0 0 sam-

ples. 

2.3. Applications to magnetoencephalographic recordings 

We have checked the performance of the OS in the context of

neuroscientific datasets. Specifically, we quantified the level of syn-

chronization between pairs of channels of MEG recordings. Data

sets have been obtained from the Human Connectome Project (for

details, see [28] and https://www.humanconnectome.org) . The ex-

perimental data sets consist of 30 MEG recordings of an individual

during resting state for a period of approximately 2 minutes each.

During the scan, the subject were supine and maintained fixation

on a projected red crosshair on a dark background. Brain activity

was scanned with 241 magnetometers on a whole head MAGNES

3600 (4D Neuroimaging, San Diego, CA, USA) system housed in a

magnetically shielded room. The root-mean-squared noise of the

magnetometers is about 5 fT/sqrt ( Hz ) on average in the white-
oise range (above 2 Hz ). Data was recorded at sampling rate of

 s ≈ 508.63 Hz . Five current coils attached to the subject, in com-

ination with structural-imaging data and head-surface tracings,

ere used to localize the brain in geometric relation to the mag-

etometers and to monitor and partially correct for head move-

ent during the MEG acquisition. Artifacts, bad channels, and bad

egments were identified and removed from the MEG recordings,

hich were processed with a pipeline based on independent com-

onent analysis to identify and clean environmental and subject’s

rtifacts [28] . 

. Results 

.1. Nonlinear electronic circuits 

In order to assess the validity of OS , we have explored its per-

ormance for different values of D , from 3 to the full length of the

ime series under evaluation. Since it is the first time OS is used,

e have compared it to classical measures of correlation, namely

earson correlation coefficient ( r ), spectral coherence ( SC ), phase

ocking value ( PLV ) and mutual information ( MI ). We have used

wo kinds of data sets to validate OS , on the one hand, experimen-

al time series from nonlinear electronic circuits, and on the other

and, MEG recordings. 

First, we take advantage of the ability of controlling the cou-

ling strength between electronic circuits and investigate how OS

hanges as two dynamical systems smoothly vary their level of

ynchronization from being unsynchronized to completely syn-

hronized. Specifically, two electronic Lorenz systems are unidi-

ectionally coupled with a parameter κ controlling their coupling

trength (see Appendix B for details). Initially, we do not perturb

https://www.humanconnectome.org)
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Fig. 7. Correlation between OS and other synchronization metrics in MEG data sets. The color code is preserved: MI (upper row, blue), PLV (second row, red), SC (third 

row, yellow) and r (bottom row, purple). Each column corresponds to an OS obtained with different lengths D of the ordinal vectors: D = 3 (left column), D = 500 (middle 

column) and D = 10 0 0 (right column). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he oscillators with external noise (see Appendix C for the case of

ncluding external noisy signals). However, we cannot avoid the in-

rinsic noise of the electronic circuits together with the tolerance

f the electronic components (between 5% and 10%). Fig. 3 shows

ow the value of OS changes as the coupling strength κ is in-

reased from zero. Since the value of OS depends on the length

f the ordinal vectors, we show the results for three different val-

es: D = 3 ( Fig. 3 A), D = 500 ( Fig. 3 B) and D = 10 0 0 ( Fig. 3 C). Note

hat, by increasing the length of the vectors, we are obtaining the
mount of synchronization at different time scales. Together with

S , we plot the values of the rest of synchronization metrics in

A), (B) and (C), which remain unaltered in the three plots (since

hey do not depend on D ). To get an overall view of the effect of

 on the resulting value of OS and its ability to capture the under-

ying synchronization, we ran a surrogate test with one hundred

terations for all values of κ (see Appendix D ), and plot the re-

ults of the test (inset) along with D = 3 , D = 500 and D = 10 0 0

 Fig. 3 D). 
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Fig. 8. Synchronization against coupling strength κ , as measured with mutual information MI (light blue), spectral coherence SC (yellow), phase locking value PLV (red) 
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In all cases, we observe that OS increases for low to moderate

values of κ and remains at a high value once a certain threshold

is reached. This behaviour is similar to the rest of the synchro-

nization metrics. However, both MI and SC seem to saturate at val-

ues of κ higher than r, PLV and OS , which seem to reach a plateau

around κ = 40 . Fig. 3 D shows the comparison of OS for the three

different values of D and the surrogate test (inset). Here, we can

also observe how at D = 3 , OS has a different qualitative behaviour

from D = 500 and D = 10 0 0 , since it stays around 0.9 and does not

reach 1 as in the windows of longer lengths. The reason is the exis-

tence of intrinsic noise of the electronic circuits, that affects much

more the alignment of the ordinal vectors of shorter lengths than

those with higher dimensions. When we permute the time series

and recalculate synchronization, OS tends to zero, no matter the

value of κ or D (inset of Fig. 3 D). This is equivalent to test the val-

ues OS in the case of no temporal coordination, given the actual

distribution of values in the time series. As shown in the figure,

in such a situation, OS is indicating that there is no synchroniza-

tion (values around 0), confirming OS is driven by the underlying

coordinated dynamics and not by statistical noise. 

Fig. 4 shows the average correlation ( ρ) between each D-

dependent OS and the rest of synchronization metrics with zero

noise. Note that correlations are higher than 0.92 in all cases, al-

though it seems to be certain vector lengths that maximize these

correlations. Also note that correlations with PLV and r are the

highest and, in all cases, very close to 1. At the same time, MI and

SC show lower correlations that, in turn, seem to be more depen-

dent on the value of the vector length D . On the contrary, the cor-

relation when time series are permuted decays below ± 0.4 (see

Fig. 4 A). 

We can investigate how OS is related to the rest of the synchro-

nization metrics in more detail by setting the length of the ordinal
ectors to a given value (3, 50 0 or 10 0 0 in this case) and observe

he influence of the level of synchronization ( Fig. 4 B, C and D). For

ny of the three selected lengths, OS shows a linear relation with

LV and r , especially at values of OS higher than 0.5. However, the

elation with SC and MI seems to be nonlinear in all cases. Inter-

stingly, for low levels of synchronization, OS increases much faster

han these two latter metrics. While SC saturates around 0.8, MI fi-

ally increases faster than OS only for high values of synchroniza-

ion, eventually reaching the value of OS around 1. Also note how,

n the case of D = 3 ( Fig. 4 B), the intrinsic noise of the electronic

ircuits prevents OS to reach the value of one. This behaviour can

e observed even clearer in the case of adding more noise into the

ystem, as shown in Appendix C . 

.2. MEG Signals 

The second application is the evaluation of the level of syn-

hronization between the 241 sensors measuring the activity of

n individual during resting state. Concretely, we have 30 record-

ngs of 2 minutes each. In this case, we cannot control the amount

f coupling between sensors but, alternatively, we have a diversity

f levels of synchronizations between all possible pairs of sensors.

ig. 5 shows how the correlations between OS and the rest of the

etrics change depending on D . As we can observe, correlations

re high in all cases except for SC , but this one saturates around

he same D as the other synchronizations does. The inset of the

gure shows the correlations with the values of OS after permuting

he time series. Each point shows the average of 100 realizations. 

As in the case of the electronic Lorenz oscillators, tuning the

alue of D allows to obtain values of OS closer, or more correlated,

o other metrics. In fact, two different regions are clearly observed:

i) for values of D ≤ 20 the correlation of OS with PLV, r, and MI in-
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reases with D , while (ii) for D > 20 correlation saturates around

he highest value, being r the metric with the highest correlation.

nterestingly, the behaviour of the SC goes in the opposite direc-

ion, decreasing for higher values of D . Again, this correlation dis-

ppears when time series are shuffled, indicating that OS is related

o the real synchronous state of the system and to random fluctu-

tions. 

In order to gain insights about how the behaviour of OS de-

ends on the level of synchronization and the length D , we plot

hree different cases in Fig. 6 . In (A), we show the time series of

wo highly-correlated sensors, with their corresponding OS value

epending on D ( Fig. 6 D). Plot (B) and (C) show the cases of two

ncorrelated and negatively correlated sensors, respectively, with

heir values of OS ( Figs. 6 E and F). Note that for the positive (neg-

tive) case, correlations tend to stabilize as D grows, indicating the

xistence of a certain temporal scale at which synchronization is

ncreased (reduced). Also note that, when time series are not cor-

elated, this pattern is not that clear, and OS values remain low for

ny value of D . 

We had analyzed the relation of OS with the rest of the metrics

ccording to the level of synchronization. Fig. 7 shows a panel of

lots capturing the correlations between OS and all other synchro-

ization metrics for the MEG signals. Left plots show the case of

 = 3 , middle plots show D = 500 and right plots show D = 10 0 0 .

ifferent conclusions can be drawn depending on the synchroniza-

ion metric OS is compared to. In the case of MI (first row), the

xistence of a nonlinear correlation between both metrics arises.

owever, this correlation decreases with the length of the ordi-
al vectors, becoming rather noisy for D = 3 . This behaviour is in-

uced by the intrinsic noise of the MEG signals that, as in the case

f electronic circuits, affects the value of OS when short lengths

f the ordinal vectors are considered. Also note that MI is not able

o distinguish positive from negative correlations between time se-

ies, a fact that makes OS an interesting metric when both kind

f synchronizations are expected. In our case, for example, despite

he highest values of OS are close to 1, the lowest ones arrive

o −0 . 35 , indicating the existence of anti-correlated dynamics be-

ween certain pairs of sensors. A similar behaviour is reported in

he case of the comparison with PLV (second row). Again, a non-

inear relation exists between both metrics, which is rather noisy

t low values of the ordinal vector lengths ( D = 3 ). PLV has also

he same limitations as MI , since it does not differentiate between

ositive and negative correlations. Interestingly, the relation with

C is different from the two previous metrics (third row). Despite

 nonlinear correlation between OS and SC seems to be present

n the plots, this correlation is deteriorated with the increase of

 . 

Finally, OS shows a clear linear correlation with r (bottom row),

hich, as in the case of MI and PLV becomes noisy for low values

f D . Note that, the loss of correlation for low values of D is indi-

ating that, at short time scales, OS is capturing a different pattern

f synchronization than at large scales. This is an interesting fea-

ure of OS which suggests that, when using it as a metric to evalu-

te synchronization between signals, it is appealing to carry out an

nalysis depending on the vector length in order to reveal the exis-

ence of different levels of synchronization at different time scales.
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4. Conclusions 

We have introduced the Ordinal Synchronization ( OS ), a new

metric to evaluate the level of synchronization between time series

by means of a projection into ordinal patterns. We have checked

the performance of OS with two kinds of experimental data sets

obtained from: (i) unidirectionally coupled nonlinear electronic cir-

cuits and (ii) 30 magnetoencephalographic recordings containing

the signals of 241 channels. Additionally, we performed a surrogate

test to unveil the extent to which OS is affected by random fluctu-

ations, preserving the distribution of values in the time series, but

shuffling its order. In all cases, values of OS tend to zero, and cor-

relations with other measures decay below 0.2. We conclude that

OS is driven by inner synchronous states of the system, with only

mild impact of the random fluctuations given in the time series. 

There are several advantages of using OS . First, it is able to cap-

ture in-phase and anti-phase synchronization. Second, tuning the

length of the ordinal vectors D , it is possible to evaluate the level

of synchronization at different time scales. Third, it is not neces-

sary to assume any a priori property of the time series, such as

stationarity or linear coupling. Fourth, the calculation of OS is ex-

tremely fast, especially when compared with other metrics such as

MI . On the other hand, we have also seen that one of the elements

affecting the value of OS is the existence of noise, which reduces

its value if the dimension of the ordinal vectors is low. However,

depending on the application, this fact can also be considered as

an indicator of the existence of noise. 

A comparison with other classical metrics to evaluate synchro-

nization has been carried out showing some similarities and differ-

ences. In general, OS shows high correlation with r and PLV , some-

thing that can be explained by the way OS is constructed. Ordi-

nal patterns filter part of the information contained in the ampli-

tude of the signal, maintaining just the ranking in the time series.

This is something between considering just the phase ( PLV ) or just

the amplitude ( r ), since differences in amplitude are not related to

changes in the OS parameter as long as the ranking is not modi-

fied. 

It is worth noting that OS still has some properties that need to

be investigated in detail. On the one hand, it is not clear what is

the interplay between the length D of the ordinal vectors and the

characteristic frequencies of the time series. Several studies have

shown how the auto-correlation of the time series is related to

the percentage of appearance of certain ordinal patterns [17,29,30] .

However, these references only consider a length D = 3 , which al-

lows to perceive a change in the frequency of appearance of the

patterns but does not reveal what the consequences are for higher

D . In that sense, our methodology (i.e., the quantification of OS at

different values of D ) could provide a full analysis of the synchro-

nization at different time scales. On the other hand, note that the

number of ordinal vectors decreases with D , which worsens the

statistics for high values of D . Specifically, for D = 10 0 0 , we ob-

tain 30 ordinal vectors for both the case of the Lorenz electronic

circuits and the MEG recordings. However, despite the number of

vectors is much lower than the case of, e.g. D = 3 , we have enough

realizations to evaluate the synchronization between ordinal vec-

tors. Importantly, since we are not evaluating the number of ordi-

nal patterns appearing in the time series, 30 ordinal vectors is a

reasonable number to evaluate whether two time series are syn-

chronized, or not, since it would be equivalent to, for example, re-

peating 30 times a given experiment. Finally, further studies ex-

tending the concept of OS could address the quantification of n : m

synchronization. For example, the methodology we propose could

be adapted to evaluate the alignment of vectors embedded with

a time delay τ [31] , which could uncover synchronization at n : m

ratios. 
o  
In view of all, we believe that the use of OS can be interesting

but not restricted to) for evaluating the amount of synchroniza-

ion in neuroscientific data sets, where in-phase and anti-phase

ynchronization are know to co-exist, together with coordinations

t different time scales. 

ppendix A. Coordination metrics 

.1. Pearson’s Correlation Coefficient 

The Pearson’s correlation coefficient r consists of a covariance

caled by variances, thus capturing linear relationships among vari-

bles. From the equations of the variance (of X and Y ) and covari-

nce (of XY ), we obtain Pearson Correlation Coefficient as: 

 Y = 

√ ∑ 

(Y i − Ȳ ) 2 

n − 1 

= 

√ ∑ 

y 2 
i 

n − 1 

(10)

 X = 

√ ∑ 

(X i − X̄ ) 2 

n − 1 

= 

√ ∑ 

x 2 
i 

n − 1 

(11)

 XY = E [(X − E [ X ])(Y − E [ Y ])] (12)

 = 

S XY 

S X S Y 
(13)

earson’s correlation is a measure of linear dependence between

ny pair of variables and it has the advantage of not requiring the

nowledge of how variables are distributed. However, it should be

pplied only when variables are linearly related to each other. 

.2. Coherence 

Coherence (magnitude squared coherence or coherence spec-

rum) measures the linear correlation among the two spectra [12] .

o calculate the coherence spectrum, data must be in the fre-

uency domain. In order to do so, time series are usually divided

nto S sections of equal size. The Fast Fourier Transform algorithm

s then computed over the sections to get the estimate of each sec-

ion’s spectrum (periodogram). Then, the spectra of the sections

s averaged to get the estimation of the whole data’s spectrum

Welch’s method). Finally, Coherence is a normalization of this es-

imate by the individual autospectral density functions [12] : 

C = 

|〈 Sp 2 xy 〉| 
|〈 Sp xx 〉||〈 Sp yy 〉| (14)

here Sp xy is the Cross Power Spectral Density (CPSD) of both sig-

als, Sp xx and Sp yy are the Power Spectral Density (PSD) of the seg-

ented signals X and Y taken individually, and 〈 · 〉 is the average

ver the S segments. In the case of the data sets obtained with

he nonlinear electronic Lorenz systems, frequencies higher than

f cut = 7 . 5 K Hz have been disregarded for the computation of SC ,

ince the power spectra of the electronic circuits are completely

at above this frequency. One of the drawbacks of Coherence is

hat it doesn’t discern the effects of amplitude and phase in the

elationships measured between two signals, which makes its in-

erpretation unclear [4,32] . 

.3. Phase Locking Value 

Phase Locking Value was first introduced by Lachaux et al.

32] as a new method to measure synchrony among neural pop-

lations. It has, at least, two major advantages over the classical

oherence measure: it doesn’t require data to be stationary, a con-

ition that can rarely be validated; and has a relatively easy inter-

retation (in terms of phase coupling). However, the methods used

o extract instantaneous phase, a step needed to calculate PLV rely

n stationarity, so indirectly PLV can be affected by this condition



I. Echegoyen, V. Vera-Ávila and R. Sevilla-Escoboza et al. / Chaos, Solitons and Fractals 119 (2019) 8–18 17 

[  

s  

e  

f  

o

P  

w  

p  

c

A

 

t  

p  

o  

q  

b  

t  

d  

a  

o  

b  

v  

w  

w

M  

M  

w  

a  

e  

c  

d  

d  

d  

d  

m  

t  

W  

(  

v  

c  

w

A

 

a

V

V

V

V

V

Table 1 

Parameters of the electronic components used for the construction 

of the Lorenz oscillators and the coupled circuit. 

R 1 , R 12 = 100 K	 R 2 , R 13 = 100 K	 R 3 , R 14 = 10 K	

R 4 , R 15 = 10 K	 R 5 , R 16 = 1 M	 R 6 , R 17 = 35 . 7 K	

R 7 , R 18 = 20 K	 R 8 , R 19 = 375 K	 R 9 , R 20 = 20 K	

R 10 , R 21 = 10 K	 R 11 , R 22 = 10 K	 R 23 = 10 K	

R 24 = 10 K	 R 25 = 10 K	 R 26 = 10 K	

R 27 = 10 K	[0–1] R 28 = 100 K	 R 29 = 100 K	

R 30 = 100 K	 C 1 −6 = 1 nF V + = 15 V, V − = −15 V 
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33] . To obtain the PLV , the signal has to be decomposed to it’s in-

tantaneous phases and amplitudes. To achieve this, there are sev-

ral methods, such as Morlet wavelet convolution or Hilbert trans-

orm [12,33] . In this work we will utilize the latter. Finally, PLV is

btained averaging over time t : 

 LV = 

1 

N 

| 
N ∑ 

n =1 

exp (iθ (t, n )) | (15)

here θ ( t, n ) is the (instantaneous) phase difference φx − φy , the

hases to be compared from the signals X and Y . Comparisons are

arried out pairwise (bivariate). 

.4. Mutual Information 

Mutual Information is a measure of shared information be-

ween any components of a system, between systems, or any other

arameter whose value’s probability can be estimated. It is based

n Shannon’s notion of entropy, which, in a general sense, tries to

uantify the amount of information contained in a random variable

y means of its estimated probability distribution. Mutual informa-

ion measures the amount of information shared between two ran-

om variables by means of its joint distribution, or conversely, the

mount of information we can obtain from one random variable

bserving another. This is analogue to measuring the dependence

etween two random variables [34] . Let X and Y be two random

ariables with { x 1 , x 2 , . . . x n } and { y 1 , y 2 , . . . y n } , n possible values

ith probabilities p ( x ) and p ( y ). The MI of X relative to Y can be

ritten as: 

I(X ∩ Y ) = 

∑ 

x ∈ X,y ∈ Y 
p(x ∩ y ) log 2 

p(x ∩ y ) 

p(x ) p(y ) 
(16)

I(X ∩ Y ) = H(X ) − H(X | Y ) (17)

here p ( x ∩ y ) is the probability that X has a value of x while Y has

 value of y, H ( X ) is the entropy of X and H ( X | Y ) is the conditional

ntropy of X and Y . One of the major advantages of MI is that it

aptures linear and non-linear relationships among variables. One

isadvantage is that it does not explicitly tell the shape of that

istribution [33] . To get the mutual information between two ran-

om variables, we first need to estimate their probability density

istribution [33–35] . Eq. (16) compares joint probabilities against

arginal ones. When two values are independent, the product of

heir marginal probabilities should equal their joint probability.

hen not, we can state that there is a relationship among them

not necessarily linear), because the probability of finding those

alues together is greater than the probability of finding them by

hance. Thus, somehow, those time series are coupled, although

e don’t know the way it occurs. 

ppendix B. Electronic version of the Lorenz system 

The equations of the master and slave electronic Lorenz systems

re: 

 

˙ x 1 = 

1 

R 1 C 

(
R 1 

R 2 

V y 1 −
R 4 

R 3 

V x 1 + 

R 4 

R 3 

V ξ1 

)
(18) 

 

˙ y 1 = 

1 

R 5 C 

(
R 5 

R 6 

V x 1 −
R 5 

R 7 

V x 1 V z 1 

)
(19) 

 

˙ z 1 = 

1 

R 8 C 

(
R 8 

R 9 

V x 1 V y 1 −
R 11 

R 10 

V z 1 

)
(20) 

 

˙ x 2 = 

1 

R 12 C 

(
R 12 

R 13 

V y 2 −
R 15 

R 14 

V x 2 + 

R 12 

R 29 

V ξ2 
+ 

R 12 

R 30 

V sinx 

)
(21) 

 

˙ y 2 = 

1 

R 16 C 

(
R 17 

R 16 

V x 2 −
R 17 

R 20 

V x 2 V z 2 

)
(22) 
t  
 

˙ z 2 = 

1 

R 19 C 

(
R 19 

R 20 

V x 2 V y 2 −
R 22 

R 21 

V z 2 

)
(23) 

here V x 1 , 2 , V y 1 , 2 and V z 1 , 2 are the voltage variables of the mas-

er (sub-index 1) and slave (sub-index 2) Lorenz systems, V in =
 x 1 − V x 2 is the coupling signal injected into the slave system in a

iffusive way, κ = 

R dp 

C 5 R 30 
is the coupling strength and 0 ≤ R dp ≤ 1 is

he percentage of coupling controlled by the digital potentiome-

er. In the experiments where external noise is considered (see

ppendix C ), the amplitude of V ξ1 
and V ξ2 

are set to 0.5 V and

ero otherwise. 

Table 1 contains the parameters of the resistances and capaci-

ances used in the experiments. 

ppendix C. Robustness of OS in the presence of external noise 

Figs. 8 –9 are equivalent to Figs. 3 –4 but in the presence of ex-

ernal noise. In this case, we have introduced two noises ξ 1 and ξ 2 

erturbing the x 1 and x 2 variables of the master and slave Lorenz

ystems as explained in Appendix B . Comparing Figs. 3 and 8 we

an observe that all synchronization metrics have reduced their

alues in the presence of external noise, however, the behaviour

emains qualitatively similar to the one reported in Fig. 3 . Again,

he case D = 3 is the one suffering the most from the presence of

oisy signals ( Fig. 8 D). When comparing OS with the rest of syn-

hronization metrics ( Fig. 9 ), we can also observe a reduction of

he correlations respect to the case without external noise. Again,

 and PLV are the metrics showing higher correlation with OS , hav-

ng a linear correlation for D = 500 and D = 1000 . This correlation

s impaired for D = 3 , since it corresponds to the ordinal vector

ength that is more affected by noise. On the other hand, the non-

inear correlations with MI and SC remain quite similar as in the

ase of the absence of external noise. 

ppendix D. Surrogate validation 

To double-check whether OS is sensitive to the temporal struc-

ure of the dynamical coordination between time series, and to

hat extent it is affected by statistical noise, we have ran an ad-

itional surrogate test for both datasets (Lorenz and MEG record-

ngs). The procedure to generate the surrogated time series is the

implest case of constrained realisations without replacement [36] .

or this concrete purpose, in which we are not testing the nonlin-

arity nor the nonstationarity of each time series individually, it is

ufficient to simply randomize one of each pair to be compared,

hus building a null model of no temporal coordination between

hem. 

The procedure goes as follows: we set a seed and run the MAT-

AB built-in algorithm “twister” to get a random rearrangement

f the indexes for one time series. We then compute the syn-

hronization between one time series in its original order and the

huffled one. We do this process one hundred times for each ex-

lored D and every pair of time series. In this way, we ensure that

e are breaking temporal relations between time series (coordina-

ion), while preserving the distribution of values in each individual
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time series. After repeating the process one hundred times, we get

the empirical distribution of values of OS we could expect if there

were no temporal structure in the dynamics. 

Given that we just want to check OS’s sensitivity to statisti-

cal noise to validate the measure, we will confine ourselves to a

descriptive analysis of surrogate testing, ensuring it reacts as ex-

pected. However, the results obtained from surrogate testing could

be used to establish an offset for empirical results (as a normal-

izing value), or as a null model to test the statistical significance

of each value of OS. As the number of permutation iterations in-

creases, the values obtained approach a normal distribution, that

can be used as a null model distribution under the hypothesis of

no temporal coordination between time series. Getting the empir-

ical probabilities from that distribution allows one to test whether

or not any empirical value of OS, extracted from the same two time

series without shuffling are statistically significant. If anyone were

to use our measure to analyse synchronization in time series, we

strongly recommend to run this same surrogate test to ensure re-

liability and robustness of the results. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.chaos.2018.12.006 . 
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