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We investigate the existence of an optimal interplay between the natural frequencies of a group of
chaotic oscillators and the topological properties of the network they are embedded in. We identify
the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest
possible coupling strength. Specifically, we show by means of numerical and experimental results
that it is possible to define a synchrony alignment function J(w, L) linking the natural frequencies
; of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian
matrix L, the latter accounting for the specific organization of the network of interactions between
oscillators. We use the classical Rossler system to show that the synchrony alignment function
obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry
out a series of experiments with nonlinear electronic circuits to show the robustness of the theoreti-
cal predictions despite the intrinsic noise and parameter mismatch of the electronic components.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974029]

The emergence of synchronization of dynamical systems
relies on three different aspects that are unavoidably con-
nected: (i) the dynamical system under study, (ii) the kind
of the coupling between dynamical units, and (iii) the struc-
ture of the network of connections. In this paper, we inves-
tigate how the distributions of the natural frequencies of a
group of dynamical systems that are connected through a
certain network topology are crucial to promote or hinder
the emergence of phase-synchronization. We show that,
given a specific network structure and a set of chaotic oscil-
lators with a certain frequency distribution, there is an
optimal allocation for each dynamical system according
to its natural frequency. Thus, phase synchronization
arises, or not, depending on the interplay between the
dynamical and topological properties of the nodes. To ver-
ify the robustness of our theoretical predictions, we con-
struct a network of nonlinear electronic circuits and check
whether the predicted optimal allocation facilitates the
arousal of phase-synchronization. Despite the fact that
our results do not apply to non-phase-coherent chaotic
oscillators, they demonstrate the existence of an interplay
between the dynamical and topological properties of non-
identical chaotic systems when trying to achieve strong
synchronization.

I. INTRODUCTION

Synchronization of nonlinear dynamical systems have
intrigued scientist in various disciplines studying the emer-
gence of collective phenomena.'? A large body of research
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has shown that the particular structure of connections between
a system of nonlinear oscillators is crucial in determining the
synchronization of the ensemble.> Nevertheless, determin-
ing effective network structures for a given dynamical system
is far from a trivial task. The many classes of dynamical sys-
tems, as well as the various types of synchronization we aim
to achieve, result in the absence of a unique (or general) net-
work structure maximizing the synchronizability of the sys-
tem. To this end, it is necessary to understand, for each
particular case, how the dynamical system and the structure of
connections are intermingled. For example, in the case of het-
erogeneous phase oscillators such as the Kuramoto model,®
the degree heterogeneity of the network’ together with the
spectral properties of the adjacency and Laplacian matrices*
can help us to identify what networks are more prone to syn-
chronize and even to assess the time required to reach the syn-
chronization manifold.®

When the state of the oscillators consists of more than
just a single phase, possibly giving rise to chaotic dynamics,
synchronization is more complicated. Nevertheless, for an
ensemble of identical systems coupled with diffusive cou-
pling, it is possible to obtain a Master Stability Function
(MSF) indicating the ability of a system to synchronize by
evaluating the stability of the synchronization manifold.’
Extensions of the MSF approach has been proposed for sys-
tems with slight parameter mismatch,'® but still require that
the oscillators are nearly identical. More recently, it has been
pointed out that not only the stability of the synchronized
manifold, but the basin of attraction is crucial for the syn-
chronization of the whole system, particularly in real-world
scenarios and applications.'' The identification of a basin of
synchronization is especially useful in real systems where
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the intrinsic parameter mismatch turns the MSF not applica-
ble. Other approaches have been developed more recently,
which allow a network to re-organize itself in the most ade-
quate way. In this scenario, it has been demonstrated that the
heterogeneity of the nodes can be a driving force behind the
evolution of the network structure.'*'?

Within this framework, a recent work has identified a
new perspective in the analysis of synchronization of hetero-
geneous systems. In Ref. 14, the authors show that given (i) a
group of phase oscillators with heterogeneous natural frequen-
cies and (ii) a given network structure, the precise location
of the oscillators on the network has crucial consequences
on the synchronization of the whole system. In particular, a
synchrony alignment function (SAF) can be defined that
describes the interplay between the natural frequencies and
the networks structure, and serves as an objective measure of
the synchronization of the network. Using the SAF, the syn-
chronization properties of a network can be optimized by
either (i) strategically allocating oscillators on a fixed network
or (ii) tailoring a network to a fixed set of oscillators. This
approach accounts for both the heterogeneity in the dynamics
of the specific set of oscillators as well as the interactions dic-
tated by the specific network structure. In other words, there is
no unique optimal network structure universally valid for all
possible sets of frequencies and networks—in general, they
have different optimal configurations. Recent work has
extended this approach to the case of directed networks,'?
ranking network edges for synchronization'® and evaluating
erosion of synchronization in networks.'”"'®

In this paper, we translate the concepts introduced in
Ref. 14 to the synchronization of chaotic oscillators. We
hypothesize that phase-coherent chaotic oscillators with a
clear dominant frequency can be treated as phase oscillators
and, in turn, the SAF describing the optimal interplay
between the natural frequencies and network topology could
be used to optimize phase synchronization. Note that this
heuristic argument relies on the fact that each dynamical unit
is identified with a unique natural frequency, which is not
the general case of chaotic oscillators. Nevertheless, this
simplification is reasonable for phase coherent systems'*'*2°
as long as their power spectrum of the dynamical system is
narrow enough to clearly identify a dominant frequency. We
demonstrate by means of numerical simulations and experi-
ments with nonlinear electronic circuits that the SAF intro-
duced in Ref. 14 is applicable to phase-coherent chaotic
oscillators and can be used to find optimal configurations in
networks of heterogeneous chaotic oscillators. We also show
how the use of the SAF is robust both for random and scale-
free topologies but can fail when non-phase-coherent chaotic
systems are considered.

The remainder of this paper is organized as follows: In
Sec. II, we describe the oscillator model we are considering
and the optimization method using the SAF. In Sec. III, we
present numerical results demonstrating the effectiveness of
the optimization method for attaining phase synchronization
in networks of chaotic oscillators. In Sec. IV, we validate
these numerics by presenting experimental results using net-
works of nonlinear electronic circuits. In Sec. V, we con-
clude with a discussion of our results.
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Il. MODELS AND METHODS

We begin by describing the dynamical system under con-
sideration. Specifically, we study networks of coupled Rossler
oscillators,21 modified as in Ref. 22. We choose this class of
oscillator due to the fact that they represent a paradigmatic
example of a class of phase-coherent chaotic oscillators.'
Next, we construct a network G of N Rossler oscillators,
which are diffusively coupled following the equations:

N
Xp=—o; |’ xi_dzaij(xj_xi) + Byi+ 2z |, (D)
=1

Vi = —oi(—x; +vy;), )
i = —oi[—g(xi) + zl, 3)
where
() = 0 ifx <3 @)
SYZY uxe—3), itx>3

is the nonlinear function allowing the oscillators to have a cha-
otic output. The parameter d is the global coupling strength,
each «; determines the frequency of oscillator i, and the entries
a;; define the adjacency matrix A{a;} of network G, such that
a;=1 if a link exists between oscillators i and j, and a;=0
otherwise. Other parameters are I' =0.05, f =0.5, A=1,
u=15, and v =0.2 —10/R, where R=100. Under this
parameter configuration, Rossler oscillators have a phase-
coherent chaotic output in isolation (i.e., for d=0), and their
frequencies, w;, taken to be the position of the localized peak
of the Fourier spectrum, are proportional to ;. (This follows
from the fact that, in isolation, the dynamics of oscillator i acts
on a timescale of o; ). The fact that oscillators are phase
coherent allows us to evaluate their phase synchronization
disregarding the behavior of their amplitude. In particular,
we define the phase of oscillator i as the angle represented
by the oscillator after projecting onto the xy-plane: 6;
= arctan(y;/x;), as proposed in Ref. 23. Thus, the degree of
phase synchronization of the network can be measured by the
order parameter 1 = | Zszl ¢'%| /N. Here, we investigate how
the particular frequency of each oscillator is related to the
position it occupies in the network and how this relationship
affects phase synchronization.

To explore the existence of an optimal frequency-
structure interplay, we will adapt the methodological frame-
work introduced in Refs. 14 and 15 to the case of phase-
coherent chaotic oscillators. In these papers, the authors
showed that the degree of phase synchronization in a net-
work of heterogeneous phase oscillators is given by
ra1—J(w,L)/2K?, where

1 L o
J(o,L) :NZ;UJZW,@ 7 (5)
=
is the synchrony alignment function (SAF). Here, o is the
vector of the natural frequencies of each oscillator and L is
the network Laplacian whose entries are given by
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Lij = d;ik; — Aj;. In the case of symmetric adjacency and
Laplacian matrices A and L, g; and W are, respectively, the
jth eigenvalue and associated eigenvector of L,'* whereas in
the case of asymmetric adjacency and Laplacian matrices A
and L, o; and w are, respectively, the jth singular value and
associated left singular vector of L."> We include a brief der-
ivation of the SAF in Appendix A. Given the setup of the
system in Egs. (1)—(3), the heterogeneity of the parameters o;
makes both A and L asymmetric, and therefore, we use
the asymmetric theory derived in Ref. 15. Given the relation-
ship between r and J(, L), Eq. (5) can be used to maximize
r (i.e., optimizing phase synchronization), in particular, by
minimizing J(e, L) via investigating different configurations
of a given set of natural frequencies and/or networks.

lll. NUMERICAL SIMULATIONS: LARGE NETWORKS
OF PHASE COHERENT CHAOTIC OSCILLATORS

We begin by constructing networks of N =500 nodes
and L = 1000 links with and Erdos-Renyi random configura-
tion.”* Next, we introduce heterogeneity by assigning the
pseudo-frequency parameters «; randomly. Specifically, we
obtain each «; independently from a normal distribution with
mean 10 and standard deviation 0.2. By doing so, complete
synchronization of the whole network cannot be achieved,
since systems are no longer identical. Instead, we aim to
maximize the degree of phase synchronization using the
SAF J(w,L) whose input is the distribution of natural fre-
quencies and the Laplacian matrices of the networks.

The alignment function is used in two different ways. We
first consider oscillator allocation, where given a fixed net-
work, we seek to arrange frequencies optimally on the net-
work. To do so, we begin by allocating oscillators randomly
and implement the following accept-reject algorithm: we pro-
pose a switch of two randomly chosen oscillators, and accept
the switch only if the new arrangement yields a smaller value
of J(, L), repeating this process for total number of proposed
switches. In Figs. 1(a) and 1(b), we plot the results from simu-
lations over a wide range of coupling strengths for networks
with optimally allocated frequencies (blue circles), randomly
allocated frequencies (red triangles), and poorly allocated fre-
quencies (green crosses). Random allocations are given by the
initial network and optimal allocations are obtained after 10°
proposed switches. Poor allocations are similarly obtain, but
aim to maximize J(w) instead of minimizing it. Solid lines
correspond for the average of /=50 different random net-
works, and error bars indicate the standard deviation from the
average. We note that optimally allocated set of oscillators
performs remarkably well, as shown by the order parameter r
(Fig. 1(a)), improving greatly on the random allocation with a
sharp transition to a strongly synchronized state near d ~ 0.2.
In addition, the synchronization error, obtained as € =
Nv1] 2i<j i — x| also captures the benefits of the optimal
alignment (see Fig. 1(b)), despite the fact that it never van-
ishes (i.e., achieves perfect synchronization) due to the fre-
quency mismatch of the oscillators. Moreover, phase
synchronization can also be mitigated by maximizing J(e, L)
as demonstrated by the poorly allocated frequencies (green
lines of Fig. 1).
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FIG. 1. Oscillator allocation. In (a), the order parameter r vs d (coupling
strength) for optimal (blue circles), random (red triangles), and poor (green
crosses) allocations of oscillators. Solid lines correspond to the average of
the simulation of /=50 Erdos-Renyi random networks of N =500 nodes
with L= 1000 links, while the error bars are their corresponding standard
deviation. In (b), the corresponding synchronization error.

Second, we consider a network design approach, where
given a set of oscillators with a predefined frequency distribu-
tion, we seek to build an optimal network structure promoting
the phase synchronization of the whole ensemble. To do so,
we initially allocate oscillators randomly on a network with a
random configuration and implement a similar accept-reject
algorithm: rather than switching two randomly chosen fre-
quencies, we rewire a randomly chosen link. If the new net-
work yields a smaller J(w,L), we accept the rewiring, and
otherwise we reject it. In Fig. 2(a), we plot the results of the
order parameter 7 from simulations over a wide range of cou-
pling strengths for optimal (blue circles), random (red trian-
gles), and poor (green crosses) network structures. Random
structures are given by the initial network, and optimal struc-
tures are obtained after 2 x 10* proposed rewirings. Poor
structures are similarly obtain, but aim to maximize J(w). As
in the previous case, we note that the optimally rewired net-
work performs much better than the random network, display-
ing a sharp transition to a strongly synchronized state similar
to the case of oscillator allocation. The corresponding syn-
chronization error € also shows that complete synchronization
never reached (Fig. 2(b)) due, again, to the heterogeneity of
the frequency distribution. Again, phase synchronization can
be mitigated by finding poor network structures.

Finally, we explore how the SAF methodology performs
in two other cases. In Fig. 3(a), we show the order parameter
of oscillator allocation when the underlying network has
scale-free structure. Specifically, we consider networks with
N =500 nodes with scale-free degree distributions P (k)
k=7 for y =3 and minimum degree ko = 2, obtained with the
configuration model.”” Similar qualitative results are
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FIG. 2. Network design. In (a), the order parameter r vs d (coupling
strength) for optimal (blue circles), random (red triangles), and poor (green
crosses) network structures. Solid lines correspond to the average of the sim-
ulation of /=50 Erdos-Renyi random networks of N=3500 nodes with
L =1000 links, while the error bars are their corresponding standard devia-
tion. In (b), the corresponding synchronization error.

obtained both for the oscillator allocation and the network
reconfiguration (the latter not shown here). In Fig. 3(b), the
dynamical system has been replaced by a Lorenz system,?®%’
which is a paradigmatic example of a chaotic system that it
is not phase-coherent. We summarize the dynamics and
phase description of the Lorenz system in Appendix B. In
this case, the ambiguity in the phase definition leads to a dif-
ficulty in defining a characteristic frequency for each oscilla-
tor, which in turn hinders the SAF methodology in obtaining
optimal configurations of frequencies and network topolo-
gies. In particular, we see that networks with “optimally”
allocated frequencies (blue circles) perform no better than
randomly allocated (red triangles) or “poorly” allocated
(green crosses) frequencies in terms of phase synchroniza-
tion or the synchronization error (inset).

IV. EXPERIMENTAL RESULTS: IMPLEMENTATION
WITH NONLINEAR ELECTRONIC CIRCUITS

Next, we validate the robustness of the previous results
with a real experiment based on an electronic implementa-
tion of a network of Rossler oscillators. The experimental
design of the whole network, and its control, is shown in
Figure 4. It consists of an electronic array (EA), a multifunc-
tion data card (DAQ), and a personal computer (PC). The
EA comprises 20 Rossler-like electronic circuits (see Ref. 28
for a detailed description of the electronic schemes) forming
a network, whose structure can be modified maintaining the
degree of each node. Thus, as a contrast to the numerical
results above, the EA is small in size. We translate variables
X;, i, and z; and all the parameters appearing in Egs. (1)—(3)
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FIG. 3. Performance of the alignment function in other cases. In (a), the order
parameter r vs d (coupling strength) for optimal (blue circles), random (red tri-
angles), and poor (green crosses) allocations of oscillators on scale-free net-
works. Solid lines correspond to the average of the simulation of /=50
networks with scale-free degree distribution P(k) o< k=7 for y=3 and mini-
mum degree ko = 2. Error bars indicate standard deviation. In (b), the order
parameter 7 vs d (coupling strength) for optimal (blue circles), random (red tri-
angles), and poor (green crosses) allocations of Lorenz oscillators. Inset: the
corresponding synchronization error. Solid lines correspond to the average of
the simulation of /=50 Erdos-Renyi random networks of N =500 nodes with
L = 1000 links, while the error bars are their corresponding standard deviation.

to the three voltages vy;, vo;, and v3; and a combination of
different electronic components, leading to the following cir-
cuit equations:

1 R R R <
01+ U2+t U3 — d
Ris‘=

Uli(t):

— ATv1— 01
RiC R, TR, ool

6)
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FIG. 4. Experimental setup. On the left, schematic representation of the cou-
pling topology of the 20-circuit network, which can be modified according
to the predictions given by the alignment function. The total number of links
is always maintained to L=25. The coupling strength d is adjusted by
means of one digital potentiometers X9C104 controlled by a signal coming
from the digital ports P0.0-P0.1 of a DAQ Card. The outputs of the circuit
are sent to a set of voltage followers that act as buffers and, then, sent to the
analog ports (AI 0; AI 1; ...; AI 19) of the same DAQ Card. The whole
experiment is controlled from a PC with Labview 8.5.
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Uz,‘(l) =

vsi(t) = :

where

—Vee——1d

' Ri> Ri> <R12
R4 Ri3

The values of all electronic components are summarized
in Table I. Importantly, all chaotic oscillators have the same
internal parameters with the exception of the capacitances C;
that, in turn, define the natural frequency of oscillation of
each unit. This way, capacitances take different values for
the set C; = {2.2nF, 3.3 nF, 4.7 nF}, leading to a distribution
of frequencies within the interval (240 — 540) Hz. The rela-
tion between o; of the theoretical model and the capacitances
is given by u,, = gl o, = e, and o, = a—. As a
consequence, we obtain an ensemble of oscillators whose
natural frequencies @;, in isolation, are inversely propor-
tional to the value of the capacitances. Note that, due to the
tolerance of the electronic components (between 5% and
10%), the frequencies of the oscillators also suffer a disper-
sion that goes beyond the nominal values of the capacitan-
ces. Figure 5 shows the power spectrum of the N=20
oscillators for d =0, i.e., in isolation. Each Rossler circuit
has an individual electronic coupler controlled by a digital
potentiometer (XDCP), which is adjusted by a digital signal
coming from ports P0.0-1 (see Fig. 4). The digital port P0.0
is used to set the value of the coupling resistance (d), while
port P0.1 increases/decreases the resistance of a voltage divi-
sor controlling the final coupling strength d (and allowing
to test 100 discretized values of d). All the experimental
process is controlled by a virtual interface developed in
Labview, which can be considered as a state machine. This
way, the experimental procedure is as follows: first, d is set
to zero, after a waiting time of 500 ms (roughly correspond-
ing to P = (120 — 270) cycles of the autonomous systems),
the signals corresponding to the x(f) variables of the 20 cir-
cuits are acquired by the analog ports (AL 0; AI 1; ...; Al 19).

TABLE I. Values of the electronic components used for the construction of
the electronic version of the Rossler system.

Ci3 2.2nF 3.3nF 4.7 nF

Ry =2MQ Ry =200kQ R; = 10kQ R4y = 100kQ
Rs =50kQ Re = 5MkQ R; = 100kQ Rs = 10kQ
Ry = 10kQ Rip = 100kQ Ry = 100kQ Ryp = 150kQ
Rz = 68kQ R4 = 10kQ Ris = 100kQ Rc =Rz +Rs
1d=0.7 Vee =15 d=1[0-0.6]

1 ReRs R¢Rs
— 2 %y 1— . 7
R6C2 ( R9R7 Uy + |: RCR7 2 |, ( )

3

R12> . Ria
— 4+ = if x>Id+1d— + Vee—.
Ri3 Ry R
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FIG. 5. Frequency distribution of the electronic Rosslers. Internal capacitan-
ces control the frequency of the N =20 Rossler circuits, taking a value from
the set C; = {2.2nF,3.3nF, 4.7 nF}. The “natural frequency” of each oscil-
lator is obtained from the position of the maximum of their corresponding
power spectrum.
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FIG. 6. Experimental test of the optimal alignment. Order parameter r of a
network of heterogeneous Rossler circuits as a function of the coupling
strength d and for a given network structure (see Fig. 4 for a representation
of the network). Three different allocations are shown: the optimal align-
ment predicted by Eq. (5) (blue circles), a random configuration (red dia-
monds), and a poor allocation (green crosses). Dashed lines are the
corresponding standard deviations obtained from five different experimental
realizations.
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Once this is recorded, the value of d is increased by one step,
and the process is repeated until the maximum value of d is
reached.
Once the x;(r) variable of all circuits is recorded, we
obtain the equivalent instantaneous phase as ¢;(r) = 2mul;
-1,

+27 P for each interval #;, <t < t;.1, where #;, and 1,4,

are the times of to consecutive maxima of the variable x;()."
It is important to remark that, for phase coherent systems,
such a measure of instantaneous phase is fully equivalent to
the geometrical phases used in the numerical simulations.*
Next, we evaluate the performance of the theoretical pre-
dictions given by the alignment function J(w,L). We
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FIG. 7. Instantaneous frequency vs coupling strength d for different network
alignments. In all figures, we plot the position of the highest peak of the
power spectrum of each oscillator as a function of d. In (a), the optimal
alignment leads to a frequency locking for couplings strengths higher than
d ~ 0.5. In (b), a random allocation of the oscillators leads to the formation
of synchronization clusters even for high values of the coupling strength.
Finally, in (c), the poor allocation results in the coexistence of synchroniza-
tion clusters together with a frequency drift of certain oscillators.
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construct the specific network structure shown in Fig. 4, i.e.,
N =20 Rossler oscillators with the frequency distribution
shown in Fig. 5 and with a fixed average degree of (k) = 2.5.
Next, we obtain the synchronization parameter r vs the cou-
pling strength for three different configurations: (i) the opti-
mal allocation according to an alignment function whose
input are the average frequency of the oscillators and the
Laplacian matrix of the network; (ii) a random allocation of
the oscillators on the network, and finally, (iii) a poor alloca-
tion (i.e., maximizing the alignment function). Figure 6 shows
how the optimal allocation allows the ensemble of oscillators
to synchronize at lower coupling strengths and at the same
time to reach higher values of the order parameter. A further
inspection of the oscillators’ instantaneous frequency reveals
the path to synchronization for both the optimal and random
allocations. Figure 7 shows the instantaneous frequency of the
N oscillators, indicated by the position of the highest peak of
their corresponding power spectrum, as the coupling strength
d is increased. When the optimal alignment is implemented
(Fig. 7(a)), we observe a frequency locking occurring at
d ~ 0.5, which precedes the subsequent phase locking of the
whole system reached for values of d > 0.1 (see blue line in
Fig. 6). Interestingly, Figs. 7(b) and 7(c) show that deviations
from the optimal alignment lead to, respectively, (b) the for-
mation of frequency locked clusters preventing the whole sys-
tem to synchronize and (c) the drift of a series of oscillators
along the dominant frequencies of the system. In this way, we
can observe that, in the case of random allocation, we obtain
two different clusters of synchronization, which hold even for
large values of d and prevent to achieve the phase synchroni-
zation of the whole system (Fig. 6(b)). In the case of the net-
work with the poor allocation, the situation is even worse,
since a series of oscillators drift from cluster to cluster leading
to an even lower value of the order parameter. It is worth
mentioning that, in Ref. 14, a positive correlation between w;
and k; was reported. However, such correlations are not
observed in our experiments, which can be attributed to the
finite size effects related to the experimental limitations result-
ing in a low heterogeneity in the number of nodes (N = 20),
natural frequencies (only three different frequencies are
implemented), and node degrees (1 < k < 4).

V. CONCLUSIONS

Our results show, both numerically and experimentally,
that when aiming to synchronize a network of phase-
coherent chaotic systems, there exists an optimal alignment
between the frequency of the oscillators and the topological
properties of the network. The existence of an optimal corre-
lation is shown from two perspectives: (i) promoting syn-
chronization by the correct allocation of a group of
heterogeneous oscillators over a given network structure and
(i) allowing the network to reorganize according to an align-
ment function. In both cases, the alignment function intro-
duced in Ref. 14 for Kuramoto oscillators correctly defines
the optimal frequency-topology correlation for Rossler sys-
tems with phase-coherent chaotic behavior.

At the same time, our results raise a series of questions
to be addressed in the future. First, we have seen that the
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application of the alignment function to the Lorenz system
does not give successful results. This fact suggests that the
alignment function of chaotic oscillators that are not phase-
coherent needs to include, somehow, the complexity of the
dynamics and not only the dominant frequency of the sys-
tem. More generally, it raises the question of how to define
new alignment functions accounting for power spectra with
large dispersion. Is it possible to define a specific alignment
function to each considered dynamical system? What is the
relation between the optimal topologies for different dynami-
cal systems? Both questions require significant attention in
the near future and might be addressed in part by blend the
SAF approach used here with of other approaches.*>** In
addition, it would be interesting to carry out experiments
with a number of nodes two or three orders of magnitude
higher, which would allow to check the theoretical predic-
tions regarding the generality of our results in scale-free net-
works (which require a high number of nodes) and the
expected correlations between the degree of the nodes and
their natural frequencies.

On the other hand, there is a pristine field concerned
about the identification of optimal topologies in real systems.
For example, in brain networks, recent works have focused on
the interplay between the dynamical and topological properties
of different brain regions, and how the underlying physical
connections constrain the functional networks associated with
different cognitive and motor tasks.*'>* In this respect, the
identification of alignment functions could help to understand
the interplay between structural and functional networks. How
close the actual configuration of a functional network is from
the optimal topology and how a neurodegenerative disease
may alter the possible alignment between dynamical and
structural properties would be promising applications.
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APPENDIX A: DERIVATION OF THE SYNCHRONY
ALIGNMENT FUNCTION

In this Appendix, we present a short derivation of the
synchrony alignment function (SAF) as first described in
Ref. 14. We consider a network of N phase oscillators evolv-
ing according to

N
0,‘ :wi+dZa,jH((),-—0,-), (Al)
=1
where H is a coupling function which we assume satisfies
H'(0) > 0 and |H(0)/v/2H'(0)| < 1 to ensure the possibility
of synchronization (this last condition ensures that the

Chaos 27, 013111 (2017)

coupling frustration is sufficiently small'’). We then consider
the strong coupling regime where a strongly synchronized
state, i.e., r ~ 1, can be attained such that the difference
between any two network-adjacent phases is small, |0; — 0;]
< 1. In this scenario, Eq. (A1) can be linearized to

N
9,‘ ~ (I),' — d ZLU'H_,', (A2)
Jj=1

where @; = w; + KH(0)k; and d = dH'(0). Note that in the
case of Kuramoto coupling where H(0) = sin0, we have
that @; = w; and d = d. Dropping the ~-notation, we next
enter the rotating frame 0—0 + Qr where Q is the collective
frequency variation.> The stationary solution of Eq. (A2)
can then be written in vector form

0" =L'w/d, (A3)
where L is the Moore-Penrose pseudoinverse of the Laplacian
L.® In particular, if L is symmetric its pseudoinverse is defined

. . .. +_ N —1..j..iT

by its eigen dejcomposmlon,{g =5 =2 0 w u/. s wher.e gjand
w are, respectively, the jth eigenvalue and associated eigenvec-
tor of L. However, if L is asymmetric, its pseudoinverse is
deﬁngd' by its singglar Vqlue decomposition, L' = ZJNZZ
aj?lu’ o7, where gj, w, and v/ are, respectively, the jth singular
value, associated left singular vector, and associated right sin-
gular vectors of L. Finally, noting that to leading order the order
parameter can be written

1071

] — A4
7 N (A4)

we insert Eq. (A3) into Eq. (A4) to obtain
r~1—J(o,L)/2K?, (A5)

where
1Y _—
Jo,L) =5 Z; 0 () (A6)
j=

is the SAF presented in the main text in Eq. (5).

APPENDIX B: DESCRIPTION OF THE LORENZ
DYNAMICS

Here, we briefly describe the dynamics and phase descrip-
tion of the Lorenz oscillators used in the main text. Given a
network of N nodes, we consider the following system:

N

Xi = oo (x; —yi) + dz aij(xj — x;)], B1)
J=1

yi = %ilxi(p — z) — yil, (B2)

Z.,' = O(,'[X,'yi — ,BZ,']. (B3)

As in the case of the Rossler oscillators, d represents a global
coupling parameter, the entries «;; describe the network
structure, and oci’l determines the timescale of oscillator i.
Other parameters are chosen g =10, p =28, and f = 8/3 to
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induce a chaotic state. The topology of the chaotic Lorenz
attractor, however, is not phase-coherent making a phase 6;
difficult to be extracted from the state (x;, yi,z,-)T. Here, we
define a phase, first by defining the variable u; = \/x7 + y?,
then defining 60; as the angle made by the state (u;, z;) around
the unstable fixed point (u*,z*) = (1/2f(p — 1),p — 1), i.e.,

0; = arctan(z; — (p — 1), u; — /2B(p — 1)).

Using this formalism of each phase 6,, the degree of phase
synchronization is then given by the same order parameter as
defined in the main text.
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