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Despite more than a century-long effort, the functioning
of the few-pound lump of white and grey matter that forms
the brain remains at least partially a mystery. Physicists have
made some significant contributions to the understanding of
brain physiology, none perhaps more notable than Hodgkin
and Huxley’s, who discovered the ionic basis of nerve cell
conduction. But could they also help shedding light on how
large numbers of neurons interact to give rise to sophisti-
cated behaviour?

Although complex, a neural system is in fact essentially
a physical device meant to perform specific functions. As
such, brain design must obey general engineering principles,
which shape it at all scales from neuronal sub-components to
the whole system scales.1 Observable anatomy and physiol-
ogy of the brain can be thought of as resulting from selective
evolutionary pressures that managed trade-offs between
energy consumption and adaptiveness, favouring energy-
efficient wiring and coding patterns2,3 and ultimately result-
ing in a non-random spatial and temporal structure of brain
anatomy and dynamics. Making sense of this structure is
therefore key to our understanding of the emergence of brain
function.

SPATIAL ORGANIZATION: BRAIN NETWORKS

On the cold table of the neuroanatomist, the human
brain appears as a gelatinous object approximately 1200 cc
in volume and 1.5 kg in weight. An incision into its body
reveals grey (actually rather more pinkish) matter inter-
spersed with whiter fibres. Slicing a thin section of tissue
with a simple microtome, and zooming in with a microscope,
one can see that the former contains numerous cell bodies,
while the latter is mainly composed of long-range myelin-
ated axon tracts. In fact, the brain has an estimated 1011 neu-
rons (105/mm3), each with an average 104 connections with
other neurons (109/mm3). Wires connecting neurons have an
estimated total length of 2! 105 km (5 km/mm3). Zooming
in and out of this dense jumble of cells and cables reveals
non-random structural patterns at different levels.

To the neurophysiologist’s eye, possibly the most
important aspect is how neurons process and transfer

information. This is carried out by coupled neural units, each
with its own dynamics. The waxing and waning of couplings
between units induce observable transient network struc-
tures. Indeed, synchronization has been identified as a funda-
mental dynamical feature modulating cortical interactions by
increasing the effectiveness of interactions between brain
regions,4 and there is now large consensus on its role in
many aspects of the brain’s cognitive function.

It is natural to think of these patterns as a network. A net-
work can be endowed with topological properties at all spatial
scales by resorting to the complex network theory, a statistical
physics understanding of the graph theory, an old branch of
mathematics.5,6 Complex network theory appears as a tool of
choice in tackling the challenges of brain activity, as it offers
a qualitatively different view of brain mapping (offering a
complex system vision of the brain), where networks are
endowed with properties which stem in a non-trivial way
from those of their constituent nodes [see Refs. 7 and 8 for
comprehensive reviews]. Complex network theory is poten-
tially applicable to any modality of neuroscientific data and
allows characterizing brain organization at all spatial scales,
from the cell to the system level.9–12 Perhaps even more
importantly given the brain’s inherently multiscale nature, it
also helps unveiling relationships between scales.13 Zooming
in and out of brain functional activity reveals a hierarchical
fractal structure, with modules themselves containing other
modules.14 Moreover, it allows addressing classical but com-
plex issues such as structure-dynamics relationships in a
straightforward and elegant fashion. It also allows quantifying
mechanistic properties such as its efficiency in performing the
functions it is supposed to carry out and corresponding
costs,15 its vulnerability to lesions,16,17 and its proneness to
synchronize or to be controlled within or targeted towards
given desirable regimes.18,19 Finally, topological properties
have important consequences for the system’s information
processing capacities. For example, the ability to process and
propagate signals between nodes is affected by whether net-
works possess branching or loop-like features.20

TEMPORAL COMPLEXITY

Brain complexity is not only spatial but also temporal.
This form of complexity becomes particularly observable
at the long time scales of spontaneous brain activity.21
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Spontaneous brain activity has long been thought of as a null,
amorphous state to which the brain reverts in the absence of
stimulation. However, when observed long enough, brain
spontaneous fluctuations appear to be characterized by struc-
tured patterns at all scales22 re-edited across the cortical space
in a non-random manner.23

The building blocks of this structure are fluctuations
which the brain, as all dissipative out-of-equilibrium sys-
tems, generates even for fixed control parameter values and
without external stimuli. Fluctuations are therefore signa-
tures of brain activity which leave statistical and dynamical
traces. At short time scales, the brain can be well approxi-
mated as an excitable system, and activity is temporally
disordered, as fluctuations vanish exponentially fast and
long-range temporal correlations can to some extent be
ignored. At long time scales, however, various aspects of
spontaneous activity display non-trivial glassy properties.

From a statistical view-point, as in a fractal object, brain
activity shows similar properties in a wide range of temporal
scales.24–28 Self-similarity may not be exact so that brain
activity displays multifractality.29,30 Some regions of the
phase space may take extremely long times to be reached,
indicating that brain activity is generically (weakly) non-
ergodic.31 Memory of past activity decays sufficiently slowly
that the time it takes for two time-points to totally decorre-
late may diverge: scale separation is lost, microscopic fluctu-
ations renormalize given rise to macroscopic effects, and a
characteristic time ceases to exist.32 Moreover, correlations
are time-dependent, a phenomenon known as ageing.31,33

The dynamics is intermittent, alternating relatively laminar
and turbulent phases or avalanches,34 various aspects of
which are characterized by universal properties35 and the
respective onset of which can be used to define landmarks
within resting activity.36

The presence of these complex fluctuations has led to the
suggestion that resting brain activity operates near the critical
point of a second-order phase transition.35 Importantly, many
studies have shown that criticality is associated with optimal
information transfer37 and storage,38 communication,39,40

computational power,39 and dynamic range.41,42 However, the
neurophysiological aetiology and dynamics of critical activity
are not yet entirely clear.

STRUCTURE-DYNAMICS RELATIONSHIPS

Overall, brain dynamics can be thought of as the collec-
tive dynamics of a network of excitatory-inhibitory units,
coupled nonlinearly and with tunable strength.43 Considering
the spatial and temporal complexity and functional heteroge-
neity, the brain as a whole can be thought of as a spatially
disordered system and its dynamics as a field /ð~s; tÞ 2
U; which complex fluctuations endow with the spatio-
temporal structure fS $ <g. < can for instance be a relation-
ship between time scales fsig, which may also have some
spatial structure S with arbitrarily complex topological
properties, and its behavioural repertoire as scale-dependent
collective phenomena. The structure fS $ <g is then a
dynamical system in the space of fields U ¼ f/g, relating
representations at different scales.21

Importantly, spatial and temporal structures can interact
in a scale-dependent way.44 Once again, a statistical mechan-
ics approach to graphs can lend a hand in the representation
of such a problem. Once nodes are endowed with their own
dynamics, it is possible to distinguish between dynamics in
the network, i.e., node dynamics, and topological dynamics
on the network, i.e., the temporal evolution of the network’s
topological properties. The interdependence of these two
dynamics is a defining feature of adaptive networks such as
the brain.45,46 By gauging the interactions between these two
dynamics, it becomes possible to study how this relationship
can be related to the emergence of function in healthy brains,
normal aging, and in various pathologies. One of the major
questions is how synchronizability depends on the network
structure, particularly its topology. The significance of this
sort of analysis is better appreciated in the light of evidence
showing that non-Markov bursty dynamics can arise natu-
rally in systems with quenched heterogeneity.47 If brain
activity could be modelled as resulting from the coupling of
identical oscillators, a straightforward and elegant answer
would be provided by the master stability function.48

Unfortunately, oscillator homogeneity is not a realistic
assumption in general, and alternative ways of gauging
topology-dynamics interactions need to be devised.

It is important to appreciate that the extent to which a
given process depends on the structure of the network on
which it unfolds is a matter of relative time scales of the topol-
ogy and of the relevant dynamics. Given the complex spatial
and temporal structure of brain activity, the analysis of the
interplay between topology and dynamics in neural activity
represents a vast and still insufficiently explored field of inves-
tigation. Of interest would of course also be to understand how
function may retroact, possibly at much longer time-scales, to
optimize network topology and brain dynamics.

Anatomy and dynamics

While spatial structure S can in principle refer to both
anatomy and dynamics, considerable effort has been devoted
to understanding the role the anatomical network structure
plays in shaping dynamics. In a sense, anatomical networks
can be seen as homeomorphic to resting dynamical ones in
the limit of an infinitely slow time scale. The resting state and
task-activated dynamical networks are related by some
fluctuation-dissipation relationship,49 but the relationship
between the latter and anatomical networks appears to be
more complex. How anatomical connectivity relates to brain
dynamics has motivated several experimental and modelling
studies (see Ref. 50 for a review) but remains an open ques-
tion. At slow time scales, the correlation structure of spontane-
ous resting fluctuations has been shown to be related to the
underlying anatomical circuitry both in humans51–53 and in
monkeys.54 This has led to the suggestion that resting activity
arises from neuronal noise correlations between brain areas
that are coupled by the underlying anatomical connectivity.
At fast time scales, on the other hand, anatomy is best
regarded as a boundary condition for the dynamics, but
exactly what role it plays and at what (spatial and temporal)
scales this constraint cannot be neglected remain unclear,51,55
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and collectivity56 may in fact play a role no smaller than that
of connectivity. At these scales, there is little reason to see any
overlap between dynamical and structural networks, in much
the same way as there is no reason for the properties of infor-
mation packets in a given communication system to be iso-
morphic to the physical network within which they travel.
Indeed, dynamical networks can be described in spaces not
necessarily isomorphic to the anatomical one reflecting the
fact that the generic complexity of the phase space in (disor-
dered) spatially extended systems can only very partially be
accounted for by looking at the physical structure in which the
dynamics takes place. Furthermore, anatomical networks are
presumably optimized (with respect to a number of plausible
properties) at evolutionary time scales, whereas brain dynam-
ics need not be optimized, particularly when no hard-wired
system was developed during the course of evolution to sub-
serve a given function (e.g., in thinking or reasoning).

OVERVIEW OF THIS ISSUE

This Focus Issue proposes contributions addressing
three main issues related to brain dynamics: (1) the emer-
gence of avalanche dynamics, (2) the relationship between
anatomy and dynamics, and (3) the quantification of dynami-
cal brain connectivity.

Damicelli and colleagues57 present a paper that studies
how the emergence of modularity in structural connectivity
networks may be explained by synaptic plasticity
mechanisms. To do so, the authors assess a minimalistic
network model with excitable nodes and discrete
deterministic dynamics. In particular, the authors use a vari-
ant of the three-state cellular automaton Susceptible-
Excited-Refractory (SER) model of excitable dynamics
which is deterministic and time-discrete and relies on three
synchronous update rules. This model allowed to estimate in
silico pairwise functional connectivity as the normalized co-
activation matrix. For the structurally connected pairs, such
a matrix was used to estimate a link probability retention
(pruned links are immediately reintroduced in the network
following a randomly uniform fashion). Simulations com-
bined the SER model, and the plasticity rule was run on top
of structural connectivity networks with 100 nodes (synthetic
topologies tested included directed random graphs, scale-
free networks, and modular networks). Different network
densities ranging between 20% and 60% were considered for
the case of random graphs, 20% otherwise. Under these con-
ditions, the results indicate that a local Hebbian plasticity
rule acting on a brain network model of excitable units can
generate a global reorganization of the initial networks,
evolving them towards modular architectures, leaving their
degree-distribution unchanged. Moreover, such structural
reorganization has consequences for the network dynamics
and is associated with an increase in the correlation between
the structural and functional connectivities. Overall, the pre-
sented approach suggests that the emergence of some topo-
logical features of complex networks may be a consequence
of specific dynamical properties that govern the system.

Lombardi and colleagues58 investigate the emergence of
neuronal avalanches, i.e., cascades of activity bursts

involving a variable number of neurons and whose size dis-
tribution can be approximated by a power law. The authors
use a minimal neural network model inspired in self-
organized criticality to explain the 1/f decay of the power
spectrum associated with the neuron activity. Their minimal
model shows that this particular decay, reported in a number
of experimental studies, is only obtained when a certain per-
centage of inhibitory neurons is included in the network
(around 30%). The results hold for different network struc-
tures. This kind of power law scaling in the distribution
of avalanche sizes has been related to the existence of
long-range spatial correlations in a diversity of dynamical
systems. Furthermore, when the percentage of inhibitory
neurons is modified (or even disregarded), bimodal distribu-
tions arise, which suggests that the balance between excita-
tion and inhibition plays a crucial role in normal, non-
pathological functioning of neuronal networks.

Kanders and colleagues59 go one step beyond and inves-
tigate criticality arising in large networks of neurons using a
recurrent neural network model based on Rulkov neurons
with dynamical synapses. They obtain the Lyapunov spec-
trum for the subcritical, critical, and supercritical cases, by
using the Jacobian matrix evaluated at points along the tra-
jectory of the network’s state vector. Interestingly, they
show that avalanche criticality does not necessarily co-occur
with edge-of-chaos criticality. Rather, there are different net-
work and dynamical conditions under which avalanche criti-
cality is possible, which points to a link between avalanche
and edge-of-chaos criticality. These findings suggest that an
analysis of the dynamical state of the network should be pro-
vided together with a full analysis of the avalanche behav-
iour. In addition, their study highlights the presence of a
paradox that may be of importance for understanding the
biological network behaviour: Upon an increase in the syn-
aptic coupling, chaos may intensify in the sense of a larger
entropy production rate, while losing coherence, indicated
by a decrease in the largest Lyapunov exponent.

The approach of Battiston and colleagues60 to the under-
standing of the interplay between structural and anatomical
networks relies on the existence of anatomo-functional
motifs in the human brain. Motifs are certain subgraphs con-
taining a reduced number of nodes whose structure is over-
represented in the network when compared with equivalent
random networks. The novelty of this work is the construc-
tion of multi-layer motifs containing both the anatomical and
functional connections of the human brain, recorded using
diffusion tensor imaging (DTI) and functional magnetic reso-
nance (fMRI), respectively. The authors describe how to
classify the motifs of a multiplex network and extend motif
analysis to networks with an arbitrary number of layers. The
results reveal that subgraphs in which the presence of a phys-
ical connection between brain areas coexists with a non-
trivial positive correlation in their activities are statistically
overabundant. On the contrary, motifs containing direct ana-
tomical connections and negative correlations between brain
regions are not common. These results suggest the existence
of a reinforcement mechanism between the two layers that is
also reported by looking at how the probability of finding a
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link in one layer depends on the intensity of the connection
in the other one.

L!opez-Madrona and colleagues61 examine the interplay
between anatomical and effective networks in the hippocam-
pus. Specifically, they use a computational model of the hip-
pocampal formation to explore the capacity of linear and
nonlinear measurements of directed statistical interdepen-
dencies between simulated neurophysiological time series,
aiming to retrieve effective connections between the simu-
lated populations and draw complete functional diagrams.
Importantly, they analyse the effects of modifying the ana-
tomical connections between the different areas of the hippo-
campus, the dentate gyrus, and the entorhinal cortex. Their
results show that the causality measurements, viz., Granger
Causality (GC) and Partial Transfer Entropy (PTE), strongly
depend on the internal connectivity of the entorhinal cortex.
Surprisingly, causal links can be robustly inferred regardless
of the excitatory or inhibitory nature of the connection,
which highlights the critical importance of comprehensive
neuroanatomical information since single inhibitory connec-
tions or cortical layer interactions may drastically change the
effective information flow in the system. Finally, GC and
PTE methods are also shown to potentially lead to distinct
effective connectivity patterns, adding a higher level of com-
plexity to their interpretation.

Stramaglia and colleagues62 run a variant of the Ising
model with conserved magnetization on top of structural
connectivity networks obtained from awake and anesthetized
individuals. Spin correlations from this Ising model are com-
pared to empirical functional connectivity at both the single
edge level and the modular level. Overall, it is shown that
conservation of magnetization is associated with better cor-
respondence between the structure and function. The
structure-function relationship is strengthened under anaes-
thesia, both at the link and modular levels, when compared
to awake conditions. Moreover, at the peak of specific heat
(corresponding to the critical state), spin correlations are
minimally shaped by the underlying structural connectivity,
explaining how the highest match between the structure and
function is obtained at the onset of criticality. Altogether,
these findings suggest that brain dynamics under anaesthesia
shows a “departure” from criticality and could lead to new
perspectives for understanding emergent functional patterns
by interpreting the concept of conserved magnetization as a
homeostatic constraint on neural activity.

Sethi and colleagues63 compare mouse structural con-
nectivity to regional BOLD signal dynamics. To do so, the
authors combine the group-level Allen Mouse Brain
Connectivity Atlas as the underlying directed weighted
structural connectivity with BOLD fMRI time-series data
measured in 184 brain regions in eighteen anesthetized mice.
Instead of establishing pairwise relationships between the
structure and function of pairs of brain regions, this study
focuses on region-level features from structural connectivity
(namely, in-degree, out-degree, betweenness, and clustering
coefficient) and their association with BOLD signal dynam-
ics. After correcting for volumetric variations among
regions, significant correlations between regional properties
derived from structural connectivity and resting state fMRI

dynamics were found only when edge weights were
accounted for. Furthermore, those were associations with
variations in the autocorrelation properties of the resting
state fMRI signal. In particular, the strongest relationships
involved weighted in-degree, which was positively corre-
lated with the autocorrelation of fMRI time series at a time
lag of 34 secs, as well as a range of related measures such as
relatively high frequency power (f> 0.4 Hz). Altogether,
these results indicate that the topology of inter-regional axo-
nal connections of the mouse brain is closely related to
intrinsic, spontaneous dynamics such that regions with a
greater aggregate strength of incoming projections show lon-
ger time-scales of fluctuations in activity. Indeed, these find-
ings might lead to new ways of constraining models to
simulate brain dynamics.

Bettinardi and colleagues64 examine the relationship
between structural and resting-state functional connectivities
in the human brain by introducing a novel graph measure-
ment denominated topological similarity. The authors start
from the assumption that pairwise functional correlations do
not result from unique or single structural paths but from sig-
nal propagation through all possible paths, with a progressive
attenuation of the influence as the number of steps (i.e., path-
length) increases. Accordingly, they have developed a graph
measure, the topological similarity, which estimates the
expected cross-correlation between pairs of nodes based on
the similarity of the estimated “influences” two nodes
receive from the whole network. If two nodes receive the
same sets of inputs, then they will tend to be strongly corre-
lated. In other words, topological similarity between two
brain regions quantifies their tendency to be dynamically or
functionally coupled based on the resemblance of their
inputs with respect to the whole network. The results show
that structural connectivity shapes, to a large extent, the
time-average functional connectivity observed at rest. These
results supports that the global path structure of the underly-
ing structural network determines the contribution of the net-
work over the functional collective dynamics while
implicitly incorporates information about all other network
features such as degree distribution or modularity.

A fundamental issue of functional brain networks is the
quantification of functional links between brain regions since
they strongly determine the overall properties of the network.
Zanin and Papo65 propose the use of Granger Causality (GC)
to evaluate coordination between brain sites. For inherent
statistical reasons, causal relationships (viz., GC, transfer
entropy, and dynamic causal modelling) are usually quanti-
fied over time-windows much larger than functionally mean-
ingful time scales. However, this approximation fails to
account for the time-limited dynamical nature of brain inter-
actions, as information between brain regions is typically
transmitted in transient or intermittent bursts. To overcome
this limitation, Zanin and Papo propose an algorithm to eval-
uate GC that is capable of accounting for intermittent causal
couplings and of changing the direction in neural activity.
The algorithm calculates the causality between two brain
regions considering every possible time window and next
non-overlapping windows in which causality is stronger are
selected. Intermittent causality was shown to differentiate
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between two experimental groups (controls and alcoholic
subjects) better than causality averaged over long time-
windows. Furthermore, differences showed up more at a
local level rather than in the form of global network proper-
ties. This new methodology can potentially be applied to any
kind of brain imaging data sets, as long as the temporal reso-
lution is good enough to evaluate causality.

The way brain connectivity is quantified may not be the
only important issue. The way connectivity itself is under-
stood may be problematic. Graph metrics are defined upon
dyadic representations of brain activity. However, the extent
to which dyadic relationships can capture the brain’s com-
plex functional architecture and information encoding is
unclear. Moreover, because network representations of
global brain activity are derived from continuous response
measures, it is methodologically complex to characterize the
architecture of functional networks using traditional graph-
based approaches.66 To address these limitations, Stolz and
colleagues67 use Persistent Homology (PH), a method from
computational topology that quantifies global topological
structures and their persistence through scales. In this paper,
the authors focus on “loops” in functional networks. A loop
in a graph is a set of at least four edges that are connected in
a way that forms a topological circle. Specifically, PH is
applied to functional networks constructed from time-series
obtained with the Kuramoto model and fMRI data from
human subjects performing a simple motor-learning task in
which subjects were monitored during three days.
Interestingly, non-persistent 1-loops were reported in all
cases (Kuramoto model and fMRI), which can be interpreted
as an indicator of the emergence of functional community
structures. Moreover, changes in the 1-dimensional loops
during the motor-learning task take place after the second
day of the learning task. In particular, brain regions that yield
1-loops in the functional networks on days 2 and 3 seem to
exhibit stronger synchronization on average than those that
yield 1-loops on day 1, indicating that the PH is a suitable
tool to track the evolution of functional communities. The
interplay between PH and graph Laplacians adds possible
directions for future applications of this new approach.
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