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Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a
given layer evolves synchronously with all its replicas in other layers, irrespective of whether or
not it is synchronized with the other units of the same layer. We analytically derive the necessary
conditions for the existence and stability of such a state, and verify numerically the analytical
predictions in several cases where such a state emerges. We further inspect its robustness against a
progressive de-multiplexing of the network, and provide experimental evidence by means of
multiplexes of nonlinear electronic circuits affected by intrinsic noise and parameter mismatch.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952967]

In the last few years, partly motivated by the availability
of ever larger and more detailed datasets, the study of
real complex systems is benefiting from approaches based
on the representation of such systems as networks of sev-
eral layers interrelated between them. When the layers
are composed of the same nodes and the only inter-layer
interactions are those between the same nodes in the dif-
ferent layers, the multilayer structure is called a multi-
plex. Such a representation helps to understand, for
instance, the spreading of an epidemic process due to
social interactions occurring at different levels, like the
physical and online levels. In this work we focus on the
emergence of collective dynamical effects in multiplex
networks, specifically on the as yet unnoticed phenom-
enon of inter-layer synchronization, whereby each con-
stituent in a given layer of a system undergoes a
synchronous evolution with all its replicas in other layers,
regardless of whether or not it is synchronized with the
other units of the same layer. In particular, we derive the
conditions for the existence and stability of such a solu-
tion and inspect its robustness by means of numerical
simulations and experiments with multiplexes of nonlin-
ear electronic circuits. Our findings provide novel hints
that may be useful in elucidating fundamental questions
in regard to emerging phenomena in complex systems,
such as how biological systems can collectively organize
in a redundant way so that their effective functioning
occurs through distinct (yet synchronized) layers of
interactions.

l. INTRODUCTION

Synchronization in networked systems is one of the hot-
test topics of current research in nonlinear science.' So far,
most of the focus has been concentrated on systems where
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all the constituents are treated on an equivalent footing,
while only in the last few years the interest has moved
towards incorporating the multilayer character of real world
networks, by representing them as graphs formed by diverse
layers,3’4 which may either coexist or alternate in time.* For
instance, epidemic processes need a multilayer representa-
tion to be properly described,” and some of the classical
examples of pattern formation (like those in Refs. 6 and 7)
find a suitable description within such a formalism.®’
Moreover, the consideration of a multilayer structure
leads to interesting novel phenomena concerning the time
scales of diffusion-like processes.'® As far as dynamical
processes are concerned, the multilayer formulation
allows identifying synchronization regions that arise as a
consequence of the interplay between the layers’ topolo-
gies,'""!? assessing the stability of a global synchronous
state in a network of oscillators coupled through different
variables,'® as well as defining new types of synchroniza-
tion based on the coordination between layers.'* Several
global features have been unveiled: explosive synchroniza-
tion in multilayer networks,'”> synchronization driven by
energy transport in interconnected networks,'® intra-
layer,'”” and cluster'® synchronization in multiplex net-
works, breathing synchronization in time delayed multi-
plexes,'”” and global synchronization on interconnected
layers as in smart grids'”> or in a network of networks
configuration.?’

In this work, we consider multiplex networks, i.e., the
case where layers are made of a fixed set of nodes and con-
nections exist between each node of a layer and all its repli-
cas in the other layers, and show that a genuinely distinctive
form of synchronization emerges, namely, inter-layer syn-
chronization, occurring when each unit in each layer is
synchronized with all its replicas, regardless of whether or
not it is synchronized with the other members of its layer.
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Our results are organized as follows: (i) we analytically
derive the conditions for the existence and stability of such a
solution, (ii) we numerically verify the analytic predictions
in several cases where inter-layer synchronization emerges
with or without intra-layer synchronous behaviors, (iii) we
inspect the robustness of the new solution against a progres-
sive de-multiplexing of the structure, and (iv) we give exper-
imental evidence of inter-layer synchronization with
nonlinear electronic circuits.

Il. MODEL AND METHODS

We start by considering two layers of identical structure,
formed by N identical m dimensional dynamical systems
whose states are represented by the vectors X = {xi,
X2,...,Xy} (top layer) and Y ={y,,y,,...,yy} (bottom
layer) with x;,y,,€ R" for i =1,2,...,N, as depicted in
Fig. 1. As already mentioned, the inter-layer synchronous
state X = Y*' can be realized with or without intra-layer
synchronization. The former case (Fig. 1 left) corresponds to
all nodes in both layers following the same trajectory, and it
therefore reduces to the classical scenario of a globally syn-
chronous solution whose stability can be accounted for
by the Master Stability Function (MSF).!*? The latter case
(Fig. 1 right), instead, is far more general, as it only requires
that every node i in each layer be synchronous to its replica
in the other layer [x;(¢) = y,(¢), Vi, with unconstrained intra-
layer dynamics.

Let the dynamics (in the absence of inter-layer coupling)
be

and
v, =f(y) - Gzﬁij h(y,%
J

where f : R” — R™ and h: R” — R"™ are the autonomous
evolution and output vectorial functions, ¢ is the intra-layer
coupling strength, and £;; are the elements of the Laplacian
matrix encoding the intra-layer topology. In this setting, the
layer’s dynamical state will be, in general, different at all

..ffﬂ(t):y'(t)’ x{(t=x,(t)
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FIG. 1. Schematic representation of a multiplex of two layers of identical
oscillators, and of the two types of inter-layer synchronization: with (left)
and without (right) intra-layer synchronization. Labels ¢ and 4 denote the
intra- and inter-layer coupling strengths, respectively. Each node i (j) in the
top (bottom) layer is an m dimensional dynamical system whose state is rep-
resented by the vector X; (y)).
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times, i.e., X(#) # Y(#). Let us now consider the multiplex
structure

X =f(X) — oL @ h(X) + A[H(Y) — H(X)],

Y =f(Y) — oL @h(Y) + A[H(X) — H(Y)], M
where the inter-layer coupling is realized through the output
vectorial function H: R”™ — R"™ and the inter-layer cou-
pling strength is 4. Notice that, if the coupling between
layers is diffusive, the inter-layer synchronous state always
exists, and the manifold X(7) = Y(¢) is an invariant set what-
ever value the coupling constants may take.

Let now 0X(7) = Y(¢) — X(¢) be the vector describing the
difference between the dynamics of the two layers. Considering
a small X and expanding around the inter-layer synchronous
solution Y = X 4 6X up to first order, one obtains a set of
N x m linearized equations for the perturbations Jx;

5%; = [JR(X;) — 22JH(X;)]0x; — 0 Y LijTh(X;) 0xj,  (2)
J

where J denotes the Jacobian operator and X = {X;} is the
state of one isolated layer obeying

):5[ = f(i,) - O'Z [’ij h(ij) (3)
J

The linear equations (2), solved in parallel to the N x m
nonlinear equations (3) for X;, allow calculating all
Lyapunov exponents transverse to the manifold X =Y. The
maximum of those exponents (MLE) as a function of the
parameter pair (o, A) actually gives the necessary conditions
for the stability of the inter-layer synchronous solution:
whenever MLE < 0, perturbations transverse to the manifold
die out, and the multiplex network is said to be inter-layer
synchronizable.

In the following, the intra- and inter-layer synchroniza-
tion errors, respectively, defined as:

Einra = lim J Zux, —x,(1)||dt, 4)

1 T
Einter = hm J |0X(2)||dt, (5)

and the MLE are calculated by performing numerical simula-
tions of Egs. (1) and (2), respectively (J||| stands for the
Euclidean norm in Egs. (4) and (5)). Without lack of general-
ity, we consider two possible kinds of topologies where both
layers are either (i) Erdés-Renyi23 (ER) or (ii) scale-free**
(SF), in all cases with N =500 Rossler oscillators,25 whose
autonomous evolution is given by f(x)=[-y—z,
x+0.2y,0.2 + z(x — 9.0)]. ER and SF networks are gener-
ated by means of the procedures proposed in Refs. 23 and
24, respectively, and therefore the considered SF networks
display a degree distribution p(k) o< k3.

lll. THEORETICAL RESULTS

We start by setting h = (0,0, z) so that the correspond-
ing MSF is in class I, thus preventing the occurrence of
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intra-layer synchronization for any possible value of ¢ at
A=0. In addition, the inter-layer coupling function is taken
to be H = (0, y,0), which generates a class Il MSF at ¢ =0.
According to the classification introduced in Ref. 1, dynami-
cal systems can be classified as: (i) class I, when their MSF
is always positive, (ii) class II, when their MSF is always
negative for values higher than a given normalized coupling
threshold v, and (iii) class III, when their MSF is negative
inside an interval bounded by v, and v,, which are in that
case the two zeros of the MSF. This classification can be
adapted to layers, just by considering each of them as a
unique dynamical system with N x m dimensions. Indeed,
one can then speak of a class I, II, or III layer according to
the synchronization properties previously defined in the
framework of dynamical systems.

Results are reported in Fig. 2, where E,,, is plotted
versus A for several values of o, both for SF (a) and ER (b)
topologies. In all cases, a smooth transition from an incoher-
ent multiplex dynamics with E;,,, > 0 to an inter-layer syn-
chronous evolution where E;,,.=0 is observed, always in
the absence of intra-layer synchronization [insets in Figs.
2(a) and 2(b) show that E;,,, remains well above zero for
the whole explored range of 1]. In Fig. 2(c), the MLE for the
SF case is plotted, showing that E;,,, vanishes exactly at
the same A at which the MLE gets negative, thus confirming
the validity of the analytical approach. To gather a clearer
view on the impact of the network heterogeneity, Fig. 2(d)
reports the critical coupling A* (the value of A at the onset of
inter-layer synchronization) as a function of o, for both SF
and ER topologies, and several average degrees. As in single
layer networks, multiplexes of heterogeneous structures
require smaller coupling thresholds to sustain a stable
synchronous state. There is a non-monotonic relationship
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between the synchronization threshold and the stiffness
within each layer (as measured by o). The horizontal (verti-
cal) dashed line in Fig. 2(d) [Figs. 2(a) and 2(b)] indicates
the threshold 2* for the appearance of a synchronous state at
o =0, obtained by analyzing a pair of bidirectionally coupled
Rossler systems. More rigid layers need larger inter-layer
couplings to synchronize (as one would expect), but beyond
a certain point in the rigidity, the trend is remarkably
reversed.

While keeping H = (0,y,0), a much richer scenario
occurs in the case h = (x,0,0), where the uncoupled layers
(4=0) are of class III (intra-layer synchronization is stable
within an interval), and therefore, inter- and intra-layer
synchronization can, in principle, coexist. We make use of
an ER multiplex network of (k) = 16 to show the interplay
of both types of synchronization.?® The results are reported
in Fig. 3. In particular, the left panel shows that the predic-
tions of the MSF still guarantee an error on Ej,,;,,, of the order
of 1% (see the white contour line). This shows how intra-
layer synchronization is only mildly affected by the presence
of inter-layer couplings. The middle and right panels of
Fig. 3 report E; ., and the MLE, respectively. In both panels,
the vertical dashed line further marks the synchronization
transition point predicted by the MSF for two coupled oscil-
lators (¢ =0). Three different regions (A, B, and C) can be
identified in the parameter space: inter-layer without (region
A) and with (region B) intra-layer synchronization, and an
area (region C) where intra-layer synchronization occurs
without inter-layer synchronization. In the right panel, the
isoline (white thick curve) marks the points where the MLE
changes its sign from positive to negative, and shows that, at
intermediate values of o, inter-layer synchronization is real-
ized for values of 4 below the synchronization threshold of a

5004
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FIG. 2. Inter-layer synchronization for
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w- layers of N=500 Rossler oscillators
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function of A for several intra-layer

100 couplings ¢ (see legend in panel (c)).

(b) The same as in (a) but for multi-
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FIG. 3. Intra- and inter-layer synchronization for class-III layers. The intra- (left) and inter-layer (middle) synchronization errors (see main text for definitions),
and the MLE (right) in the (o, 4) parameter space. Color codes are shown in the upper bars. In all panels, the horizontal dashed lines mark the synchronization
threshold of each isolated layer (4 =0). In the middle and right panels, the vertical dashed line marks the synchronization threshold of a pair of nodes (¢ =0).

The white contour line in the left (right) panel is the isoline corresponding to Ejy;q = 0.01E"

max

imar, (the isoline where the MLE changes its sign from positive to

negative). See main text for the description of regions A, B, and C in the right panel. Each point is an average over 10 multiplexes realizations with (k) = 16.

pair of oscillators (vertical dashed line). A second remark-
able conclusion is that, in a multiplexed structure, inter- and
intra-layer synchronization may enhance each other.

Further insight can be gathered by exploring the robust-
ness of the inter-layer synchronous state under a progressive
de-multiplexing of the structure. In particular, the study is
performed starting from a complete multiplex, and with the
coupling scheme h = (0,0,z), H = (0,y,0) as in Fig. 2. For
both the SF and ER architectures and starting from the com-
plete multiplex, we then sequentially remove the links
between nodes and their corresponding replicas, until the
two layers become uncoupled. In Fig. 4, E;,,., is reported as
a function of the actual number of multiplexed nodes, from
N to 0, with a disconnecting mechanism following either a
random sequence or the increasing/decreasing degree rank-
ing. Robustness is critically dependent on the balance
between the inter- and intra-layer couplings. At relatively
low and balanced couplings (left panel), E;,,., grows as soon
as the first pair of replica nodes is disconnected, and almost
at the same rate regardless on the node sequence. A radically
different situation occurs when the intra-layer coupling con-
siderably exceeds the inter-layer one (right panel): inter-
layer synchronization persists even if a large fraction of
nodes are de-multiplexed. Furthermore, multiplexes with ho-
mogeneous structured layers (void symbols) are less robust
than those formed by SF layers (solid symbols), and engi-
neering a multiplex with synchronous layers is actually tan-
tamount to coupling just a fraction of the largest degree
nodes in each layer. This behavior holds even when the hubs
of the SF multiplex are sequentially disconnected [see

squares of Fig. 4(b)]. Notice indeed that, in analogy with
what reported for network’s ta.rgeting,]4 only 25 (110) of the
largest degree nodes maintain E;,,,.=0 in SF (ER) multi-
plexes of size N = 500.

IV. EXPERIMENTAL VALIDATION

Finally, we report experimental evidence of inter-layer
synchronization in nonlinear electronic circuits, with the setup
sketched in Fig. 5(a). The experiment consists of an electronic
array, a personal computer (PC), 14 analog to digital convert-
ers (ADCs), and 4 digital outputs (DOs) ports from a multi-
functional data acquisition (DAQ) card controlled by Labview.
The ADCs are used for sampling one of the state variable out
of all the networked circuits, and the DOs are used as control-
lers for the gain of the two coupling strengths ¢ and 4. The
array is made of 14 Rossler-like circuits arranged in two identi-
cal layers (blue nodes), each one of them having two different
electronic couplers, one for the coupling among nodes in the
same layer (o) and the second for the interaction of each node
with its replica in the other layer (4).

The chaotic dynamics of the circuits is well approxi-
mated by

dx,- N
— = o |+ Byi+ Tzi) — oWy agpg — x| |,

(6a)

+(1=0)y), (6b)

=l = —062(—“/?(1‘

inter

0
500

0
500

300 100
multiplexed nodes

300
multiplexed nodes

FIG. 4. Robustness of the inter-layer
synchronization. E;,,, vs. the number
of multiplexed nodes for ER (void
symbols) and SF (solid symbols) con-
figurations. From a full multiplex,
nodes are progressively disconnected
following a random (blue circles), and
a decreasing (red squares) or increas-
ing degree (teal triangles) sequence.
Inter-layer coupling is 42 =0.1 and
intra-layer coupling values are (a)
100 o =0.1, and (b) ¢ = 1.0. Points are

averages over 20 network realizations,
with (k) = 8.
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FIG. 5. Experimental evidence of inter-layer synchronization. (a)
Experimental setup. The left image is a sketch of the coupling topology of
the 14 electronic circuits composing the multiplex network (see main text for
the description of the experimental procedure used). The whole experiment is
controlled from a PC with Labview Software. (b) and (c) Color maps of E;,,,
(log scale) in the parameter space (o, 4) (top panels) and for three specific o
values (bottom panels, color codes in the legend) calculated experimentally
(b) and via numerical simulations (c). Insets show the corresponding values
of E;,.ie- In panel (c), the MLE is also reported as a separate inset.

dz;
72t = —u3(—Gy, +z), (6¢0)
o o ifx; <3 .
a ulx—3), ifx; >3,

where ¢ is the tunable intra-layer coupling strength and the
rest of parameter values are gathered in Table I. The reader
is referred to Ref. 27 for a detailed description of the experi-
mental implementation of the Rossler like circuit in
networks, and Refs. 20 and 28 for previous realizations in
different network configurations. Both the intra- and inter-
layer couplings are realized through the x variable.

The coupling is adjusted using two digital potentiome-
ters X9C104, whose parameters C,/; (up/down resistance)
and C,, (increment of the resistance at each step) are

TABLE I. Parameter values of the chaotic dynamics of one Rosller like cir-
cuit as described in Eq. (6).

o = 106.3830 o = 42.5532 o3 = 2127.7
B=10 =20 y=50
o=10 u=15 V=20
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controlled by digital signals coming from a DAQ Card, P0.0-
P0.3. The outputs of the circuit are sent to a set of voltage
followers that act as a buffer, and then to the analog ports
(AIO-AI13) of the same DAQ Card. At each ¢ value (starting
from ¢ =0), / is initially set to zero, and then the polariza-
tion voltage of the circuits is turned off and on, after a wait-
ing time of 500 ms. The signals corresponding to the x state
variables of the 14 circuits are acquired by the analog ports
AIO-AI13 and saved in the PC for further analysis. 4 is then
incremented by one step, and the procedure is repeated 100
times (until the maximum value of A is reached). When the
entire run is finished, o is increased by one step, and another
cycle of A values is initiated.

The experimental (Fig. 5(b)) and numerical (Fig. 5(c))
results for E;,,,., and E;,;,,, are in very good agreement for the
entire parameter space (o, 4), indicating that our analytical
predictions actually apply also for slightly nonidentical
systems, as the electronic circuits contain resistors and
capacitors of 1% and 10% tolerance, respectively, causing a
small deviation with respect to the synchronization region
predicted by the MSF approach.?®

V. CONCLUSION

In conclusion, we provided a full characterization of
inter-layer synchronization, a novel and distinctive dynami-
cal phenomenon occurring in multiplex networks of identical
layers, in terms of its stability conditions, its relation to
intra-layer synchronization and network topology, and its
robustness under partial de-multiplexing of the network. We
further reproduced it experimentally for slightly nonidentical
systems, indicating that the phenomenon is robust enough
to be observable in the presence of noise and parameter
mismatch. Our results, therefore, suggest the way of unveil-
ing the new dynamics in a variety of multiplexed real world
systems.

Our MSF approach strictly requires that the synchroni-
zation manifold exists as an invariant solution. In its turn,
this implies the requirement that the coupled layers in the
multiplex need to be identical. Therefore, we were forced to
explicitly require identical structures of connectivity in the
two layers as the very essential condition for developing our
treatment, a framework where the Laplacians of the two
layers are not identical proving so far analytically intracta-
ble. Previous experience in the study of synchronization in
simple (i.e., one-layer) networks indicates that predictions
based on the MSF approach turn out to be valid (to very
good approximation) also when the coupled systems differ
moderately. Evidently, a rigorous approach should be aban-
doned in such a case, and one should rely on some kind of
(reasonable) approximations. Future work in this direction is
underway in order to extend the scope of our research to
more realistic scenarios.
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