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Synchronization of intermittent behavior in ensembles of multistable dynamical systems
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We propose a methodology to analyze synchronization in an ensemble of diffusively coupled multistable
systems. First, we study how two bidirectionally coupled multistable oscillators synchronize and demonstrate
the high complexity of the basins of attraction of coexisting synchronous states. Then, we propose the use of the
master stability function (MSF) for multistable systems to describe synchronizability, even during intermittent
behavior, of a network of multistable oscillators, regardless of both the number of coupled oscillators and the
interaction structure. In particular, we show that a network of multistable elements is synchronizable for a given
range of topology spectra and coupling strengths, irrespective of specific attractor dynamics to which different
oscillators are locked, and even in the presence of intermittency. Finally, we experimentally demonstrate the
feasibility and robustness of the MSF approach with a network of multistable electronic circuits.
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I. INTRODUCTION

During the past two decades, great progress has been made
in understanding synchronization of chaotic systems [1,2].
Nevertheless, synchrony in dissipative dynamical systems with
coexisting attractors remains relatively unexplored and poorly
understood to this very day. This relative lack of activity is hard
to reconcile with the fact that multistability has been observed
in numerous nonlinear systems in many fields of science, such
as laser physics [3], neuroscience [4,5], cardiac dynamics [6],
genetics [7,8], cell signaling [9], and ecology [10], among
others, as well as in situations in which synchronization is
actually a collective behavior known to play a primary role.
Even forms of extreme multistability, i.e., the coexistence of
infinitely many attractors in phase space, have been recently
observed in experiments [11]. Many of these results as well as
some known coupling mechanisms and dynamical phenomena
that seem to be correlated to the emergence of multistability
are reviewed in [12].

The dynamics of two unidirectionally coupled systems
(master-slave configuration) of Rössler-like [13,14], Duffing
[15], and Rössler-Lorenz [16] oscillators, as well as Hénon
maps [17], have been studied, and some experiments along
these lines have been carried out [18]. Bidirectionally coupled
neuronal models [19] also display very rich synchronous
dynamics. One of the most prominent features of all these
examples is the intricate dependence of synchronization on
the initial conditions, a distinct feature of multistable systems
that is nowhere to be found in monostable systems. Phenomena
such as anticipated intermittent phase synchronization, period-
doubling synchronization, and intermittent switches between
coexisting type-I and on-off intermittencies have been discov-

ered [14,18]. On the other hand, even though the existence
and stability of multistable synchronous solutions in locally
coupled Kuramoto models have been studied [20–22], to our
knowledge the issue of under what conditions synchronization
of more than two coupled generic (and possibly chaotic)
multistable oscillators is guaranteed has not been addressed
yet. Furthermore, synchronization of multistable systems in
the presence of intermittency still remains an unexplored
problem.

In this paper, we propose a methodology for studying the
synchronization of multistable oscillators, which we illustrate
with the example of a bistable system that has the great
advantage of being experimentally implemented in electronic
circuits. First, we demonstrate the high complexity of the
basins of attraction of coexisting states in a solitary bistable
oscillator, and the increasing complexity when two of such
oscillators interact with each other giving rise to intermittency.
Second, we investigate the influence of both the initial
conditions and the coupling strength on the synchronization
of two bidirectionally coupled bistable systems (with diffusive
coupling) in different coexisting synchronous states, including
the existence of intermittency. Then, we discuss the master
stability function (MSF) [23] approach to the study of
the stability of a synchronization manifold of N coupled
multistable systems. Specifically, we obtain the MSF for
different coexisting chaotic attractors in a dynamical system
separately, and then we evaluate how the modification of
the coupling parameter allows the system to leave/enter a
particular synchronization regime associated with a particular
attractor without loss of synchrony in the whole network,
even in the presence of intermittency. Finally, we check
the robustness of our theoretical predictions with electronic

1539-3755/2015/91(3)/032902(9) 032902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.032902


R. SEVILLA-ESCOBOZA et al. PHYSICAL REVIEW E 91, 032902 (2015)

circuits to show the validity of our results for real systems
where a certain parameter mismatch always exists.

II. CHARACTERIZATION OF THE SYSTEM IN TERMS OF
ATTRACTORS AND THEIR BASINS OF ATTRACTION

The main aim of our work is to develop a methodology
that adequately predicts synchronizability in ensembles of
bidirectionally coupled multistable systems. Toward that
end, we choose the piecewise linear Rössler oscillator as a
paradigmatic example of a bistable system with two coexisting
chaotic attractors [18]. When a unidirectional coupling is
introduced, the coupled Rössler-like system exhibits very
rich dynamics, including such phenomena as intermittency,
frequency-shifting, and frequency-locking [13]. Nevertheless,
little is known about synchronization scenarios for ensembles
of bidirectionally coupled multistable systems, despite the fact
that bidirectional coupling itself can lead to the emergence of
multiple attractors [24].

Specifically, the equations describing the dynamics of the
Rössler-like oscillators are [13]

ẋ = −α1(x + βy + �z),

ẏ = −α2(−γ x − [1 − δ]y), (1)

ż = −α3[−g(x) + z],

with

g(x) =
{

0, x � 3,

μ(x − 3), x > 3,
(2)

where x, y, and z are the state variables. The piecewise linear
function g(x) introduces the nonlinearity in the system that
leads to a chaotic behavior. The parameter values are α1 = 500,
α2 = 200, α3 = 10 000, β = 10, � = 20, γ = 50, δ = 15.625,
and μ = 15. For this parameter choice, the system is known
to be a bistable chaotic system (i.e., the phase portrait displays
two different chaotic attractors), as previously reported in [18].
Unlike most previously studied multistable systems (see, e.g.,
[16]), this system exhibits multistability in the autonomous
evolution, without the need for chaotic driving. Moreover, this
system can be implemented in electronic circuits to experi-
mentally assess the validity of the theoretical predictions.

From any arbitrary initial condition within a bounded region
in phase space, the system rapidly converges to one of the two
chaotic attractors shown in Fig. 1(a). We denote the larger
attractor by L [Fig. 1(a), blue (dark gray)] and the smaller one
by S [Fig. 1(a), red (gray)]. The basins of attraction of L [blue
(dark gray)] and S [red (gray)] are shown in Fig. 1(b) for initial
conditions x(0) ≡ (x(0),y(0),z(0)) such that x(0) ∈ [−4,6],
y(0) ∈ [−8,4], and z(0) = 0. The basin of attraction of L

is seen to be much larger than the basin of S. Two spirals
are clearly visible, where initial conditions leading to one
or the other attractor seem to be intertwined. Each of these
spirals has a fixed point of the system as its focus, as has
been previously reported in [14]. In Fig. 1(c) we focus on
x(0) ∈ [−1,1], y(0) ∈ [−1,1] to better appreciate the details
of the spiral that has its center in the origin. Indeed, the mixing
of initial conditions close to the center of the spiral seems to
be present at arbitrarily low space scales, as the zoom around
x(0) ∈ [−0.1,0.1], y(0) ∈ [−0.1,0.1] in Fig. 1(d) shows. We

FIG. 1. (Color online) Coexisting attractors and their basins of
attraction in the Rössler-like oscillator [Eq. (1)]. (a) Large [L, blue
(dark gray)] and small [S, red (gray)] attractors. (b) Basins of
attraction for L (blue) and S (red) in the z = 0 plane. Initial conditions
leading to unstable trajectories appear in white. (c) Basins of attraction
for L and S, [−1,1] × [−1,1] square in the z = 0 plane. (d) Basins of
attraction for L and S, [−0.1,0.1] × [−0.1,0.1] square in the z = 0
plane.

have checked that this structure is preserved for another four
orders of magnitude, with no end in sight for even lower
space scales. Indeed, this is not altogether surprising, as basins
that are interwoven in a complicated fashion and fractal basin
boundaries feature prominently in the phase portraits of many
multistable systems (see [25] for a review of fractal basin
boundaries and fractal sets in nonlinear dynamics in general).
Although the precise characterization of these boundaries is
outside the scope of this paper, we would like to stress how
difficult it is to control the asymptotic dynamics of just one
single oscillator under the presence of noise or uncertainties for
initial conditions starting in certain regions of the phase space.

III. TWO BIDIRECTIONALLY COUPLED SYSTEMS:
COEXISTING REGIMES

To start our study on the synchronization of bidirectionally
coupled multistable systems, we first consider the simple case
of two coupled Rössler-like oscillators. This particular system
has been thoroughly analyzed for the case of a master-slave
configuration [13,14,18]. Here, we investigate bidirectionally
coupled multistable chaotic systems, and also the coupling is
diffusive. The coupling is introduced through the x variable
with coupling strength σ so that the equations of motion
become

ẋ1,2 = −α1[x1,2 + βy1,2 + �z1,2 − σψ(x2,1 − x1,2)],

ẏ1,2 = −α2(−γ x1,2 − [1 − δ]y1,2), (3)

ż1,2 = −α3[−g(x1,2) + z1,2],

where ψ = 20 and g(x) is given by Eq. (2). Our
numerical simulations show the existence of four possible
asymptotic regimes: (a) both systems end up in an attractor
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FIG. 2. (Color online) Basins of attraction of the system compris-
ing two bidirectionally coupled Rössler-like oscillators for different
coupling strengths σ . The coupling strengths are (a) σ = 0 (uncou-
pled systems), (b) σ = 0.06, (c) σ = 0.14, and (d) σ = 0.20.

indistinguishable from L (from now on, LL), (b) both systems
end up in an attractor indistinguishable from S (SS), (c) one
system asymptotes to L and the other to S (SL), and (d) the
systems switch intermittently back and forth between L and
S in an irregular way (I ) (the intermittent behavior of these
systems in master-slave configurations is described in [18]).

As the coupling strength σ is increased from 0 to 0.2, all
these cases appear, disappear, and mix in a very complicated
manner, depending on the initial conditions. In Fig. 2, we
show the basins of attraction for these asymptotic regimes that
result from fixing y1(0) = y2(0) = 0 and z1(0) = z2(0) = 0,
and exploring a finely discretized grid for x1,2(0) ∈ [−4,4]
for four representative coupling strengths, σ = 0, 0.05, 0.14,
and 0.2. For moderately larger σ , the basins remain relatively
stable, while the phase-space projections of the full attractor
on the subspace corresponding to each of the two subsystems
display only very slight deformations with respect to the
original L and S seen for σ = 0.

For better visualization of the prevalence of the different
asymptotic regimes for different values of σ , Fig. 3(a)
shows the fraction of the initial conditions considered, which
eventually lead to every possible asymptotic regime, as a
function of the coupling strength. As expected from Fig. 2,
Fig. 3(a) shows that for small σ most of the initial conditions
lead to the intermittent behavior [Fig. 2(b)], whereas stronger
coupling leads first to the emergence of SS [Fig. 2(c)] and
later to the emergence of LL together with a vanishing
of intermittent behavior I . For large σ , only LL and SS

are observed [Fig. 2(d)]. Interestingly, the SL case is never
observed for nonzero σ , so that we do not consider it anymore.

IV. TWO BIDIRECTIONALLY COUPLED SYSTEMS:
SYNCHRONIZATION OF DIFFERENT REGIMES

Having seen the different possible asymptotic regimes and
their basins of attraction, we move on to study the synchro-
nization of two bidirectionally coupled systems. Instead of

FIG. 3. (Color online) Relative size of the basins for each at-
tractor, synchronization error, largest, and second largest Lyapunov
exponents of the full system as a function of σ . (a) Relative size of
the basins of attraction of the full system, (b) synchronization error
(inset: zoomed part of the plot), (c) largest Lyapunov exponent, and
(d) second largest Lyapunov exponent.

focusing on individual trajectories, we average the results
across all initial conditions leading to one of the considered
cases (LL, SS, or I ). First, we calculate the synchronization
error [Fig. 3(b)] for each of the different asymptotic regimes. In
this way, we observe how synchronization is first achieved for
the SS, red (gray) triangles, case around σ � 0.075, and for the
LL, black (dark gray) diamonds, case only for σ � 0.165. As
for the I , green (light gray) squares case, the synchronization
depends on the coupling in a more complex, nonmonotonic
manner, which in some way reflects the synchronization
patterns of SS and LL. As the system becomes more and more
synchronized and therefore the influence of one subsystem
on the other becomes weaker, I fades away. The transition
to synchronization in this regime is consistent with the
observation made in [15], as it passes through two stages:
first, the two oscillators move to the same attractor due to
the increasing coupling, and second, as the coupling further
increases, they gradually synchronize (just as monostable
coupled oscillators do).

A different view on the emergence of synchronization is
provided by the analysis of the Lyapunov spectrum. Figure 3(c)
shows the largest Lyapunov exponent as a function of σ for
different asymptotic regimes. The dotted lines show the largest
Lyapunov exponents corresponding to the attractors L and
S for the solitary (uncoupled) system. In the I regime, the
value of the Lyapunov exponent is clearly correlated with
the presence of LL and SS windows, a phenomenon that
will be elucidated below. However, from the synchronization
point of view, the most important information derived from
the Lyapunov spectrum concerns the second largest Lyapunov
exponent, which gives indirect information on the existence
of the weakest forms of synchronization, such as generalized
synchronization (GS) (see, for instance, the discussion in [26]).
As seen in Fig. 3(d), two points, highlighted as σSS and σLL,
corresponding to the loss of the positive Lyapunov exponent in
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FIG. 4. (Color online) Fraction of time and synchronization error
in the I regime for different time windows as a function of σ . (a)
Fraction of the time spent by the system in ss, ll, and sl windows;
(b) I synchronization error restricted to ll and ss time windows.

the system, mark the starting point of the existence of just one
chaotic mode in the system, and therefore the onset of GS for
SS and LL, respectively. Also, I seems to reach GS, but as we
will see, I is a very sophisticated regime, with frequent jumps
between time windows, where both oscillators are in the same
attractor, and time windows, where each oscillator is in a dif-
ferent attractor. Time averages across very long time windows
(such as those used in the calculation of the synchronization
error or Lyapunov exponents) fail to capture these sorts of
details, so we presently conclude this section with a brief
study of this regime to illustrate just how complex it can be.

We now focus on the dynamics of the coupled system
in the I regime and measure the fraction of time spent by
both subsystems simultaneously in the S state (denoted as ss),
the L state (ll), and when each subsystem follows a different
dynamics (sl). Figure 4(a) shows the fraction of time that the
system spends in the I regime in ss [red (gray) triangles],
ll [green (light gray) squares], and sl [black (dark gray)
diamonds] time windows, which bears an obvious relation
to the results shown in Fig. 3(c). Another important issue
is the lack of complete synchronization in I even for very
high σ . To examine this problem in more detail, we now
compute the synchronization error separately for the ss and
ll time windows. We do not consider the sl case because
by definition complete synchronization is not possible in
these time windows. In Fig. 4(b), the synchronization error
reveals that for σ > 0.075 the I regime contains completely
synchronized ss time windows, while the ll time windows
show a clear lack of synchronization. It is difficult to ascertain
whether the mild growth in the synchronization error of ss

for σ > 0.10 is indeed a loss of synchronization or has to do
with the difficulties associated with the classification of time
windows into ss, ll, and sl [27]. In the next section, we will
present a straightforward way to understand the conditions
under which synchronization is possible in an ensemble
of multistable dynamical systems even in the presence of
intermittent regimes such as the one we just described.

V. MASTER STABILITY FUNCTION OF MULTISTABLE
DYNAMICAL SYSTEMS

Up to now, we have seen how complex the basins of
attraction of the bistable oscillators are, and how they become
much more complex as soon as two oscillators interact, with
the development of new phenomena such as intermittency,

that makes synchronization predictions very difficult and ex-
tremely dependent on initial conditions. Whenever multistable
oscillators are coupled in a large ensemble, we expect the
dynamics to become even more complex, and the problems
associated with the study and control of synchronization
become even more serious. To measure the synchronization
stability of ensembles of coupled multistable oscillators, we
resort to the MSF approach of Pecora and Carroll [23].
The MSF curve is given by the maximum of the Lyapunov
exponents transverse to the synchronization manifold. In
the past 15 years, the MSF approach has found important
applications in the study of networks of monostable systems
(see, e.g., [28]), however, as far as we know, it has never been
extended to the case of systems with coexisting attractors.

While the MSF describes the linear stability of the
synchronous motion for a given attractor dynamics, in the
presence of multistability one should rather look at the MSF
of each attractor separately. In Fig. 5(a), we show the MSFs
corresponding to both S [red (gray) continuous line] and L

FIG. 5. (Color online) MSFs for the coexisting attractors for two
types of coupling, and variability with respect to uncertainties in the
parameters. (a) MSF of S, red (gray) continuous line and L, blue
(dark gray) dashed line for oscillators coupled through the x variable
(class III system); inset: variability of the first zero crossing as the
parameters are affected by uncertainties (see Sec. VI for a detailed
explanation). (b) MSF of S (red continuous line) and L (blue dashed
line) for oscillators coupled through the y variable (class II system);
inset: variability of the zero crossing as the parameters are affected
by uncertainties.
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[blue (dark gray) dashed line] for the Rössler-like system
with diffusive coupling through the x variable as in Eq. (3).
The independent variable ν is a parameter that implicitly
takes into account infinitely many network topologies and
coupling strengths, as it stands for the product of a given
coupling strength σ and a graph Laplacian eigenvalue (for each
eigenmode transversal to the synchronization manifold, there
is one such eigenvalue, and there are N − 1 of them for a fully
connected network of size N ). According to the classification
proposed in [28], this system belongs to the class III systems,
as the region of stable synchronization is bounded between two
MSF zeros. Interestingly, Fig. 5 also shows that the stability
region of L is contained in that of S. The interplay between
the two stability regions (S and L) given by the MSFs explains
how the synchronized state is maintained (or lost) in one of the
three possible scenarios, SS, LL, and I . There are therefore
three possibilities for a given σ and a given eigenmode of
the topology (i.e., for a given ν ≡ σλ, where λ is the specific
eigenvalue of the network’s Laplacian matrix that corresponds
to the considered eigenmode): (a) neither S nor L can be
synchronized (i.e., the value of the MSFs of both S and L

are positive for such ν), (b) S can be synchronized, but not L

(i.e., the MSF is negative for S, but positive for L), and (c)
both S and L can be synchronized (both values of the MSFs
are negative). While (b) only guarantees the synchronization
stability in the SS regime, (c) is tantamount to saying that
synchronization is stable no matter how complex the dynamics
may be, even in the presence of intermittency. Therefore, if
the product of each of the eigenmodes for a given topology
and σ is within the region described by (c), synchronization
is stable. Analogous arguments can be used in systems with
an arbitrarily large number of attractors, provided the stability
regions of the different attractors are not disjoint.

Figure 5(b) shows the MSFs corresponding to the two
coexisting attractors when the oscillators are coupled through
the y variable. In this case, the system belongs to class II,
i.e., the stability region starts at a given ν and then extends
indefinitely to the right. Again, for this particular system the
stability region of L is contained in that of S. Choosing σ

high enough (or changing suitably the topology for a given
σ ) in such a way that all eigenmodes are in the region lying
to the right of the MSF zero for L guarantees the stability of
synchronous dynamics on any attractor, even in the presence
of intermittency. Below we will dwell upon the contents of the
insets in Figs. 5(a) and 5(b).

VI. EXPERIMENTAL IMPLEMENTATION

The MSF approach determines the stability of the synchro-
nization manifold but does not give information about how
large the stability basin of the system is. Nevertheless, in real
systems, the size of the stability basin of the synchronized
manifold plays a fundamental role in the observation of
synchronization, especially when external perturbations are
applied (see [29] for a detailed description of how to evaluate
a stability basin). In this section, we compare our theoretical
predictions given by applying the MSF approach to multistable
systems with experimental results in order to illustrate the
robustness under the presence of noise and parameter mis-
matches, and we verify their validity even when the noise and

FIG. 6. (Color online) Experimental setup. On the left, a
schematic representation of the coupling topology of the six-circuit
network. The coupling is adjusted by a digital potentiometer X9C104,
whose parameters Cu/d (up/down resistance) and Cstep (increment of
the resistance at each step) are controlled by a digital signal coming
from a DAQ card, P0.0–P0.1 respectively. The outputs of the circuit
are sent to a set of voltage followers that act as a buffer, and then sent
to the analog ports (AI 0; AI 1; . . . ; AI 5) of the same DAQ card. The
whole experiment is controlled by a PC using LABVIEW software.

the coupling of nonidentical systems bring the system quite
far away from the synchronization manifold.

The experimental design is based on a six-node network of
piecewise Rössler-like electronic circuits coupled according
to the topology shown in Fig. 6, i.e., following a spiderweb
network topology with a central node connected to all other
nodes, and each of the five peripheral nodes connected to
their two spatial neighbors. Other network configurations,
with an arbitrary number of oscillators, are also possible,
the only limitation being the number of available electronic
components. The circuits are the experimental implementation
of the dynamical system given by Eq. (1) (see [18] for a detailed
description of the experimental realization of the Rössler-like
oscillator, and [30,31] for previous realizations in network
configurations). As in the evaluation of the MSFs illustrated in
Fig. 5, we consider the system coupled through the x and then
through the y variable, the cases being paradigmatic examples
of class III and class II systems, respectively.

The experimental setup shown in Fig. 6 consists of an
electronic array (EA), a multifunction data card (DAQ), and
a personal computer (PC). The EA comprises six Rössler-
like electronic circuits forming the spiderweb network with
one central node and five peripheral nodes. Each node
has an individual electronic coupler controlled by a digital
potentiometer (XDCP), which is adjusted by a digital output
signal (DO) coming from ports P0.0 and P0.1. Port P0.0 is
used to set the value of the coupling resistance (adequately
scaled to correspond to the values of σ ), and P0.1 increases
or decreases the value of the resistance through a voltage
divisor (the resolution allowing for 100 discretized steps). The
full experimental process is controlled with a virtual interface
developed in LABVIEW 8.5, which can be considered as a state
machine. The experimental procedure is realized as follows.
First, σ is set to zero. After a waiting time of 500 ms (roughly
corresponding to 600 cycles of the autonomous systems), the
output signals from the six circuits are acquired by the analog
ports (AI 0; AI 1; . . . ; AI 5). Once the dynamics of the whole
ensemble is recorded, the value of σ is increased by one step,
and the signals are again stored in the PC for further analysis.
This process is repeated until the maximum value of σ is
reached.
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FIG. 7. (Color online) Experimental results: synchronization er-
ror as a function of the coupling strength. (a) Synchronization error
(see the main text for a definition) for a network of oscillators coupled
through the x variable (class III system) for a whole time series
T [blue (dark gray), middle curves], time windows ss where all
oscillators exhibit S dynamics [red (gray) lower curves], and time
windows ll where all oscillators have L dynamics [green (light
gray) upper curves]. Insets: the curves zoomed around the smallest
synchronization error achieved in the system, the results obtained
from all 10 individual realizations (dotted lines) superimposed on the
averages (continuous lines). (b) Analogous curves for a network of
oscillators coupled through the y variable (class II system).

Figure 7 shows the synchronization error of the whole net-
work calculated as 2

N(N−1)

∑
i<j |xi − xj |, where the normal-

izing factor corresponds to the total number of oscillator pairs
in the network. We repeat the experiment from 10 different
initial conditions and compute the average synchronization
error across the realizations. Whatever the initial condition, the
six-oscillator network exhibits strongly intermittent dynamics,
which manifests itself by intermittent switches between S

and L in every oscillator node. Therefore, we compute the
synchronization error in three different ways: (i) the total
error of the whole time series regardless of visited states, T

[blue (dark gray) dashed line], (ii) the error during the time
windows where all oscillators exhibit S dynamics [red (gray)
dash-dotted line], and (iii) the error during time windows,
where all oscillators represent L dynamics [green (light gray)
continuous line]. The synchronization errors for these three
cases when the coupling is introduced through the x variable
are shown in Fig. 7(a). In the topology under study, the
ratio of the largest to the smallest nonzero eigenvalue of the

Laplacian matrix is λN/λ2 = 2.519, which is smaller than the
ratio of the largest to the smallest zeros of the MSF of L,
ν2/ν1 = 3.97 (and obviously smaller than the conspicuously
larger analogous ratio for S). There is thus a range of values of
the coupling strength σ for which all eigenmodes are predicted
to be in the stability region (i.e., σλ2 > ν1 and σλN < ν2 hold
simultaneously), and the system is synchronizable. Indeed,
we observe that, when σ increases, complete synchronization
of the whole network is achieved around σ = 0.165 [32].
The experimental system becomes unstable (the oscillations
suddenly disappear and the system reaches a fixed point)
above σ � 0.25, so our results are most relevant in relation
to the eigenmode corresponding to λ2 and the crossing of
the first MSF zero (given the λN/λ2 ratio, at the time this
eigenmode crosses only slightly the stability region, the other
eigenmodes are guaranteed to be stable). Figure 7(b) shows
the same results for the case of y coupling. In this case, the
system is indeed class II, so again we focus on the crossing of
the eigenmode corresponding to λ2 beyond the (only) zero of
the MSF. The network reaches synchronization for σ > 0.0435
and does not leave the synchronized manifold for larger values
of the coupling strength, as predicted by the MSF.

At this point, it is interesting to analyze the influence of
the parameter mismatch on the emergence of synchronization.
First, we study the effect of parameter uncertainties in the

FIG. 8. (Color online) Experimental results: fraction of time that
the intermittent system spends in ss, red (gray) triangles, ll, green
(light gray) squares, and sl, black (dark gray) diamonds time windows
as a function of σ . (a) Network coupled through the x variable and
(b) network coupled through the y variable. The results confirm
qualitatively the numerically predicted behavior shown in Fig. 4.
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MSFs. All parameters in our system [α1, α2, α3, β, �, γ , δ, and
μ in Eq. (1)] are resistances, capacitances, and products thereof
(see [18] for the details). The insets of Fig. 5 show the effect
of the uncertainties in these parameters (taking the resistor
tolerance to be 1% and the capacitor tolerance to be 10%) on
50 realizations for each possible case [x coupling for S and L

in panel (a), and y coupling for S and L in panel (b)]. We zoom
around the first zero of each MSF, as this is the most relevant
region for the comparison with experiment. Deviations from
the noiseless case of the order of 20% or higher are frequently
seen. Nevertheless, the MSFs for S and L do not overlap
despite the parameter fluctuations and therefore are easily
distinguishable. This is in good qualitative agreement with our
experiments. The insets of Figs. 7(a) and 7(b) show the results
zoomed around the transition to the synchronized regime,
indicating the values of the 10 individual realizations and their
corresponding average, showing a relatively small variability
that qualitatively agrees with our numerical predictions on the
effects of a parameter mismatch as shown in Fig. 5.

Finally, Fig. 8 shows the fraction of time that the inter-
mittent I system spends in ss [red (gray) triangles], ll [green
(light gray) squares], and sl [black (dark gray) diamonds] time
windows. One can see the qualitative agreement with the case
of two coupled oscillators shown in Fig. 4(a).

VII. CONCLUSIONS

We have shown how the MSF approach can be used for
the analysis of synchronization in ensembles of multistable
chaotic systems. To introduce our methodology, we have
used a Rössler-like oscillator with two coexisting chaotic
attractors. The existence of interwoven basins of attraction
hinders the prediction of the system’s asymptotic behavior in
the presence of noise or parameter uncertainties. Under this
framework, we have analyzed the synchronization regimes of
two bidirectionally coupled chaotic oscillators and showed
the enormous complexity of the basins of attraction leading
to diverse dynamics of the whole system, as well as the fact
that the coexisting attractors became synchronized at different
coupling strengths, manifesting various synchronization types
for a given coupling strength. After that, we have proposed
the use of the MSF arguments for multistable systems,
which provided information on synchronizability of a given
network of multistable oscillators. Specifically, the MSF shows
under what conditions a network of multistable systems
can synchronize for a given range of topology spectra and
coupling strengths, whatever might be the attractor dynamics
to which different oscillators become locked in the presence
of intermittency. Even though in this work we have focused
on chaotic dynamics, it is important to point out that our
approach, as based on a MSF reasoning, can also be used to
study synchronization of multistable periodic systems (a MSF
approach to monostable periodic, as well as chaotic, dynamics
appears, for example, in [33]). Finally, we have experimentally
demonstrated the feasibility of the MSF approach with a
network of oscillating circuits in a heavily intermittent regime,
and we showed that the predictions, as in the case of
monostable systems, affected by small uncertainties, were
nonetheless very useful from a qualitative point of view,

showing the robustness of the proposed methodology to noise
and parameter mismatch.

The proposed methodology is of special interest for a
stability analysis of synchronization in multistable systems
during intermittency, since any monostable approach to syn-
chronization is bound to fail in that regime, and knowing the
coupling strength or the topological modifications required
to maintain complete synchronization under any possible
attractor dynamics is especially useful in that scenario. The
MSF arguments in the context of multistable systems provide
a generic tool to understand complete synchronization of real
multistable systems such as those occurring in laser physics
[3], genetics [8], or cell signaling [9].
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APPENDIX: COMPUTATION OF LYAPUNOV EXPONENTS

The computation of Lyapunov exponents of coupled
Rössler-like systems throughout this paper has been performed
using the well-established method first proposed and justified
theoretically in Ref. [34]. The reader may, however, raise
the objection that the equations of motion of the system
under study are given by a nonsmooth vector field, whose
first derivative presents a discontinuity, and therefore the
validity of our results is not clear at this point. Indeed, the
equation of motion for the z variable in Eq. (1) contains a
piecewise linear function g(x), whose derivative g′(x) is such
that limx→3− g′(x) �= limx→3+ g′(x). Even if the mathematical
problem of the existence of Lyapunov exponents for a suffi-
ciently general dissipative dynamical system remains unsolved
to this very day [35], from a more practical perspective,
the difficulty of computing quantities that are based on the
linearized variational equations of a dynamical system whose
Jacobian matrix is undefined in the phase-space plane x = 3 is
already apparent. So there are grounds for this objection, even
if in practice the Lyapunov spectrum of our systems converges
to well-defined asymptotic values. On the other hand, a more
practically minded reader would point out that the plane x = 3
is a zero Lebesgue measure set, and that even in the discretized
world of numerical analysis the chances that we get states
codified with double precision such that x = 3.000 000 . . . are
very small. The argument is that if indeed such states ever
occur, their contribution to the Lyapunov exponents (which are
effectively computed as long time averages across phase-space
orbits) will be negligible. We will see that this latter position
turns out to be vindicated by a close examination of the issue.

To avoid the above-mentioned nonsmoothness, the idea
of using a slightly modified dynamical system, where the
discontinuity at x = 3 is bypassed at sufficiently small scales
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in such a way that it does not affect too much the estimation
of the Lyapunov spectrum, is one that naturally comes to
mind. As a matter of fact, our choice of a dynamical system
was ultimately determined by the fact that the piecewise
Rössler system is known for its robustness and experimental
accessibility when implemented in electronic circuits. There,
the discontinuity in the slope of g(x) is obtained by using a
semiconductor diode placed in a voltage divider, whose I -V
characteristics is supposed to be such that I > 0 for V = Vd

and I = 0 for V < Vd . But of course this is known to be
a crude simplification of the diode behavior, as statistical
physics models considering the transport of charge carriers
across the depletion layer at the semiconductor p-n junction
result in a smooth function in the macroscopic I -V behavior.
One possibility would be to include equations based on the
Shockley diode law or more realistic mathematical models
of a diode, and obtain the relevant g(x) of what would be
a considerably more complicated smooth dynamical system.
Instead, we want to explore the possibility of simply replacing
g(x) with a perturbed smooth function h(x) defined as follows:

h(x) =

⎧⎪⎨
⎪⎩

0, x � 3,

p(x), 3 < x � 3 + δx,

μ(x − 3), x > 3 + δx,

(A1)

where δx � 3. Here, p(x) can be a polynomial of a degree so
high as to have as many continuous derivatives as one wishes
at x = 3 and x = 3 + δx, or a more sophisticated interpolating
function. For the sake of simplicity, let us take p(x) to be a
third-degree polynomial. Four undetermined constants guar-
antee that we can satisfy four minimal conditions to provide
continuity of h(x) and h′(x) at both x = 3 and x = 3 + δx.
The resulting polynomial p(x) = − μ

δx2 (x − 3)3 + 2μ

δx
(x − 3)2

is shown in Fig. 9 for δx = 0.010 (blue line), 0.005 (red
line), and 0.002 (green line). We also include the limiting
case δx = 0 (black line), for which h(x) = g(x).

Next, we check how the estimated Lyapunov exponents
of the Rössler oscillator are affected by replacing g(x) with

FIG. 9. (Color online) Function g(x) around x = 3 (black line,
δx = 0), and function h(x) for three different δx values (blue
line, δx = 0.010; red line, δx = 0.005; green line, δx = 0.002).
For sufficiently small δx, h(x) can be made as close as needed to
g(x) without discontinuities in the first derivative. Higher-degree
polynomials could be used in a completely analogous manner to
approximate g(x) with a higher number of continuous derivatives at
x = 3 and x = 3 + δx.

FIG. 10. (Color online) Maximum Lyapunov exponents as a
function of δx, and fraction of phase space points for which x ∈
[3,3 + δx]. In (a), the largest Lyapunov exponents corresponding to
attractors S (magenta diamonds) and L (gray circles) as functions
of δx. The dashed lines in the background correspond to the
estimates obtained with δx = 0 [h(x) = g(x)]. In (b), the fraction of
phase-space points within the interval [3,3 + δx], where h(x) �= g(x).

h(x) in the equations of motion. We expect the effect to be
smaller and smaller as δx decreases. This expectation is indeed
matched by the results, as can be seen in the upper panel of
Fig. 10. Here, the largest Lyapunov exponents corresponding
to attractors S (magenta diamonds) and L (gray circles) are
shown. They result from the integration of the system across a
time window comprising roughly 30 000 cycles. For large δx,
the change in the dynamics significantly affects the Lyapunov
exponents, as is seen quite clearly in the fact that S for some
choices of δx becomes a regular (i.e., nonchaotic) attractor
with a zero maximum Lyapunov exponent. On the other
hand, for any choice of δx such that δx < 0.01, all maximum
Lyapunov exponent estimates converge, within our accuracy,
to the same values, and that is also the case for the rest of the
Lyapunov spectrum (not shown here).

The previous results can be simply related to the fact that
for small δx, a small fraction of the phase-space points fall
inside the region where h(x) differs from g(x). Indeed, we see
in Fig. 10(b) that this fraction decreases as δx is reduced
as a power law with a characteristic exponent close to 1.
Therefore, replacing g(x) with h(x) with a sufficiently small
δx solves the issue of the discontinuity in the Jacobian of the
system giving Lyapunov exponent estimates independent of
the precise values of δx.

Finally, we consider the possibility of taking the limiting
case δx = 0 [h(x) = g(x)], which is tantamount to simply
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ignoring the discontinuity in the Jacobian. In practice, we use
the criterion that if a phase-space point happens to be such that
x = 3, we consider the derivative of the z component of the
vector field with respect to x to be its left derivative [i.e., the
derivative of g(x) is set to limx→3− g′(x) = 0], which is also
our choice throughout the paper. The corresponding Lyapunov
exponent estimates are shown in Fig. 10(a) as dashed lines
(magenta for S, gray for L). They coincide with the values
obtained by replacing g(x) with h(x) for a sufficiently small
δx. We could also choose to assign as derivative of g(x) at
x = 3 half of the time the left derivative, half of the time the
right derivative, or any other reasonable criterion. Ultimately,
this choice is inconsequential, because the fraction of points
for which x = 3 is zero in both L and S, i.e. none of the
considered 30 million phase-space points has an x coordinate
that is exactly 3 in the double precision floating point format.
As expected from the results shown in Fig. 10(b), this will also
be the case for the slightly perturbed system with h(x) in lieu
of g(x) if δx is so small that the fraction of points with x ∈

[3,3 + δx] times the total number of orbit points considered is
considerably smaller than a number on the order of unity. Even
if a few points in hundreds of thousands or millions of phase-
space points were affected by the discontinuity in the Jacobian
or by the small modification in the dynamics introduced by
the polynomial p(x), the effect on long time averages along
phase-space orbits, such as those upon which the Lyapunov
exponent estimates are based, would be negligible.

In conclusion, in order to avoid the discontinuity in the
Jacobian of our dynamical system, we can compute the Lya-
punov exponents using a slightly modified dynamical system.
In so doing, we must ensure that the modification should be
sufficiently small so that the results become independent of the
size of the phase-space region whose dynamics is modified
and of the modification form [independent of the size of
the modified region δx and of the degree of the polynomial
p(x) in the example above]. But then, the resulting Lyapunov
exponent estimates coincide with those obtained from the
original dynamical system.
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