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In this Letter we identify the general rules that determine the synchronization properties of
interconnected networks. We study analytically, numerically, and experimentally how the degree of the
nodes through which two networks are connected influences the ability of the whole system to synchronize.
We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most
(least) effective strategy to achieve synchronization. We find the functional relation between synchroniz-
ability and size for a given network of networks, and report the existence of the optimal connector link
weights for the different interconnection strategies. Finally, we perform an electronic experiment with two
coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and
parameter mismatches.
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Real networks often interact with other networks of
similar or different natures, forming what is known as
networks of networks (NONs) [1]. By considering a NON,
new perspectives in the understanding of classical network
phenomena, such as robustness [2–4], spreading [5,6], or
interaction between modules [7,8], can be obtained, some-
times with counterintuitive results. Similarly, while syn-
chronization in complex networks has been widely studied
[9], very few works have investigated synchronization in
NONs. Huang et al. [10] showed that when two networks
interact through random connections an exact balance
between the weight of internal links in a network and
the weight of links between networks results in greater
synchronization between the two networks. It has also been
shown that for multiple interacting networks, random
connections between distant networks increase the syn-
chronization of the complete NON [11].
Real networks exhibit high heterogeneity of the node

degree, with hubs (i.e., high-degree) and peripheral (i.e.,
low-degree) nodes [12]. What happens if connector links
between the networks, termed interlinks, are not randomly
created, but are instead chosen according to a particular
connection strategy? Carlson et al. [13] analyzed the
influence that low-degree nodes may have on the collective
dynamics of networks. Wang et al. [14] showed that when
two neuron clusters get connected, both the heterogeneity
of the network and the degree (i.e., number of connections)
of the connector nodes, (the nodes reached by interlinks)
influence the coherent behavior of the whole system. A
recent study demonstrated that the proper selection of

connector nodes has strong implications on structural
(centrality) and dynamical properties (spreading or pop-
ulation dynamics) occurring in a NON [15].
In this Letter, we study in a systematic way how

connector nodes between a group of networks with
heterogeneous topology affect synchronization and stabil-
ity of the resulting NON, and provide general rules for
electing in a nonrandom fashion the connector nodes that
maximize the synchronizability.
The stability of the synchronized state of a group of

coupled identical dynamical units is given by the corre-
sponding master stability function (MSF) [16]. For a given
dynamical system and coupling form, the stability of
synchronization depends on the second lowest eigenvalue
λ2, usually called the spectral gap or algebraic connectivity,
and the largest eigenvalue λN [17] of the network Laplacian
matrix L [18]. Dynamical systems can then be classified
according to their MSF [19]: (a) class I systems never
synchronize irrespective of their network topology, (b) class
II systems synchronize for values of λ2 above a threshold
given by the MSF, and (c) class III systems synchronize for
eigenratios r ¼ λN=λ2 lower than a threshold determined
by the MSF.
For isolated networks, the eigenratio r has been used as

an indicator of synchronizability both in theoretical [20,21]
and in real systems such as functional brain networks
[22,23]. For class III systems, obtaining a maximally
synchronizable system is tantamount to minimizing the
eigenratio r. Nishikawa et al. [24] showed that when the
network structure and the link weights were adequately
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transformed into unidirectional hierarchical organizations,
the minimum eigenratio r ¼ 1 (since λ2 ≤ λ3 ≤ … ≤ λN)
was achieved.
Given a fixed number of nodes N and links L it is also

possible to reduce r using genetic algorithms and obtaining
the so-called entangled networks [25,26], which are char-
acterized by high homogeneity of the node degree, shortest
path, and betweenness. Crucially, these results indicate that
a good strategy to enhance the synchronizability of a
network is to disconnect the network hubs and connect
nodes with low degree.
How to maximally synchronize two (or more) intercon-

nected networks, on the other hand, is still poorly under-
stood. Figure 1(a) shows a qualitative example of two
different types of connections between two networks: high-
degree–high-degree (HH) and low-degree–low-degree
(LL). Figure 1(b) depicts the synchronization error ϵðtÞ
of two scale-free networks of Rössler oscillators [27]
coupled with different strategies. The high ϵðtÞ obtained
when both networks are isolated decreases when a LL
connection is created (t ¼ 200), but only goes to zero with
a HH connection (t ¼ 400), indicating the attainment of
complete synchronization.
The role of the connector nodes in synchronization

can be quantified by their influence on the value of the
eigenvalues λ2 and the eigenratio r. Figures 1(c)–1(d) show
the λ2 and the r of two Barabási-Albert networks [17] of
N ¼ 200 nodes, interconnected with a unique link in all
the N2 possible configurations. As shown in Fig. 1(c), the
region with the highest λ2 turns out to be centered around
the HH connections, while LL results in a lower λ2, and the
optimal strategy to connect networks of class II dynamical
systems would be through their higher degree nodes.
Regarding class III systems, Fig. 1(d) shows that the HH
connection is the best option to reduce the eigenratio r and
increase the synchronizability of the NON. Since isolated
networks decrease their synchronizability when connecting
their high-degree nodes [25], the results for interconnected
networks obtained in this Letter represent another impor-
tant example of how the behavior of a single network may
fundamentally differ from that of a NON.
Recent studies [7,8] on class II synchronization of

interdependent networks proved the existence of a phase
transition in λ2 after the addition of sufficient links,
obtaining powerful analytical results for general networks.
However, the approximations made by the authors, as well
as the strategies used to connect the networks, resulted in
expressions that are not dependent on the degree of the
connector nodes. For these reasons, those papers give no
information on the influence the degree heterogeneity may
have on the synchronizability of a network when the
interlinks are selected according to different strategies.
To obtain an analytical expression determining the

influence of the connector nodes on the complete synchro-
nization of NONs, we consider one of the simplest NON

showing some degree heterogeneity: a system consisting
of two star networks connected by one interlink. Each star
consists of N nodes, one high-degree node (H) connected
to N − 1 low-degree nodes (L). We call wij the weight of
the link connecting nodes i and j and, without loss of
generality, we consider all links inside each star (i.e.,
intralinks) to have the same weight wintra. We then connect
the two stars through a single interlink of weight winter ¼
awintra, according to three different strategies: HH, LL, and
HL (note that, due to the symmetry of the system, LH is
equivalent to HL).

(a)

(b)

(c) (d)

FIG. 1 (color online). (a) Schematic representation of the
interconnection of two heterogeneous networks. HH corresponds
to a strategy connecting high-degree nodes and LL to the
connection between low-degree nodes. (b) Synchronization error
ϵðtÞ of two interconnected Barabási-Albert networks of N ¼ 200
Rössler oscillators at three different stages: isolated, intercon-
nected following a LL strategy, and replacing the LL connection
with a HH one. Equations of the Rössler system are given in [27]
and the parameters used in the simulations are a ¼ b ¼ 0.2 and
c ¼ 5.7. ϵðtÞ is obtained as the average across all pairs of
oscillators of the pairwise distance in three dimensional phase
space, 2=NðN − 1ÞPi<j∥xi − xj∥, where xi is the state vector of
oscillator i and ∥·∥ denotes the (Euclidean) norm. (c) λ2 of the
NON obtained from connecting two N ¼ 200 Barabási-Albert
networks with one interlink, in all possible configurations. The
node numbers are ordered according to the node degree and,
when coinciding, the eigenvector centrality. (d) Eigenratio r ¼
λN=λ2 for the same case as (c).
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Complete synchronization depends on the eigenvalues of
the (weighted) Laplacian matrix. The symmetry of the
configuration allows us to reduce the characteristic poly-
nomial of the Laplacian matrix so that λN and λ2 associated
with the HH, LL, and HL strategies are, respectively, and
for all N and a, the maximum and minimum roots of

x3 þ C2x2 þ C1xþ C0 ¼ 0; ð1Þ

where C2 ¼ −ð1þ N þ 2aÞ, C1 ¼ N þ 4aþ ξaðN − 2Þ,
and C0 ¼ −2a, while ξ is, depending on the connection
strategy, ξHH ¼ 0, ξHL ¼ 1, or ξLL ¼ 2 [28] (see Section S1
of [29] for more details). Without any loss of generality
we have assumed that wintra ¼ 1, thus being winter ¼ a.
The eigenvalues follow

λN;2 ¼ N=2þ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN=2Þ2 þ a2 þ ðN − 2Þa

q
ð2Þ

for the HH connection, while for the LL and HL strategies
they take a more complex analytical form [see Fig. 2(a) and
Table S1 of [29]].
For networks composed of class II systems, Eq. (2)

yields that increasing the weight of the interlink a increases
λ2 (decreasing the network modularity [35]) and, therefore,
the synchronizability of the NON. The same behavior
characterizes the LL and HL strategies [see Fig. 2(a) and
Table S2 of [29] for details]. Furthermore, comparing
Eq. (2) with those obtained in the LL and HL strategies
shows that λHH2 > λHL2 > λLL2 for the meaningful values of
N and a, that is, N > 2 and a > 0. Thus, for class II

systems the optimal strategy is always the one connecting
high-degree nodes.
Next, we can investigate which of the strategies leads to

the lowest eigenratio r in class III systems. The totally
algebraic solution of the two-star system allows us to prove
that, for all feasible values of N and a, rHH < rHL < rLL

(see Section S1.3 of [29] for the details). Thus, HH turns
out to be the strategy optimizing synchronizability of the
NON. Figures 2(b)–2(d) show the evolution of r as a
function of the interlink weight a for the three connecting
strategies and for different network topologies. Even
though no closed analytical expression can be found for
complex topologies, the Laplacian of such networks can be
studied numerically, leading to the same conclusions in
complex networks. In all cases, the HH type of connection
leads to the lowest r, suggesting that the results proved for
the two star system are of general applicability.
Importantly, class III systems have an optimal interlink

weight async, minimizing r. This fact is easy to verify in the
case of two star networks, because for all connecting
strategies, lima→∞r¼ lima→0r¼∞∀N>2. Furthermore, it
is worth noting that the optimal interlink weights
aHHsync, aHLsync, and aLLsync do not coincide (see the arrows
in Figs. 2(b)–2(d) and Section S1.3 of [29] for the
analytical details).
To conclude the analytic study of the problem, we note

that increasing the number of nodes always hinders
synchronizability, as indicated by dλ2=dN < 0∀ a > 0
for class II systems and dr=dN > 0∀ a > 0 for class III
systems. This result goes beyond two star networks and is
valid for networks of more complex topology. In Fig. 3 we
can observe how the scaling of synchronizability with N
changes according to the topology of the networks (see S2
of [29] for some theoretical arguments lending support to
these results).
We now prove the robustness of our results with a

network of electronic circuits. The experimental setup
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FIG. 2 (color online). Synchronizability for two networks
connected by a single interlink of weight a. (a) λ2 and λN
for two star networks of 6 nodes each. (b),(c),(d) Eigenratio r for
(b) two star networks (N ¼ 6), (c) two scale-free networks
(N ¼ 500), and (d) two Erdős-Rényi random networks
(N ¼ 500). Three connecting strategies are shown: HH (black),
HL (red), and LL (green). The minima of the curves (arrows)
correspond to maximum synchronizability [34]. Plots (a)–(b)
were obtained analytically and (c)–(d) numerically.

(a) (b)

(c) (d)

FIG. 3 (color online). Dependence of synchronizability of class
II and III systems on the size of the networks N. Averaged second
eigenvalue λ2 [(a) and (b)] and r [(c) and (d)] over 30 realizations
of two Erdős-Rényi networks and two scale-free networks of
average degree k̄ ¼ 12. See Section S2 of [29] for details.
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consists of two diffusively coupled star networks of piece-
wise Rössler circuits [27,36] operating in a chaotic regime
(see Section S4 of [29] for details of the electronic circuits)
[37]. They follow the same two-star topology described
above, with both wintra and winter as experimentally acces-
sible parameters.
It is important at this stage to recall that while maxi-

mizing λ2 (in class II) and minimizing r (in class III)
increase the synchronizability of a network, it is the MSF
that ultimately determines if complete synchronization is
achieved [16]. Coupling through the x variable leads to a
class III system of equations. For class III systems, the
zeroes of the MSF (ν1 and ν2) determine the synchroniza-
tion region, where the network has to fulfill the conditions
σλ2 > ν1 and σλN < ν2, where σ is the coupling strength.
The theoretical treatment of the class III Rössler systems
described in Sections S4 and S5 of [29] indicates that the
HH strategy is the only one fulfilling the former require-
ments given by the MSF. For this case, Fig. 4 shows
qualitatively similar results for the synchronization regions
in the (wintra, winter) phase space obtained theoretically (a)
and experimentally (b) [38]. In the latter, the synchroniza-
tion region is determined by computing the average of the

synchronization error hϵi of all units of the NON, where
the error between systems i and j is given by ϵi;j ¼
limT→∞T−1 R T

0 ∥xiðtÞ − xjðtÞ∥dt [39].
When the coupling is introduced through y, the systems

become of class II [40]. In this case, the MSF only has one
zero νc and synchronization only requires σλ2 > νc.
Figure 4(c) depicts the synchronization regions obtained
theoretically for different connecting strategies. The HH
strategy turns out to require less internal and external
coupling. Qualitatively similar results were obtained exper-
imentally, as shown in Fig. 4(d).
In conclusion, in this work we showed that whenever

two networks are connected by one interlink, the degree of
the connector nodes plays a fundamental role in achieving
synchronization. Connecting high-degree nodes is, by
default, the best synchronization strategy, while connecting
low-degree nodes is the worst option. Interestingly, increas-
ing the number of interlinks leads to the same qualitative
results (see Section S3 of [29] for details). Furthermore,
synchronizability always decreases as a power law of the
size of the system for both classes. On the other hand, while
increasing the interlink weight consistently favors complete
synchronization for class II systems, for class III there is an
optimum value of the interlink weight that depends on the
connecting strategy. Our results are generic and indepen-
dent of the size or topology of the networks, as indicated by
numerical simulations of networks with more complex
topologies (e.g., ER random or scale-free).
Possible applications of our methodology could be the

design of optimal interconnection strategies in groups of
interacting networks, such as power grids [41] and ad hoc
mobile networks [42], or the identification of the links to be
deleted in processes where high synchronizability plays
against the normal functioning of the system (such as in
epilepsy [23]).
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