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We introduce an easily computable topological measure which locates the effective crossover between

segregation and integration in a modular network. Segregation corresponds to the degree of network

modularity, while integration is expressed in terms of the algebraic connectivity of an associated

hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually

rewired until they become completely merged, allows us to show that this topological crossover can be

made to coincide with a dynamical crossover from cluster to global synchronization of a system of

coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of

intracluster and global synchronization, which we propose as a dynamical measure of complexity. This

quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and

displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The

proposed topological measure simultaneously provides information on the dynamical behavior, sheds

light on the interplay between modularity and total integration, and shows how this affects the capability

of the network to perform both local and distributed dynamical tasks.
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Many physical and biological systems (such as elec-
tronic devices, communications networks, and the human
brain) face similar constraints as they interact with com-
plex environments, and organize their structure and func-
tion along similar principles of resource allocation [1]. On
the one hand, the need for fast and reliable responses to
changes in the environment naturally favors the emergence
of segregated modules of specialized computation (e.g.,
sensory systems in the brain). On the other hand, interac-
tions among modules become essential when an informa-
tion processing whose complexity exceeds the capacity of
the single modules is required. For instance, perceptual
systems in the brain need to bind information from differ-
ent brain areas to produce a single coherent percept [2].
Therefore, segregation into specialized modules and inte-
gration into global coherent activity present an inherent
trade-off, and an appropriate balance between these two
tendencies has been shown to be necessary for efficient
functioning, particularly in neural systems [3]. In fact, an
exceedingly segregated or integrated functioning of the
brain has been associated with various pathological con-
ditions, e.g., autism or schizophrenia [4–6], and epilepsy
[7], respectively.

One straightforward way to study such a balance in
complex systems is to represent them as dynamical net-
works, endowing them with well-studied topological and
dynamical properties (see [8,9] for a review). For instance,
Zhao et al. [10] characterized systems of coupled phase

oscillators in terms of a complexity index based on the
entropy of the distribution of pairwise synchronization.
Heterogeneous and modular networks were shown to be
characterized by high complexity, for intermediate levels
of modularity, in a regime marked by the formation of
dynamical clusters and the coordination between them.
In this Letter, we provide an easily computable topo-

logical measure for quantifying the balance between seg-
regation and integration in a network. We propose that
segregation can be understood in terms of a community
structure (i.e., clusters of vertices densely connected to
each other while less connected to vertices outside the
community [11]), while integration can conveniently be
expressed in terms of algebraic connectivity [12] of the
hypergraph associated with the network. After introducing
our measure for a generic modular graph, we focus on the
simplified case in which the network communities are of
equal size and have the same number of inner and outer
connections, and show analytically that there is a structure
that maximizes the product of segregation and coordina-
tion measures. We then demonstrate that the dynamics
emerging from such a specific configuration is associated
with the coincidence of the two thresholds for cluster and
complete synchronization in a network of interacting phase
oscillators.
We start by considering a generic undirected, un-

weighted graph G composed of N nodes and L links,
partitioned into C communities, and characterized by an
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associated N � N adjacency matrix A. Moreover, for each
community r (r ¼ 1; . . . ; C), we consider the number of
links connecting pairs of members of that community (‘rin),
and the number of intercommunity links (‘rout), i.e., the
number of links connecting a member of that community
with a member of another community. Based on the men-
tioned notation, we have L ¼ ðPC

r¼1 ‘
r
inÞ þ 1

2 ð
P

C
r¼1 ‘

r
outÞ.

Using the previous definitions, the standard modularity
measure defined in [13] can be written as Q ¼P

C
r¼1f‘rin=L� ½ð2‘rin þ ‘routÞ=2L�2g.
Let us now define the hypergraph G� associated to G, as

the weighted directed C clique in which each node corre-
sponds to a community of G, and the connection incident

to node r from node s is weighted by
‘rsout
‘r
in
, ‘rsout being the

number of links of G that connects members of the com-
munity r with members of the community s, and ‘rin the

number of inner links in the source community. The cor-
responding C� C Laplacian matrix L� ¼ fL�

rsg is asym-
metric, but can be written as the product L� ¼ BC, where
C is a symmetric zero-row sum matrix with off-diagonal
elements Crs ¼ �‘rsout and diagonal elements Crr ¼ ‘rout ¼P

s�r‘
rs
out, and B ¼ diagf1=‘1in; . . . ; 1=‘Cing:

L� ¼

1
‘1
in

0 � � � 0

0 1
‘2
in

� � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1
‘C
in

0
BBBBBBBBB@

1
CCCCCCCCCA

‘1out �‘12out � � � �‘1Cout

�‘21out ‘2out � � � �‘2Cout

..

. ..
. . .

. ..
.

�‘C1out �‘C2out � � � ‘Cout

0
BBBBBB@

1
CCCCCCA
:

The spectrum of L� is real with non-negative values and
because L� is zero-row sum, the smallest eigenvalue ��

1 is
zero, while ��

2 > 0. The measure that we propose for the
balance between integration and segregation is defined as
follows:

� ¼ Q��
2:

Indeed, while Q is an inherent evaluation of the segrega-
tion factor of a graph, ��

2 > 0 quantifies the connectiveness
of the hypergraph, and therefore measures the extent to
which different communities are bounded and interact. It
should be noted that both Q and ��

2 are properly normal-
ized in such a way that—even if the network links were
associated to cohesive forces—the two quantities will be
adimensional. The maximum of � corresponds to a topol-
ogy in which integration and segregation have the same
weight.
Let us then consider the case in which the C commun-

ities are cliques having equal size Nc ¼ N=C, and the
number of intracommunity links, ‘rin, as well as the number

of intercommunity links, ‘rout, are the same for all com-
munities. We then have ‘rin ¼ ‘in=C, and ‘rout ¼ ‘out=C,
such that L ¼ Cð‘rin þ 1

2 ‘
r
outÞ ¼ ‘in þ 1

2 ‘out. Under these

assumptions, the modularity can be reduced to the follow-
ing expression:

Q ¼ C

�
1

L

‘in
C

�
�
2L

C

1

2L

�
2
�
¼ 1� 1

2L
‘out � 1

C
: (1)

On the other hand, we have thatB ¼ C
‘in
I and, from matrix

identity,

��
2 ¼

‘out
‘in

: (2)

Let us now consider a particular protocol by means of
which lout is varied from 0 to 2LðC� 1Þ=C, the value at
which the modularity Q is zero. We start from a fully
segregated configuration (in which ‘out ¼ 0 and ‘in ¼ L),
and operate successive rewiring processes, in each of
which an intracommunity link from each community is
deleted, and C intercommunity links are formed by con-
necting those pairs of nodes (each one in different

FIG. 1 (color online). (a)–(c) Graph representations of (a) a
network consisting of two cliques of size NC ¼ 16, and (b–c) the
resulting networks after rewiring. (b) jmax ¼ 60 (‘out=2L ¼ 0:5
and Q ¼ 0), and (c) j ¼ 30 (‘out=2L ¼ 0:25 and Q ¼ 0:25).
Intracommunity (intercommunity) links are light gray (black
colored). Blue (red) nodes are phase oscillators whose natural
frequency is randomly distributed around 0.8 (0.2) within a range
�0:1. (d)–(f) Time evolution of the instantaneous frequencies of
the N ¼ 32 oscillators after solving Eq. (4) with the networks
of the left panels and din ¼ d�in ¼ 0:14. (d) dout ¼ 0,
(e) dout ¼ d�out ¼ 1:10, and (f) dout ¼ 1:40. Dashed line in (d)
marks the mean frequency between the two clusters. (g)–(h) R
(squares) and �! (circles) (see text for definition) for: (g) the two
clique network of (a) as a function of din, (h) the 0-modularity
network of (b) as a function of dout and for din ¼ 0:14. The
vertical dashed line in (g) marks the critical coupling for cluster
synchronization (d�in ¼ 0:14), while in (h) it corresponds to

dout ¼ 1:4, well above the onset of global synchronization
(d�out ¼ 1:10). Panel (i) reports the S and I indices (see text for
definitions) vs the ratio ‘out=ð2LÞ, after solving Eq. (4) with
din ¼ 0:14 and dout ¼ 1:40. Oblique dashed line is the corre-
sponding modularity index Q.
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communities) having lost their intralink. In this way, at
the jth rewiring, we have ‘in ¼ L� Cj, and ‘out ¼ C2j.
The maximum number of rewiring steps until modularity
fades out is, therefore, NcðNc � 1ÞðC� 1Þ=ð2CÞ. It

follows from combining Eqs. (1) and (2) that � ¼ Q��
2 ¼

ð1� 1
C � 1

2L ‘outÞ ‘out
L�1

2‘out
. Accordingly, the partial derivative

of � with respect to ‘out is
@�
@‘out

¼ 1� 1
C � ‘out

L þ 1
4 ð‘outL Þ2,

which vanishes at

‘max
out ¼ 2L

�
1� 1ffiffiffiffi

C
p

�
; (3)

i.e., there exists a value of intercommunity links at which �
reaches its maximum value (the second derivative of
�ð‘outÞ is indeed negative).

We now show that the maximization of � has a dynami-
cal counterpart for the analytically treated example. To this
purpose, we consider a modular network of N nodes ini-
tially arranged in two cliques c1 and c2 of equal size
Nc ¼ N

2 [Fig. 1(a)], with ‘c1out ¼ ‘c2out ¼ 0 and ‘c1in ¼ ‘c2in ¼
NcðNc � 1Þ=2 such that the total number of links is L ¼
NcðNc � 1Þ. The units of the network are taken to be phase
oscillators evolving according to the Kuramoto model [14]

_� i ¼ !i þ 1

Nc � 1

XN

j¼1

dijaij sinð�j ��iÞ; (4)

where _�i is the angular velocity of the ith oscillator, !i its
natural frequency, dij is the coupling strength between

oscillators i and j (in the following dij ¼ din if the nodes

i and j are members of the same community, and dij ¼ dout
otherwise), and aij ¼ 1 if i and j are connected and 0

otherwise. Oscillators i ¼ 1; . . . ; Nc (i ¼ Nc þ 1; . . . ; N),
initially assigned to clique c1 (c2) and colored in blue (red)
in Figs. 1(a)–1(c), have !i uniformly distributed around
!c1 ¼ 0:8 (!c2 ¼ 0:2) within a range of �0:1.

To explore the extent of validity of Eq. (3), we start from
such a completely segregated configuration, and gradually
increase the ratio ‘out=2L by (i) randomly selecting a link
in each module, (ii) deleting it, and (iii) forming two new
intercommunity links by pairwise connection of the ends
of the deleted links. The rewiring process is then repeated
up to the point in which the modularity index Q cancels,
and both modules become statistically indistinguishable
[Fig. 1(b)]. According to Eq. (3), the balance for a C ¼ 2

module network is found at the ratio ‘out=2L ¼ 1� ffiffiffiffiffiffiffiffi
1=2

p
.

Furthermore, the tuning of the coupling strengths din and
dout allows one to control the degree of intracommunity
(cluster) and intercommunity (complete) synchronization
in each given configuration. Namely, we compute the order
parameter R ¼ hk 1=N

PN
j¼1 e

i�j kiT [squares in Figs. 1(g)

and 1(h)] and the frequency standard deviation �! [circles
in Figs. 1(g) and 1(h)], averaged over a proper time
window T, to account for the phase and frequency

synchronization (in our simulations T ¼ 200 t.u.). In
Fig. 1(g), din is increased up to d�in ¼ 0:14, which consti-

tutes the threshold for cluster synchronization in the case of
the network structure of Fig. 1(a). Figure 1(d) shows that

the instantaneous frequencies _�i of all oscillators are
locked to their respective cluster frequencies, 0.2 (in red)
and 0.8 (in blue). On the other hand, when the modularity
index vanishes [as in the network of Fig. 1(b)], we set din to
d�in and vary dout to find the threshold for global synchro-

nization at d�out ¼ 1:10 [Fig. 1(h)]. As shown in Fig. 1(e),
for dout ¼ 1:40 (sufficiently above the transition), the net-
work is performing a collective oscillation at the mean
frequency of the two clusters (0.5).
This way, functional segregated and integrated states are

guaranteed by choosing din and dout above the threshold
couplings for cluster synchronization and global synchro-
nization. Depending on the fraction of intercommunity
links, the competition between the dynamics of the indi-
vidual clusters and the whole network will give rise to a
certain degree of functional segregation and integration.
Figure 1(f) shows the instantaneous frequencies of the
oscillators coupled according to the scheme of Fig. 1(c)
for ‘out=2L ¼ 0:25. One can easily see that the behavior is
far from being totally integrated or segregated, but, instead,
the instantaneous frequencies of the oscillators undergo
high amplitude oscillations around their natural values.
To quantify the degree of dynamical segregation S and

dynamical integration I, we calculate the ensemble aver-
ages S ¼ hSii and I ¼ hIii. Si and Ii are the dynamical
segregation and integration measures for the individual i

oscillators, and are defined as Si ¼ hj _�i � !c1
þ!c2

2 jiT (the

time-averaged absolute distance between the oscillator’s
instantaneous frequency and the mean frequency of the two

clusters), and Ii ¼ hj _�i � �ðsi; c1Þ!c1 � �ðsi; c2Þ!c2 jiT ,
where si is the community of which the oscillator i is a
member, and �ðsi; sjÞ the Kronecker delta function. The

dependence of these quantities on the mixing ratio ‘out=2L
is then normalized, and reported in Fig. 1(i) for din ¼ d�in
and dout ¼ 1:40> d�out, showing a monotonically decreas-
ing behavior of S (squares) as the modularity Q (dashed
line) vanishes, while a monotonically increasing trend of I
(circles) up to saturation when the whole network is fully
synchronized.
Consequently, the dynamical segregation or integration

trade-off, measured as the product of S and I, gives infor-
mation about the existence of a level of topological mixing
for which functional clustering balances global synchroni-
zation, as shown in Fig. 2(a) (triangles). An alternative way
to measure the combination of dynamical segregation and
integration is by means of the complexity index E, intro-
duced in Ref. [10] in the context of oscillatory networks.
Here, E is calculated using the Shannon entropy of the
distribution Pð!Þ of the average frequencies of all oscil-
lators as E ¼ ð�P

m
l¼1 Pl lnPlÞ= lnm, where m is the num-

ber of bins in the histogram of Pð!Þ. By definition, E
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should be close to zero for narrow distributions, while it
should take large values for broad distributions reflecting
the emergence of complexity. The index E is plotted in
Fig. 2(a) (full circles) together with the product of the
dynamical indices S and I showing a noticeably similar
behavior. It is important to remark that the calculation of SI
implies much simpler operations, once the output of sys-
tem (4) is available.

To more closely inspect the relation between topology
and dynamics, we study in Fig. 2(b) the influence of the
coupling dout on the balance between segregation and
integration. The main observation is that the number of
intercommunity links ‘out that compromises the balance
between the two competing synchronization processes de-
creases as the link strength dout increases. We confirm that
this trend also holds for modular networks with C> 2.
Namely, we have constructed three and four clique net-
works and performed the same analysis done for C ¼ 2,
obtaining the fraction ‘out=2L at which the maxima of the
SI curves occur. Results are reported in Fig. 2(c) for the
three values of C (triangles for C ¼ 4, squares for C ¼ 3,
and circles for C ¼ 2). Therefore, the functional balance
depends on dout and arises for a given ratio ‘out=2L where
the frequency synchronization within the modules is still
effective, and at the same time there is significant coordi-
nation between the modules characterized by the much
richer behavior with the presence of several time scales
[as can be observed from Fig. 2(a), where the entropy of

the distribution of frequencies exhibits a maximum].
However, the balance between modularity and algebraic
connectivity is maximum at one particular value of the
mixing ratio as expressed by Eq. (3) [see Fig. 2(c)].
Strikingly, the intersection of the analytical C line

‘max
out =2L ¼ 1� 1=

ffiffiffiffi
C

p
with the curve of the maxima loca-

tion of the SI curve predicts the value of dout that perfectly
coincides with the coupling threshold for the onset of the
global synchronization, as shown by the vertical lines of
Fig. 2(d). Qualitatively similar scenarios have been ob-
served for 3D chaotic oscillators, and for 2D excitable
units.
In conclusion, we introduced an easily computable to-

pological measure from the knowledge of the adjacency
matrix of the graph, and from a given partition, which
locates the effective crossover between segregation and
integration in a modular network, and shows that its maxi-
mum has a dynamical counterpart in the trade-off between
the onsets of cluster and complete synchronization of
networked phase oscillators. Our results can therefore
enlighten the performance of biological systems that
have to organize their structure and function to simulta-
neously perform specialized computations at smaller
scales, and bind information at larger ones. As such,
it can be applied, in principle, to any real world modular
network, namely to evaluate the extent to which a
specific configuration has been optimized for information
processing, as well as in connection with genetic or simu-
lated annealing algorithms, for the generation of the opti-
mal modular structure with a given number of nodes and
links.
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