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Integration vs. Segregation in Functional Brain
Networks

I. Sendiña–Nadal, J.M. Buldú, I. Leyva, R. Bajo, J.A. Almendral, and F. del–Pozo,

Abstract—We propose a new methodology to evaluate the
balance between segregation and integration in functional brain
networks by using Singular Value Decomposition techniques. By
means of magnetoencephalography, we obtain the brain activity
of a control group of nineteen individuals during a memory task.
Next, we project the node-to-node correlations into a complex
network which is analyzed from the perspective of its modular
structure encoded in the contribution matrix. In this way, we are
able to study the role that nodes play inside/outside its community
and to identify connector and local hubs. At the mesoscale level,
the analysis of the contribution matrix allows to measure the
degree of overlapping between communities and quantify how far
the functional networks are from the configuration that better
balances the integrated and segregated activity.

Index Terms—Functional brain networks, Complex Networks,
Magnetoencephalography, Singular Value Decomposition.

I. INTRODUCTION

FROM technological to biological systems, complex net-
works theory has been applied to a huge diversity of

real data coming from the most different fields [1]. This
methodology have also dealt with the brain, which is probably
the most challenging system that we are facing in a biological
context. The last years of studies have given us some hints
about its anatomical structure [2], [3], [4], but we are still far
from a complete knowledge. Studies in animal species such as
C. Elegans [5], [6], cats or macaques [7], [8], have revealed
common topological properties, such as high clustering and
short topological distance between nodes, i.e., the fingerprint
of a small-world (SW) network architecture [5]. With regard
to the human brain, magnetic resonance imaging [2], [9] and
diffusion spectrum imaging [4] have been used in order to
obtain the pathways between cortical regions. Up to now, we
know that the SW property is also present in the human brain
together with exponential or truncated power-law decay in the
degree distribution and the existence of certain communities
inside the network [3], [4]. Several techniques as functional
magnetic resonance imaging (fMRI), electroencephalography
(EEG) and magnetoencephalography (MEG) have revealed
the functional properties of the brain. These methods have
shown that, although the anatomical structure is strongly
correlated with the functional brain network in the resting
state [10], very different functional networks arise depending
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on the task that the brain is performing [11]. There being
important differences in the spatial and temporal resolution
of these methods, all of them have shown the SW property
also in the functional networks [12]. Small-worldness seems
to play a crucial role in complex dynamical processes such as
information transmission, pattern recognition or learning [13],
but is not the only issue. Other studies have gone beyond the
SW configuration and have quantified the importance of over-
connected nodes [14] (known as hubs), unveiled the existence
of characteristic network motifs [15], and also detected the
appearance of community structures [16], which are related to
the segregated organization of the brain.

In the present paper we are interested in how the exis-
tence of communities inside functional networks is related
with the subtle balance between segregation and integration
processes in the brain [17]. Traditionally, this problem has
been treated in the context of anatomical networks and it has
been related to the simultaneous presence of modules and
their interconnections [18], [19]. Up to now, the analysis of
modularity in functional brain networks have mainly focused
in the detection of community structure or the characterization
of the role played by the nodes inside their communities [16].
Nevertheless, less attention has been paid to the study of
how the communities interact with each other due, in part,
to the difficulty in evaluating the overlap between modules.
Here, we apply a recently proposed method to evaluate the
modular structure of complex networks by using Singular
Value Decomposition [20]. The information given by this
technique is twofold: on one hand, it allows to detect the role
played by brain regions at the local and long-range scope,
on the other, it quantifies the integration/segregation balance
given by the functional communities and to evaluate how far
it is from the optimal configuration. Although our sample
study is based on magnetoencephalography (MEG) results
obtained from a healthy control group during a memory task,
the proposed method could be applied to any data set from
healthy or impaired brain networks.

II. METHODS

A. Subjects: Data Acquisition and Node-to-Node Correlations

Nineteen right-handed, age-matched, healthy elderly volun-
teers, without memory complaints participated in the study.
The group was chosen with an average number of eleven
years of education. Individuals underwent a neuropsycholog-
ical assessment, in order to establish their cognitive status in
multiple cognitive functions. Next, a modified version of the
Sternberg’s letter-probe task [21] was used as the memory test.
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After memorizing a set of five letters, a series of single letters
(500 ms in duration with a random ISI between 2–3 s) was
presented, and the participants were asked to press a button
with their right hand when a letter of the previous set was
detected. During this task, the MEG signal was recorded with
a 254 Hz sampling frequency and a band pass of 0.5 to 50 Hz,
using a 148-channel whole-head magnetometer. After applying
a noise reduction algorithm, trials containing visible blinks,
eye movements or muscular artifacts were excluded. Only hits
(successful recognition of the letter) were considered since
we were interested in evaluating the functional connectivity
patterns which support recognition success. Next, we calculate
the Synchronization Likelihood (SL) [22] between all pairs of
nodes of each individual, being N = 148 the total number of
nodes (electrodes). Subsequently, SL was calculated for each
of the thirty-five one-second epochs of the (148 × 147)/2
channel pairs, for the full-band signal (i.e., without band-
filtering), and for each subject. Finally, we obtained one N×N
synchronization matrix W for each individual, where each
component wij was the average of the SL between nodes i
and j. Finally, all results were the average over the values
obtained for each of the nineteen individuals.

B. Projection of the modular structure
We use the traditional partition into lobes as the community

structure of the functional network. In this way, each node
belongs to one of the M = 6 brain lobes: Central (C), Frontal
Left (FL), Frontal Right (FR), Temporal Left (TL), Temporal
Right (TR) and Occipital (O). As proposed in [20] we use the
Singular Value Decomposition (SVD) approach [23] in order
to analyze the structure of the N ×M contribution matrix C.
The elements Ciα are the weights of the links of node i that
fall into community α, Ciα =

∑N
j=1 wijSjα, where wij is the

Synchronization Likelihood between nodes i and j and S is
the partition matrix, where Sjα = 1 if the node j belongs to
community α, and Sjα = 0 otherwise.

Next, we analyse C by using SVD [23] which consists on
its factorization as C = UΣV†, where U is a unitary N ×N
matrix and Σ is a diagonal N×M matrix whose elements are
the singular values σi, which satisfy that σ1 > σ2 > ... > σM .
Finally, V† is the conjugate transpose of the M ×M unitary
matrix V. By truncating the SVD we can obtain a least squares
optimal reduced matrix Cr of order r as Cr = UΣrV

†. This
can be done by considering only the r highest values of σi
and resetting the others to zero. If we chose r = 2 we are
projecting all the information contained in the contribution
matrix into a two dimensional space U2 formed by the two left
singular vectors of matrix U. In this space, it is easy to plot and
analyze the projection of the contribution of nodes to a certain
partition ni =

∑M
α=1 Ciαeα, being eα = (0, ...., 0, 1, 0, ...0)

(a vector whose αth component is 1 and the rest are 0). We
denote the projected contribution of the ith node as ñi (see
Fig. 1) and it is obtained as

ñi = Σ−12 V†ni (1)

where Σ−12 denotes the pseudo-inverse of the diagonal rect-
angular matrix Σ2, which only keeps the two largest singular
values.
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Fig. 1. Example scheme of the SVD (r = 2) for the top right network
with two modules. (Left) The contribution of each node ñi is represented
by a vector in the corresponding module color. All internal nodes, 1 and 2
in the blue module (5 and 6 in the red module), lie along the corresponding
intramodular projection ẽb (ẽr). The modular projection m̃b (m̃r) is com-
puted as the vector sum of all the ñi belonging to the blue (red) module.
The relative distance of node 3 from its module is given by the angle φ and
ñ3, which can be expressed as the sum of its components Rint and Rext.
(Bottom right) Map of the node contributions to the intramodular projection
directions in polar coordinates R−θ, where Ri is the norm of ñi, and θi the
angle between ñi and the horizontal axis. Dashed lines mark the directions
of the intramodular projections of each module.

At the community level, we can calculate for each module α
the line of the projections of its internal nodes (like the nodes
1 and 2 in Fig. 1). This direction ẽα, called intramodular
projection, gives the intrinsic direction that the community α
has in the projection space U2 and it is obtained as:

ẽα = Σ−12 V†eα. (2)

Note that, the contribution of each node in the projection
space U2 can be expressed, using Eqs. (1) and (2), as a linear
combination of intramodular projections, ñi =

∑M
α=1 Ciαẽα.

Finally, every module α has a characteristic direction, the
modular projection m̃α, computed as the vector sum of all the
projections of node contributions ñi, for those nodes belonging
to module α, i.e.

m̃α =

N∑
i=1

Siαñi. (3)

Summarizing, the truncation of order two of the SVD leads
to a vector associated to each node ñi, and two vectors
related with each community α: one that takes into account
the contribution of all nodes of the community, m̃α, and other
that only accounts for the internal weights ẽα, the latest giving
the intrinsic direction of the community α. Figure 1 shows
an schematic representation of the vectors ñi, m̃α and ẽα
for a test network. We can observe how every node with all
links inside its community has a contribution vector ñi in the
direction of the intramodular community vector ẽα. On the
contrary, the more a node deviates from ẽα, the higher the
participation in other communities.

III. RESULTS

A. Community roles

In order to unveil the role of the nodes in the structure of
the modules (here taken as the brain lobes) of the recorded
functional networks, we apply the proposed mapping (the loss
of information associated with the 2D projection is 18.2%) and
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Fig. 2. (Top) Box-and-whisker plots of Rint and Rext. Lobes are sorted
according to medians in increasing order. In each lobe, only outliers (defined
as having a value more than 1.5 times the inter-quartile range IQR lower
than the first quartile or 1.5 times IQR higher than the third quartile) and
the node with the largest value are labeled. (Bottom) Outline of the group of
148 sensors overlying the cortex. Position of the three nodes with the highest
internal contributions (left) and external contributions (right) are marked in
each lobe. For the latter case, each highlighted node is connected to the 15
most synchronized neighbors.

calculate for each node Rint = R cosφ and Rext = R sinφ,
being φ the absolute distance in angle between ñi and the
intramodular projection ẽα (see Fig. 1). While the distribution
of Rint for each module informs about the amount of the
contribution of nodes comprising their own modules, Rext
accounts for the heterogeneity in the connectivity with other
lobes. In Fig. 2, we show the box-and-whisker plots of Rint
and Rext marking those nodes more capable to support the
internal structure of the lobes (high Rint) and also to com-
municate them (high Rext). We observe that, in this optimal
mapping for Rint, all lobes have similar medians, while the
occipital lobe has a median larger than the percentiles-75 of
the rest, indicating that this lobe is highly functional cohesive.
Regarding the interlobe communication, the similarity in range
and medians reveals the homogeneity of the mesoscale, being
the occipital lobe the one with highest value. Nevertheless, the
role played by the two temporal and central lobes is still very
significant because of their high outliers. In the bottom plots
of Fig. 2 we show the position of the local hubs, i.e. those
nodes with higher Rint at their lobes, and the connector hubs,
which are those nodes with higher Rext.

B. Integration vs. Segregation

Next, we are concerned about the mesoscopic interactions
inside the network, i.e., how lobes overlap with each other and
their implications in the integrated/segregated activity of the
functional network. With this aim, we measure the segregated
activity of all modules as MS = 1

M

∑
α

ẽα
‖ẽα‖

m̃α

‖m̃α‖ . Note that
the lower the connectivity of a lobe α with the rest of the
lobes, the closer the vectors ẽα and m̃α, leading to a value
of MSα close to one. In the absence of interlobe connections,
ẽα = m̃α and MSα = 1. At the same time, we measure the
overlap between lobes as their difference in their community
vectors. The indicator of the modular integration is obtained as

MI = 1
M(M−1)

∑
α6=β

m̃α

‖m̃α‖
m̃β

‖m̃β‖ . Finally, we introduce the
modular balance MB as the product of the modular integration
and the modular segregation MB = MI ·MS . To understand
how optimal is the real configuration of the functional brain
networks we tune (by multiplying) the weight of the interlobe
connections by a parameter µ. In this way, when µ = 0 all
interlobe connections are deleted, giving rise to a network
broken into six lobes. When µ = 1, we recover the real
values of the interlobe connections, while for µ = 2 the
interlobe weights are doubled. In Fig. 3 we show the variation
of MI , MS and MB as a function 〈w〉out〈w〉in

, being 〈w〉in and
〈w〉out the average weight of the intralobe and interlobe links,
respectively, the latter depending on the value of µ. From
now on, all parameters are calculated for r=6. We observe
that modular segregation MS (blue circles) is a monotonous
decreasing function while the modular integration MI (red
squares) increases from 0 to a constant value. Interestingly,
there exists an optimal balance between these two quantities
as reflected by the maximum present in the modular balance
MB (black triangles). The dashed line of Fig. 3 shows the
value of the modular quantities for µ = 1, i.e., the real values
of the functional networks. It is clear that the real modular
balance MB is close, but not equal, to the maximum observed
when interlobe connections are modified. This optimal config-
uration, which maximizes the balance between segregation and
integration, is obtained for µ = 1.8, indicating that a further
increase of the interlobe connections would lead to a more
balanced structural configuration.

Finally, in Fig. 4 we plot the overlap matrix O between
lobe regions, whose components are obtained from the scalar
product of the modular projections Oαβ = m̃α

‖m̃α‖
m̃β

‖m̃β‖ . In
the real functional networks we observe a maximum overlap
between the frontal left (FL) and frontal right (FR) lobes,
followed by the overlap of the Central (C) lobe with the FL
(top left panel). Interestingly, the FL-FR and C-FL overlap are
also the ones with higher values in the optimal configuration
(top right panel). Nevertheless, this overlap structure is lost
both when decreasing (bottom left) or increasing (bottom
right) the strength of the interlobe connections. Despite not
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Fig. 3. Segregation and integration balance as a function of the µ dependent
ratio between the external and internal weights per link. Blue circles represent
the modular segregation MS . Red squares provide the modular integration
MI and black triangles are the modular balance MB , the product of both
quantities. Dashed line indicates the value in the real functional networks
(µ = 1). There is an optimal ratio between internal and external weights for
which the balance between integration and segregation is maximal (µ = 1.8).
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Fig. 4. Overlap matrices O between lobes. Each matrix corresponds to the
normalized scalar product of the individual modular projections m̃α obtained
by tuning the weight of the external links with a factor µ. From top to bottom
and from left to right: µ = 1 (real network), µ = 1.8 (optimal value of MB),
µ = 0.2 (low interlobe connectivity) and µ = 5 (high interlobe connectivity).

being optimal, those regions with higher overlap in the real
functional networks coincide with those predicted by the
optimal configuration.

IV. CONCLUSIONS

We have used the Singular Value Decomposition for the
analysis of the modular structure of functional brain networks
obtained by magnetoencephalography during a memory task.
With this method, we have quantified the contribution of brain
areas to the intralobe/interlobe activity and we have detected
those regions having the leading role inside each lobe and
those being the main channels of interlobe communication.
Next, we have measured the amount of overlap between lobes,
and we have studied how the variation of the interlobe commu-
nication would modify the balance between segregation and
integration. Finally, we have seen that the modular structure of
the functional networks analyzed here is close to the optimal
configuration. We believe that this kind of analysis could be
applied to further works comparing healthy individuals with
patients suffering from different brain diseases.
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