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Synchronization waves in geometric networks
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We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity
properties are mostly determined by the distance between units. Such a high clustered structure, combined
with the lack of long-range connections, prevents full synchronization and yields instead the emergence of
synchronization waves. We show that this regime is optimal for information transmission through the system,
as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and
functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant
nodes from a single observation of the dynamics, without any a priori information on the model equations ruling
the evolution of the ensemble.
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In recent years, an increasing number of real systems
have found reliable representations as networks of interacting
dynamical units [1]. In many cases, information on the
networking system can be obtained by only accounting
for nodes and interactions between them, disregarding the
Euclidean position of its components. Such is the case of the
majority of social networks, the World-Wide Web (WWW),
and food webs [2]. Nevertheless, there are other relevant cases,
such as power grids, Internet routers, epidemics, and neural
connectivity, where it is unavoidable to explicitly account for
a network’s structure embedded into a geometric space, as such
a constraint on the spatial positions of the graph’s units greatly
influences all local and global properties of the graph. Only
very recent studies have considered space-dependent network
generative models to explain the origin and features of the
observed connectivity structure [3,4], with a specific focus on
biological neural networks [5].

Furthermore, to what extent a spatial embedding might
influence the setting of a collective network’s dynamics is
a subject attracting much attention in recent research. In
particular, some studies have focused on the influence of
geometry over the dynamical stability of networks of neurons,
as well as over the formation of modules and the network’s
synchronizability [6,7]. Very recently, critical phenomena
and the related appearance of activity avalanches in neural
tissues have been hypothesized in experiments as the main
mechanisms through which information is transmitted and
processed in the graph [8]. Criticality turns out to be of special
relevance for revealing the underlying network’s structure: In
Ref. [9], it was shown that it leads to the reconstruction of
the network topology from the observation of the dynamics,
after extensive statistics. This is a promising result as, in
general, the connectivity structure of a graph cannot be fully
revealed only from the observation of its dynamics, and it
has to be expected that the spatial embedding, when relevant,
could provide additional information to recover properly the
topology of a network from dynamical data.

In this paper, we consider the interplay between structure
and dynamics in a spatial network of excitable units. In particu-
lar, we focus on the graph’s coherence properties and study the

onset of synchronization waves as a hallmark imprinted by the
spatially embedded topology, thus constituting a transitional
configuration between synchronization of a complex network
and pattern formation in continuous extended media. We show
that, in association with such a waving regime, there is a strong
correlation between the functional and topological centralities
that helps in capturing the most topologically relevant nodes,
without any previous knowledge of the network growth model.

Let us start with generating the network spatial config-
uration. To this end, we randomly seed N = 500 nodes
in a two-dimensional Euclidean space of size L × L, with
L = 100. We further consider that the probability of node i

of establishing a link with node j of the ensemble is given
by the distance-dependent rule p(r) = p0e

−( r
σ

)2
, where p0 is

a constant, r ≡ dij is the Euclidean distance between nodes
i and j in the plane, and σ is a parameter regulating the
link outreach [4]. For large values of σ , p(r) ∼ p0 and the
resulting network becomes space independent, equivalent to an
Erdös-Renyi random configuration. In contrast, small values
of σ generate networks that lead to a strong clustering and
highly modular structure. The procedure is similar to that of
random geometric graphs (RGGs) [10], despitethe fact that
the link between two nodes relies on probability rather than
linking volume. Links are added here until a target mean
degree 〈k〉 is obtained, and the resulting graphs are tested
to feature a single connected component of size N . As the
node density is N/L2 [and p(r → 2σ ) → 0], the mean target
degree is 〈k〉max ∼ N

L2 π (2σ )2, which gives 〈k〉max = 15 for
σ = 5, which is the minimum value of σ below which it is
not warranted that all nodes have at least one connection.

While the scenario that will be described holds qualitatively
for a generic excitable system, for the sake of illustration we
use the case in which the node i is a neuron unit, obeying the
Morris-Lecar model [11,12]:

CV̇i = I ext
i − gCaM∞(Vi)(Vi − VCa) − gKWi(Vi − VK ),

− gL(Vi − VL) − d

ki

N∑
j

aij (Vi − Vj ), (1)
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Ẇi = W∞(Vi) − Wi

τ (Vi)
. (2)

Here Vi is the soma potential, Wi(Vi) is the fraction of open
K+ channels, and W∞(Vi) [M∞(Vi)] stands for the K+ (Ca+2)
channel voltage-dependent saturation value in the absence of
stimulation. I ext

i is the external current source, and the three
addends account for the internal ionic Ca+2, K+, and leakage
currents, with their corresponding channel conductivities gCa,
gK, and gL. The model parameters are selected so as to
produce class II neural excitability with a bifurcation point
at I ext

i = I th = 0.33, signaling a transition from an excitable
to an oscillatory regime as I ext is increased. Each neuron
is injected with an external current I ext

i = I 0
i + εi , being I 0

i

randomly distributed within the interval (0.32 ± 0.2), and εi a
Gaussian white noise of zero mean and standard deviation 0.1,
uncorrelated for each node. As a consequence, part of the nodes
are above the spiking threshold I th, and the system exhibits a
spontaneous activity whose spatiotemporal features are the
object of our study. A = {aij } is the connectivity adjacency
matrix, d is the coupling strength, and ki is the number of
connections of node i.

In order to quantify the synchronization in a way convenient
for experimentalists, we calculate the coherence between
nodes i and j as the correlation between the the time series
of spikes at zero delay, within a time bin �t . To that end,
the system is evolved for a long time T . Then, this interval
is divided in � small time bins of size �t (i.e., T = ��t).
Each spiking sequence is then converted into a binary series
Bi by assigning the value Bi(τ ) = 1 if node i has spiked
within the τ th bin, and 0 otherwise, for τ = 1,2, . . . ,�. Finally,
the quantity sij is introduced to account for the dynamical
coherence between nodes i and j [13]:

sij =
∑�

τ=1 Bi(τ )Bj (τ )√∑�
τ=1 Bi(τ )

∑�
τ=1 Bj (τ )

. (3)

This way, the global network synchronization S can be
calculated as the ensemble average of the coherence matrix
S = {sij }. Figure 1(a) reports the value of S versus σ and
d for 〈k〉 = 15. As it is seen, the system can only reach
significantly high global synchronization for d values over
a critical threshold dc ∼ 0.08. However, even at high d > dc,
small values of σ prevent the system from reaching global
synchronization. This is of particular relevance in biological
networks, where often full synchronization is associated with
a pathological state [14]: For instance, the excess of long-
range connectivity in some cortex areas is considered as
the main hypothesis for epileptic seizures. To gain a deeper
insight into the loss of global synchrony within this region,
we define the local synchronization as Sρ = 〈sij 〉, dij < ρ,

where ρ is a synchronization radius. Figure 1(b) shows the
behavior of Sρ in the [d,σ ] phase space. We can observe
that the threshold value of d required for the onset of
local synchronization is similar to that obtained for the
global synchrony. Nevertheless, a significant difference arises
when comparing both synchronization indicators, since local
synchrony is maintained even for moderate values of σ . This
fact indicates that the influence of long-range connections is
much less important locally than globally. In Fig. 1(c), we plot

(d)

(a) (b) (c)

FIG. 1. (Color online) (a) Global synchronization S, (b) local
synchronization Sρ , and (c) wave synchronization Sw = Sρ − S (see
text for definitions) in the parameter space (d,σ ). In all cases, ρ = 10
and N = 500. The color code is reported in the bar at the right of the
three plots. (d) Successive snapshots of the activity of the network,
for 〈k〉 = 15, d = 0.2 and σ = 10. Empty (full) circles correspond
to inactive (spiking) nodes. The underlying network has been hidden
for a better visualization.

the difference between both measures, Sw = Sρ − S, showing
the region where the network locally synchronizes despite not
featuring a global coherent behavior. Interestingly, this region
is characterized by the appearance of synchronization waves
[15]. For a coupling strength d > dc, we can observe how the
wave dynamics is affected by σ . The system departs from an
asynchronous regime (low values of both Sρ and S) and enters
a region where the width of the wave fronts increases with
σ , eventually collapsing into a full synchronization regime
for sufficiently high values of σ , that is, once the spatial
constraint progressively loses its influence. Therefore, the
difference Sw = Sρ − S is a good indicator of the existence
of a wave regime. An example of a synchronization wave
is reported in Fig. 1(d), where we plot three successive
snapshots of a wave front propagating through the network at
σ = 10 and d = 0.2. The nonlocal coupling makes this waving
phenomenon different in many aspects from waves observed in
continuous excitable media [16] as, for example, the facts that
wave-front widths depend on the long-range coupling outreach
and that propagation of coherent spatial structures like spiral
waves is hindered by the shortcut links between nodes [17].

Notice that such a wave dynamics is not present in
nongeometric networks, where the route to synchronization
occurs instead via clustering processes for the random case
(ER) or evolves from hubs in scale free (SF) [18,19]. This
difference can be observed in Fig. 2, where we consider
carefully the synchronization edge as a function of d for a small
σ value (σ = 10, at which the maximum of Sw occurs) and a
very large one (σ = 1000, for which the resulting network
is identical to a nongeometrical ER graph). As discussed
previously, the full synchronization is only reachable for
large σ [Fig. 2(a)], where for σ = 10 the system remains
very far from global synchronization. Below dc, the global
synchronization is indistinguishable in both cases, but in
Fig. 2(b) we can observe how the different link outreach
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FIG. 2. (Color online) Synchronization route as a function of
the coupling strength d for σ = 10 (blue dashed lines) and σ =
1000 (black continuous lines). (a) Global synchronization S and
(b) local synchronization Sρ . (c) Number of synchronized connected
components for σ = 10, σ = 1000, and scale-free network (red
dotted lines).

yields to the a different evolution of the radial synchronization
Sρ : The high clustering of the σ = 10 network helps to
create synchronized components that, in this case, roughly
correspond to geometrical neighbors. This group grows faster
than in the ER case, coinciding with the development of the
wave. This is clear in Fig. 2(c), representing the number of
connected components of the S matrix as a function of d

for σ = 10, σ = 1000, and SF configuration networks. Here,
in order to understand S as an adjacency matrix, we use a
threshold T such that sij = 1 if sij > T , and sij = 0 otherwise.
The number of connected components is the multiplicity of
the null eigenvalue of the Laplacian matrix obtained from the
resulting binary synchronization matrix. It can be seen as the
local synchronization for small σ behaves in a way similar to
a SF network for small d, since the synchronized component
grows from the most clustered areas, acting as a hubs, up to
form the wave front. As d increases, the wave gets defined,
and the number of connected components decreases smoothly
as the wave sharpens.

The wave-propagation regime, where the information trans-
mission through the system seems to be maximal [8], is an
optimal state to explore the relationship between dynamics
and topology. The recovering of information on the network
structure from measurements of the network dynamics is a
relevant issue that has been considered in literature [20],
particularly in the case of brain dynamics where the topic
has generated much interest [12,21].

In the present case, we demonstrate that the wave passage
generates a real-time functional enlightening of the underlying
network structure. To this end, we calculate the time-dependent
centrality correlation Cc(τ ) = corr[ �CS(τ ), �CA] for each time
bin τ . Here, �CA is the eigenvector centrality of the adjacency
matrix A, while �CS(τ ) is the eigenvector centrality calculated
for the instantaneous coherence matrix S(τ ) whose elements
are sij (τ ) = Bi(τ )Bj (τ ). In Fig. 3 we show the value of Cc(τ )
and the global synchronization inside each bin S(τ ) = 〈S(τ )〉,
along with the raster plot, for the same values of N , 〈k〉,
and d and two values of σ (σ = 10, corresponding to wave
propagation, and σ = 30, closer to full synchronization). In
Figs. 3(a) and 3(b), the dynamics corresponds to a wave

FIG. 3. (Color online) (a), (c) Temporal evolution of the centrality
correlation Cc(τ ) (black solid line) and global synchronization at each
bin S(τ ) (blue dash-dotted line). (b), (d) Raster plots of the network
activity. See text for the definition of all quantities. Parameters
are N = 500, 〈k〉 = 15, d = 0.2, and [(a), (b)] σ = 10 and [(c),
(d)] σ = 30.

propagation where, as we have seen, global synchronization
(dotted line) is not very high. Nevertheless, during the wave
passage, the running value of Cc(τ ) (full line) reaches a
maximum close to 0.8, revealing a strong bounding between
structural and functional centralities. In contrast, for fully de-
veloped synchronization [Figs. 3(c) and 3(d)], the correlation
Cc(τ ) nearly vanishes, showing small fluctuations only when
nodes are activated.

The reported results suggest, therefore, that the regime
of wave propagation is an optimal candidate for the task of
recovering the structure of the network from the observation
of its dynamics. In fact, the knowledge of the relation-
ship between the most functionally relevant areas and their

(b)(a)

FIG. 4. (Color online) Sample nets showing the 50 nodes with the
highest topological (◦) and functional (•) centrality for (a) σ = 10
and (b) σ = 25.
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underlying structures is enough to give insight into the whole
network. In Fig. 4, we plot some examples of the 50 nodes
with the highest topological (•) and functional (◦) centrality
for d = 0.2 in two distinct situations: the wave-propagation
regime at σ = 10 depicted in Fig. 4(a) and a close to fully
synchronized regime at σ = 25 in Fig. 4(b). The comparison
clearly shows that the prediction of the node roles is strikingly
good in the wave-synchronization regime, while the relation-
ship between structure and dynamics becomes weaker and
weaker as the level of global synchronization grows in the
network.

In conclusion, we have studied the properties of synchro-
nization of a geometric complex network, where the nodes are
embedded in real space and the link probability decreases
with the Euclidean distance. We have shown that a high
density of connections with close neighbors combined with the
lack of long-range connections prevents full synchronization,

and it allows the emergence of synchronization waves. This
latter state strongly correlates the topological and functional
centralities of nodes, thus enhancing the option of inferring
the network topology from the observation of the dynamics,
up to the point of allowing detection of the central areas from
only functional coherence data. Our results, therefore, can be
of relevance in all circumstances where one has full access
to functional measurements and the possibility of a direct
inspection of the topological structure (i.e., the probing of the
underlying connectivity matrix) is prevented as, for instance,
is often the case in biology.
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