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Abstract

The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational
processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the
secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map
leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through
single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the
topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive
folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different
secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree
distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path
between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks
are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the
symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be
analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of
these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional
advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances
the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to
other networks previously described.
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Introduction

RNA is a well-suited model for studying evolution since

genotype and phenotype are incorporated in a single molecular

entity [1]. Built around a sugar-phosphate backbone, RNA

consists of the 4 types of nucleotides ACGU and forms a unique

sequence, representing genotype. Since the biochemical function

of RNA is to a large extent given by its three-dimensional spatial

conformation, the genotype-to-phenotype map of RNA can be

split conceptually into a map from sequence to structure and a

map from structure to function. Particularly for short sequences,

the tertiary structure of an RNA molecule is very well

approximated by the secondary structure fold. Therefore, RNA

secondary structure represents one of the simplest possible realistic

phenotypes [2,3].

The mapping from sequence to secondary structure is many-to-

one, i.e., there are many sequences that fold into the same

structure. Assuming that all such sequences represent the same

phenotype, they form a neutral network of genotypes. The number of

different phenotypes gives the number of different neutral

networks. The sequences that fold into the same secondary

structure are the nodes of the neutral network. The links of the

network connect sequences that are at a Hamming distance of

one, i.e., that differ in only one nucleotide. Therefore, a neutral

network may be connected – when all sequences are related to

each other through single-point mutations – or disconnected. In

the latter case, the neutral network is composed of a number of

subnetworks. Examples can be found in [4].

Many structural aspects of the RNA sequence-structure map

and of RNA neutral networks have been studied over the decades

[2,4–12], and have revealed a large part of the amazingly complex

structure underlying the genotype-phenotype map. A rough upper

bound to the number of different secondary structures Si retrieved

by sequences of length l, and valid for sufficiently large sequences,

was derived in [6]: Sl~1:4848|l{3=2(1:8488)l . This implies that

the average size of a neutral network grows as

4l=Sl~0:673|l3=22:1636l , which is a huge number even for

moderate values of l. This average value is however not

representative of the actual distribution of neutral network sizes,

which is a very broad function without a well-defined average and

with a fat tail [6,13]. The space of RNA sequences of length l,

which is embedded in a regular lattice of dimension l, is dominated

by a relatively small number of common structures which are

extremely abundant and happen to be found as structural motifs of
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natural, functional RNA molecules [5,14]. Neutral networks

corresponding to common structures percolate the space of

sequences [4,8] and thus facilitate the exploration of a large

number of alternative structures. This is possible since different

neutral networks are deeply interwoven: all common structures

can be reached within a few (mutational) steps starting from any

random sequence [8]. In this contribution, we focus on the

topology of RNA neutral networks and analyze local and global

parameters describing their structure.

The application of complex networks theory to biological

systems has given fruitful results about how the topology of the

network is related to the dynamical processes occurring on it [15–

17]. In protein-protein interaction networks, for example, nodes

represent proteins that are connected through an undirected link if

they bind to form a more complex component [18]. This kind of

networks forms a giant connected component with small-world

configuration (high clustering and short-path between nodes)

[19,20] and, in some cases, scale-free connectivity [20–22].

Networks with this structure are very robust against random

failures and, at the same time, they are able to propagate any

perturbation through the network within a few steps [23]. In the

case of metabolic networks, nodes may represent metabolites,

reactions or enzymes, and links between them have a given

directionality. As in protein networks, the degree distribution

shows scale-free connectivity [24,25] and small-world structure

[26]. In genetic regulatory networks, genes are the nodes of the

network and transcription factors (activators or repressors) define

directed links between nodes [27]. Again, despite being networks

of different nature, the number of links leaving a certain node has

a scale-free distribution [28,29]. All of the biological networks

listed in this paragraph result from constructive processes that

preserve network functionality at all stages, modify the size of the

networks through evolution, and optimize different biological

traits. These processes are essential to determine the topological

properties of the resulting networks. In this sense, their nature is

different from RNA secondary structure neutral networks, whose

topological characteristics are a consequence of the folding

process. As will be shown, the local properties of neutral networks

are constrained by the existence of four different nucleotides

forming the RNA sequence and by the main structural motifs of

the secondary structure (stacks and loops). An analysis of the

restrictions they induce permits to obtain good analytical

approximations to some of the topological features of neutral

networks.

Methods

Sequence folding
We have folded in silico all different RNA sequences of length

l = 12. As structure, we use the minimum free energy secondary

structure, as predicted by routine fold( ) from the Program

RNAfold of the Vienna RNA package [30], version 1.5, with

the energy parameter set based on Ref. [31].

It must be noticed that RNAfold, as most folding programs,

does not allow for pseudoknots or other kind of tertiary

interactions. However, and in particular for the relatively short

molecules considered here, secondary structures are a very good

approximation of the tertiary structures since a major part of the

folding energy corresponds to the secondary structure formation.

No search for suboptimal structures was performed in this study.

RNA secondary structure folding consists in the formation of

base pairs (through hydrogen bonding) between nucleotides of the

same sequence (also called primary structure). The routine fold() is

called with the default parameters, i.e., it allows Watson-Crick and

G-U wobble base pairing (thus allowing in total 6 types of base

pairs, G-C, C-G, A-U, U-A, G-U, U-G) and the temperature is

set to 37uC. For a secondary structure the base pairs fulfill three

conditions [3]: (a) An individual nucleotide participates in at

most one base pair (no triplets or higher interactions). (b) Base

pairs between nearest neighbors are excluded (actually, a hairpin

loop must have at least size 3). (c) No pseudoknots: compared to

any existing base pair, any other base pair either lies enclosed by

the first one or lies completely outside. No special stabilizing

energy contributions for tetraloops are assumed. Dangling end

energies are assigned only to unpaired bases adjacent to stacks in

free ends and multiloops. A base cannot participate simulta-

neously in two dangling ends. Single base pairs are allowed to

form. Secondary structures are obtained in the standard bracket

notation being the default output of the routine fold( ). There, an

opening parenthesis ‘‘(‘‘ denotes a base which is paired with a

downstream nucleotide, a closing parenthesis ‘‘)’’ a base paired

with an upstream nucleotide, and dots denote unpaired

nucleotides.

The 412 = 16777216 molecules fold into 57 different secondary

structures plus the open structure, which contains 85% of the

sequences. In Table 1, we give all structures, together with the

number of sequences folding into each structure (‘‘frequency’’). All

sequences that fold into the same structure form the neutral

network of that structure. By definition, two sequences are linked if

they fold into the same secondary structure and differ in a single-

point mutation (i.e. they are at a Hamming distance of one, see

Fig. 1(A)). Therefore, a neutral network may be connected or

disconnected. In the latter case, the neutral network is composed

of a number of subnetworks, see Fig. 1(B). For all but two

structures, the neutral network is disconnected and formed by 2 to

42 subnetworks, also given in Table 1. In total, 645 different

subnetworks have been found for the 57 structures. The open

structure (last entry in Table 1) is not considered for the

topological analysis.

Definition of topological quantities
Each subnetwork is a connected and undirected graph whose

structure is contained in the adjacency matrix A, with elements Aij = 1

in case sequences i and j differ in a single nucleotide, and 0

otherwise.

We compute the size N, the total number of links L and the degree

distribution p(k), which yields the probability of finding a node of

degree k, for each subnetwork. The degree corresponds to the

number of neighbors ki of a given sequence i within its neutral

subnetwork. The local density of links is measured by the clustering

coefficient C, which is first defined for each node i as the probability

that two of its neighbors are connected:

Ci~
number of connected pairs of neighbors of i

number of pairs of neighbors of i~
1

2
ki(ki{1)

: ð1Þ

The local clustering as a function of degree C(k) is defined as the

average of Ci over all nodes with a given degree k:

C(k)~SCiTjki~k : ð2Þ

Finally, the clustering of the subnetwork C is obtained by

averaging over all nodes C = ,Ci..

The shortest path ,d. of each subnetwork is calculated as the

average of the shortest path length dij between any pair of

Topological Structure of RNA Neutral Networks
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Table 1. Structures and neutral networks obtained from the folding of all sequences of length l = 12.

Structures and neutral networks for n = 12

rank frequency subnetw. structure rank frequency subnetw. structure

1 218567 16 (((....))).. 30 23260 8 ...(((...)))

2 183335 10 .(((....))). 31 15350 6 ..((......))

3 161765 26 (((.....))). 32 11365 7 ...((.....))

4 152393 9 ((....)).... 33 6940 3 ......(....)

5 152221 15 ..(((....))) 34 3638 28 ((.(....))).

6 121861 8 ...((....)). 35 3519 27 (((....).)).

7 117253 21 ((((....)))) 36 2963 39 ((.(....).))

8 113896 8 .((....))... 37 2244 12 (.((....))).

9 110842 22 .(((.....))) 38 2208 1 ((........))

10 105538 8 ..((....)).. 39 1520 16 .(.(....).).

11 93866 7 ((.....))... 40 1379 15 (.(....).)..

12 76439 5 ..((.....)). 41 1368 2 .((.......))

13 74626 12 (((......))) 42 1308 22 .((.(....)))

14 71904 5 ((......)).. 43 1189 34 (..(....)..)

15 70375 5 .((.....)).. 44 1140 23 .(((....).))

16 61792 7 .((......)). 45 860 3 ..(.(....)).

17 61613 27 ((((...)))). 46 800 3 (.(....))...

18 46510 10 ....((....)) 47 713 3 .(.(....))..

19 45288 42 .((((...)))) 48 665 15 (.((....)).)

20 41618 18 ..(((...))). 49 414 11 ..(.(....).)

21 41092 15 (((...)))... 50 314 3 (..(...)..).

22 39740 19 .(((...))).. 51 240 3 (.((...)).).

23 37472 5 ((.......)). 52 220 4 ((((...)).))

24 31848 3 (....)...... 53 211 4 ((.((...))))

25 31498 3 .....(....). 54 165 4 ..((....).).

26 27522 3 ....(....).. 55 153 4 .((....).)..

27 27312 3 .(....)..... 56 107 6 (((....)).).

28 25053 3 ..(....).... 57 54 1 (.(.....).).

29 24366 3 ...(....)... - 14325304 - ............

Additional properties of the l = 12 RNA neutral networks space can be found in [10].
doi:10.1371/journal.pone.0026324.t001

Figure 1. Construction of neutral networks. In (A), we show an example of how neutral networks are constructed: sequences that fold into the
same secondary structure are connected if they are at a Hamming distance of one. In (B), we show all sequences of length 12 that fold into the
secondary structure (.(....))..., which is ranked in the 46th position. Although all sequences fold into the same secondary structure, the neutral network
splits into 3 isolated subnetworks of sizes N = 404, 341, and 55.
doi:10.1371/journal.pone.0026324.g001
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sequences i, j belonging to the same subnetwork,

SdT~

X
i,j

dij

N(N{1)
.

The nearest-neighbor degree knn,i is another local quantity that

measures the average degree of the neighbors of a node i. It is

usually calculated as a function of the degree k,

knn(k)~
X?

k’~0

k’p(k’jk), ð3Þ

where p(k’jk) is the fraction of links that are attached to a node of

degree k whose other ends are attached to a node of degree k’. The

variation of knn(k) with k is related to the assortativity of the

subnetwork [32], which indicates the tendency of a node of degree

k to associate with a node of the same k. When knn(k) is an

increasing function, the subnetwork is assortative and the most

connected nodes (sequences) are prone to be linked to other highly

connected sequences. If the knn(k) function is decreasing, a network

is called dissortative and indicates that the network hubs are mainly

attached to sparsely connected nodes. Assortativity can be

quantified by the degree-degree correlation coefficient r, which is the

Pearson correlation coefficient for the degrees of the nodes at

either end of a link:

r~

X
i
k2

i knn,i{ 2Lð Þ{1
X

i
k2

i

h i2

X
i
k3

i { 2Lð Þ{1
X

i
k2

i

h i2
: ð4Þ

The r parameter and the knn(k) distribution are closely related: a

monotonically increasing (decreasing) knn(k) corresponds to a

positive (negative) value of r.

The definition of betweenness centrality B(i) of a node i is given by

B(i)~
1

2

X
j,k

gjik

gjk

, ð5Þ

where gjk is the total number of shortest paths between nodes j and

k, and gjik is the number of shortest paths between nodes j and k

that pass through node i. The eigenvector centrality v1(i) is given by the

right eigenvector of the largest eigenvalue l1 of the adjacency

matrix A [33].

Finally, we analyze the community structure of the networks by

computing the modularity Q, given by [34]:

Q~
Xm

i~1

(eii{a2
i ), ð6Þ

where m is the number of communities inside the network, eii is

the fraction of links in the network connecting nodes of the

same community i, and ai is the fraction of links that have one

or two ends inside community i. Note that the larger the

fraction of links inside each community (internal links), the

higher the value of Q. This way, modularity Q is usually taken

as the reference parameter in order to find optimal community

divisions based on the topological analysis of the networks [35].

In the current work, we have used the extremal optimization

algorithm [36] since it has high performance even for networks

of large sizes.

Population dynamics on RNA neutral networks
Though this work is mainly related to the topological

description of RNA secondary structure neutral networks,

topology becomes especially relevant when one considers the

evolution of ensembles of RNA sequences subjected to replication

and mutation and suffering the selective pressure of staying on a

given neutral network to maintain functionality. Here we

introduce the basic rules and quantities related to sequence

population dynamics. Select a particular neutral (sub)network and

suppose that sequences corresponding to any of the nodes replicate

and mutate at each time step. If a mutant coincides with one of the

neighboring nodes in the network, its population increases in one

unit; if the mutant is not in the network, it is eliminated. This

process can be mathematically described as n(tz1)~Mn(t),
where n(t) is a vector whose components are the number of

sequences at each node of the network at time t and M is the

transition matrix

M~(2{m)Iz
m

3l
A, ð7Þ

with m being the mutation rate, I the identity matrix, l the length of

the sequence and A the adjacency matrix of the network. The

eigenvalues wi of M and li of A are related by wi~(2{m)z
m

3l
li,

while both matrices share the same eigenvectors [37].

In the limi t R ‘, the population attains a stationary state that is

described by the right eigenvector associated to the largest

eigenvalue w1 of M, or to the largest eigenvalue l1 of A. While

w1 yields the growth rate of the population at equilibrium, l1

coincides with the spectral radius of A, which further corresponds to

the asymptotic neutrality of the population [38].

Results

Neutral network and subnetwork sizes
Table 2 summarizes the main parameters of the space of

sequences and neutral networks. In order to compare our results

with a randomized RNA neutral network, we have selected at

random Nfold sequences from the complete space of length l = 12

and connected them if they differ in one position, irrespectively of

their corresponding secondary structure. Note that Nfold is the total

number of sequences that do fold into a secondary structure, that

is, sequences yielding the open structure are discarded. The

random network has an average degree SkrndT about three times

smaller than the average degree SkT of the real neutral

subnetworks. This reveals that neutral networks are not spread

over the full space of sequences, but cluster around preferred

regions.

Figure 2 shows a rank ordering of subnetwork sizes N. As a

function of rank r, they approximately follow N(r)^ exp ({c),
with c= 20.01515(5). The insets illustrate the relation between

such subnetwork sizes and the size of the network they belong to,

depending on the number Lp of base pairs in the structure.

Although the five largest networks have a secondary structure

formed by only Lp = 2 base pairs, there is no simple correspon-

dence between the number of pairs and the size of the

subnetworks. The number of base pairs in the stacks, however,

determines the maximum possible number of large subnetworks

per structure. Attending to accessibility through point mutations

[39], the six possible base pairs can be classified into two groups:

GC<GU<AU (group 1),

Topological Structure of RNA Neutral Networks
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CG<UG<UA (group 2) : ð8Þ

We will define as accessible sequences those whose stacks are

identical in composition or differ only in accessible base pairs.

Only accessible sequences can belong to the same subnetwork,

because base pairs from groups 1 and 2 cannot be connected by

single-point mutations. Even when two sequences are accessible,

they will only belong to the same subnetwork if there exists a

continuous path through sequences belonging to the subnetwork

that connects them.

Degree distributions
The degree of a sequence is a measure of its robustness to

mutational changes. The larger its value of k, the less likely will be

that a random mutation causes a different secondary structure.

Degree is thus a first indicator of the functional stability of a given

sequence, and by extension of a given secondary structure.

In Fig. 3(A) we plot the degree distribution p(k) of fifteen

subnetworks of different sizes, specifically, the five largest

subnetworks (N<56104) together with five subnetworks that are

one (N<56103) and two (N<56102) orders of magnitude smaller.

These degree distributions cannot be well approximated by any of

the usual distributions (such as Poissonian or binomial ones).

Figure 2. Subnetworks size ranking. In linear-logarithmic scale, ranking distribution of subnetwork sizes. Colors indicate the number of base
pairs Lp in the secondary structure: one pair (black), two pairs (red), three pairs (green) and four pairs (blue). The solid line corresponds to an
exponential fitting. Insets show for each group of structures (with the same Lp) the size of the subnetworks (in the y-axis) that belong to the same
neutral network as a function of the corresponding neutral network size (in the x-axis). Note changes of scale in both axes.
doi:10.1371/journal.pone.0026324.g002

Table 2. Description of the main parameters of the sequence space.

Parameter Description Value

b Number of different bases (alphabet length) 4

l Sequence length 12

Ntotal Total number of sequences 412 = 16777216

Nfold Folded sequences 2451912

Nstruct Number of different secondary structures (networks) 57

Nnet Number of clusters (subnetworks) 645

,k. Average degree of the folded sequences 16.74

,krnd. Average degree of a random network of size Nfold 5.26

,krnd. is the expected average degree if the probability of folding into a structure different from the open structure would not depend on the position in the space of
sequences.
doi:10.1371/journal.pone.0026324.t002
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Nevertheless, they are single-peaked in all cases, with the

maximum shifted towards the highest values of the degree. This

fact indicates that high-degree nodes are more frequent, despite

the cut-off value given by kmax = (b21)l, with b = 4 the number of

different nucleotides and l = 12 the sequence length (i.e., kmax = 36).

This largest degree is never reached.

Next, we show the dependence of the subnetwork average

degree SkT(N) on subnetwork size [Fig. 3(B)]. We observe that the

average degree ,k. grows with size, approximately following

SkT(N)*1:79(2) ln N. An analogous relationship between neu-

trality and (estimated) size of a neutral network has been reported

in [11].

Attending to some generic properties of the sequence-structure

map, it is possible to derive an analytical relationship between the

average degree ,k. and the size of the subnetwork N.

Generically, a structure is formed by 2Lp nucleotides forming Lp

pairs and Lu unpaired nucleotides, with 2Lp+Lu = l. Paired and

unpaired nucleotides have a different response to mutations, since

most neutral mutations, especially for short sequences, occur in

unpaired nucleotides [1,9]. This difference is reduced as the length

l of the molecule grows. In the limit of large l, the probability of the

paired nucleotides supporting neutral mutations in an RNA

molecule and the corresponding value for unpaired nucleotides

become independent of the length l [7,8].

We denote by p21$0 the average number of neutral mutations

per base pair that a given sequence can accept and by u21$0 the

corresponding average number of neutral mutations per unpaired

nucleotide. The values of u and p are bound due to the size of the

alphabet and the possible chemical interactions between nucleo-

tides, such that u#4 and p#3. Given u and p for a sequence, its

degree can be obtained as k = kp+ku, with kp = (p21)Lp and

ku = (u21)Lu. These quantities can be further averaged over all

sequences belonging to the same neutral (sub)network, such that its

size can be estimated as

N&�ppLp �uuLu , ð9Þ

where �pp and �uu count the actual average number of pairs and

nucleotides at paired and unpaired positions, respectively, that

maintain the secondary structure (see also [8]). Clearly, N is a

structure-dependent quantity. For later convenience, let us now

define

a~
(�uu{1)Lu

SkT
ð10Þ

as the average fraction of total mutations that occur in unpaired

nucleotides for a given structure. Simple algebra leads to

SkT&
ln N

AS

, ð11Þ

Figure 3. Degree distribution p(k) and average degree SSkTT. (A) Degree distribution p(k) of fifteen subnetworks. They are the five largest (black
curves), five of intermediate size (brown curves, one order of magnitude smaller) and five small subnetworks (blue curves, two orders of magnitude
smaller). (B) Average degree SkT as a function of the subnetwork size N. Colors correspond to one (black), two (red), three (green) and four (blue)
base pairs in the secondary structure. The solid line corresponds to the numerical fitting SkT*1:79 ln N (note the logarithmic-linear scale). The
analytical approximation to SkT making use of the values of �uu, �pp and a obtained from all the 12-nt folded sequences (and implying AS = 0.53) is
plotted in long-dashed black line. The upper and lower bounds to coefficient AS yield SkT~ ln N and SkT~(3= ln 4) ln N (plotted in short-dashed red
lines).
doi:10.1371/journal.pone.0026324.g003
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with

AS~
1{a

�pp{1
ln �ppz

a

�uu{1
ln �uu : ð12Þ

AS depends implicitly on SkT through a. Substituting this

expression in Eq. (11) and developing in powers of SkT, we obtain

SkT&
�pp{1

ln �pp
( ln N{D)zO(SkT{2), ð13Þ

where D~(�pp{1){1Lu( ln �ppz(�pp{1) ln �uu{�uu ln �pp): Therefore, the

main order in SkT yields the expected functional form

SkT* ln N. According to their definition, parameters �pp and �uu
depend on the structural state of a nucleotide (whether paired or

unpaired), and as such are mostly independent of the particular

structure considered. However, a contains explicit information on

the number of unpaired (or paired) nucleotides in a structure, and

hence is a structure-dependent quantity (in fact, it is clear from

Eqs. (10) and (13) that a decreases with N and with the number of

base pairs b). This implies that there is an intrinsic dispersion in the

values of the average degree due to the structure-dependent

coefficient in Eq. (11). This dispersion is clearly visible in Fig. 3(B),

where each point corresponds to one of the 645 subnetworks and

where no statistical errors are present. The extreme values of AS

can be however obtained (and the corresponding approximations

for SkT are plotted in short-dashed red lines). The maximum value

of AS is one, and it is obtained when any mutation destroys the

secondary structure considered (�pp~�uu~1[SkT~0). This is

however a marginal case where N = 1 by definition. Values of AS

close to one are only possible for very small networks. The function

( ln x)=(x{1) is monotonically decreasing. Hence, the minimum

value of AS~( ln 4)=3 is attained when all mutations occur in

unpaired nucleotides (independently of their precise number) and

any mutation is accepted, such that a = 1 and �uu~4. Furthermore,

a more precise value of AS for our case can be calculated by

making use of the numerical estimations for �uu, �pp and a obtained as

the average of all 12-nt folded sequences. This calculation yields

�uu~3:37, �pp~1:25, a = 0.95 and AS = 0.53 (long-dashed black line

in Fig. 3(B)). Note that, for this calculation, we have assumed an

average, constant a for all structures. Other values previously

reported in the literature for a also show that the fraction of total

mutations that lies on the unpaired nucleotides is close to 1, such

as for example a = 0.84 for the 76-nt tRNA molecule [1,9].

Clustering
The clustering coefficient C quantifies the amount of links

existing between the neighbors of a given sequence. It is a measure

of cliquishness [32] that reveals deviations from random

relationships between nodes. Usually, low values of C correspond

to randomly connected networks, while values above the random

expectation indicate the existence of local correlations and, in the

case of RNA neutral networks, the presence of regions in sequence

space which are more robust than average with respect to

mutations.

Figure 4(A) shows the clustering coefficient C(k) as a function of

the degree k for the previously analyzed subnetworks. It suggests

that data are compatible with a power-law decay of the form

C(k),k21, regardless of the subnetwork size. This scaling has been

previously reported in other kind of biological networks, such as

metabolic [40] and protein networks [20], and has been usually

attributed to their hierarchical modularity. In those networks,

sub-modules integrate, at different scales, into larger modules [40],

leading to the observed power-law decay of the clustering. However,

this functional behaviour of the clustering with the degree can only

be obtained if the degree distribution has a scale-free structure

p(k),k2c. This is not the case of neutral networks, where the power-

law decay of the clustering distribution is related to the structural

properties induced by folding and to the alphabet size.

The numerical dependence of the average clustering coefficient

C(N) on the subnetwork size N is shown in Fig. 4(B). In order to

evaluate the degree to which our networks depart from their

randomized counterparts, we compare the C(N) distribution with

the one obtained in equivalent random networks. The latter

networks have been obtained by randomly reshuffling the links

within each subnetwork, disregarding biological constraints, but

keeping the degree distribution p(k) fixed (black squares of

Fig. 4(B)). Note that this operation destroys the geometrical

structure underneath the networks, despite the fact that each

sequence (node) maintains its number of neighbors. The result is

that the clustering distribution of neutral networks is not similar to

that of usual random networks, for which Crnd (N)*SkTN{1

holds [41] (green stars of Fig. 4(B)).

Applying some simple assumptions, and making use of Eq. (11),

we can obtain analytical expressions for C(k) and C(N). Nucleotides

forming pairs cannot contribute to clustering, since at most one

mutation can be accepted without breaking the pair: a nucleotide

in a stack can have at most degree one. All triangles are thus

contributed by unpaired nucleotides accepting two or three

mutations. For a given sequence i, Eq. (1) implies

Ci~2(u{1)Lu=(ki(ki{1)). Averaging over all sequences with k

neighbors and using the definition of a, we obtain

C(k)&
2a

SkT{1
: ð14Þ

Direct substitution of (11) into (14) yields the dependence of the

average clustering coefficient C(N) on the subnetwork size,

C(N)&
2aAS

ln N
ð15Þ

for large values of N. For random networks, it becomes

Crnd (N)&
SkT
N

&
ln N

ASN
: ð16Þ

The analytical approximations above are compared to our

numerical results in Fig. 4.

Assortativity
Another indicator of the local organization of a complex

network is the average-neighbor degree knn(k), which relates the

degree k of a node with the average degree of its neighbors. In

random networks, knn(k) and k are not correlated. In most

biological networks the average degree of the nearest neighbors

is negatively correlated with k (examples are genetic, protein and

metabolic networks [16,23,42]), with the only known exception of

fMRI functional brain networks [43].

Figure 5(A) shows the function knn(k) for the fifteen networks

previously analyzed. In all cases, we obtain a dependence

compatible with an algebraic growth, knn(k),kb with b<0.75,

which indicates a positive correlation between the degree of a node

Topological Structure of RNA Neutral Networks
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and the average degree of its neighbors. In other words, nodes

with high degree are prone to be connected between them.

Networks with this kind of local organization, which are called

assortative [23], are more robust against disconnection processes

due to the fact that network hubs are linked together forming high-

degree cores.

In Fig. 5(B) we analyze the dependence of assortativity on

subnetwork size by measuring the assortativity parameter r. With

the exception of small subnetworks (with less than ten nodes,

approximately) all subnetworks have an r parameter higher than

zero, i.e., they are assortative [32]. In addition, r on average

increases with the network size N, which indicates that, the larger

the network, the higher the cohesion between high degree

sequences. Equivalent random networks generated as explained in

the previous section yield rR0 for N sufficiently large, as expected.

The assortativity of RNA neutral networks can be explained by

analyzing how the probability of a neutral mutation depends on

the position in the sequence. Figure 6 shows the probability that a

sequence mutates at each of its l = 12 positions without disrupting

the secondary structure. Two examples are shown: the case of the

largest subnetwork in Fig. 6(A), and the case of the largest

subnetwork of the most abundant secondary structure, in Fig. 6(b).

As discussed, most mutations occur in unpaired nucleotides [9],

since base pairs are the main contributors to the stability of

the secondary structure. Thus, sequences that have strong base

pairs will support a higher number u of neutral mutations, forming

high-degree nodes. In addition, neighbor sequences of the highest

degree nodes will maintain the base pairs (and the energy

associated to them) and therefore they will also be high degree

nodes, leading to an assortative configuration. Since high-degree

nodes on average have lower folding energy, this can be associated

to the correlation between the neutrality and the thermodynamic

stability of sequences already described in RNA [44].

Average shortest path
A first quantification of the navigability of neutral networks is

yielded by the average shortest path between any pair of nodes.

Since RNA neutral networks are embedded in regular lattices of

very high dimensionality (actually, of a dimension equal to the

length of the sequences l), the distance between an arbitrarily

chosen pair of sequences in a subnetwork could be extremely large

if only point mutations are allowed. In fact, an exact calculation of

the longest path for a hypercube of dimension l = 12 (i.e. the still

open snake-in-the-box problem for an alphabet of 2 letters [45]), is

1260 [46]. In a 4-letter alphabet this quantity will be significantly

higher, though analytical estimates are not currently available. In

order to check whether neutral networks show such long distances

linking some of their nodes, or on the contrary resemble in some

way small-world networks [23,33,47], we have calculated the

average shortest path SdT in each subnetwork.

Small-world networks are characterized by a high clustering

coefficient C (when compared to an equivalent random graph) and

low average shortest path between nodes (SdT%N). As we have seen,

RNA neutral networks fulfill the clustering requirement; in Fig. 7 we

now show that, despite the fact that the average shortest path SdT
varies with the network size, its functional dependence is far from that

expected in random networks: the average shortest path scales in our

case with the logarithm of the network size [SdT*0:63(1) ln N, solid

Figure 4. Clustering. (A) Clustering distribution C(k) for the fifteen networks analyzed in Fig. 3. (B) Average clustering C(N) as a function of the
subnetwork size N for all folded neutral networks (colored circles), equivalent random networks (black squares) and theoretical predictions with a
classical random model (C(N)^SkTN{1 , green stars). Circle colors correspond to the number of base pairs of each subnetwork (see caption of Fig.
3). In both plots (A) and (B), the analytical approximations using the values of �uu, �pp and a obtained from all the 12-nt folded sequences are plotted in
long-dashed black lines.
doi:10.1371/journal.pone.0026324.g004

Topological Structure of RNA Neutral Networks

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e26324



Figure 5. Assortativity. (A) Average nearest neighbors degree knn(k) as a function of k for fifteen networks of different sizes. (B) Assortativity
parameter r as a function of the network size. As in previous figures, colors correspond to the number of base pairs of the subnetwork: one (black),
two (red), three (green) and four (blue). The r for equivalent random networks are plotted in black squares.
doi:10.1371/journal.pone.0026324.g005

Figure 6. Probability of mutation. Probability of mutation at each position of the sequence for two different secondary structures (see x-axis
labels of both plots). (A) corresponds to the largest subnetwork N = 57481, whose secondary structure is fourth by abundance. (B) corresponds to the
largest subnetwork N = 35594 of the most abundant secondary structure. We plot the sequences grouped by degree (dotted, dashed and dashed-
dotted lines) together with their averages (solid lines).
doi:10.1371/journal.pone.0026324.g006
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black line in Fig. 7], while the shortest path of the equivalent random

networks is close to the analytical prediction SdT* ln N= ln SkT
[41] (green stars). In inset Fig. 7(A) we plot the relation between the

shortest path length SdT and its lower bound, the average Hamming

distance SHT of each subnetwork. Both values are very close,

independently of the size of the subnetwork. Something similar

happens to the diameter of the network dmax (number of steps between

the most distant nodes), which remains remarkably close to its lower

bound Hmax (inset Fig. 7(B)).

The previous results can be explained in the light of some

properties of RNA neutral networks. According to our previous

numerical results and some heuristic reasoning already presented,

most sequences within a given subnetwork differ mainly in the

unpaired nucleotides, while all �uuLu sequences sharing the same

base pairs will belong to the same subnetwork. Following these

hypotheses, and taking into account that measured �uu for most

structures yield values close to their upper bound �uumax~4, it is

straightforward to see that the distances between the nodes that

share the same base pairs will be similar to their Hamming

distance, and therefore we can approximate the average distance

in a subnetwork to Lu. Properly, this quantity is a lower bound

for the maximum distance dmax in the subnetwork, since

mutations in the stacks are also possible. Assuming that Lu is

an acceptable approximation for the average distance SdT, we

obtain

SdT&Lu&
aSkT
�uu{1

~
a

(�uu{1)AS

ln N: ð17Þ

The average distance for the randomized networks reads

SdrndT&
ln N

ln SkT
~

ln N

ln ( ln N){ ln AS

: ð18Þ

Once more the functional dependence is correctly recovered via

a simple analytical treatment (see Fig. 7).

Sequence Centrality
Centrality, as its name suggests, is a measure that differentiates

nodes according to how influential, or central, they are in a

network. The degree k of a node is a first indication of its

centrality, since it is intuitively reasonable to assume that

sequences with a high degree will be traversed by a proportionally

larger number of shortest paths. However, the degree is a local

measure, since, among others, it does not take into account the

importance of the neighbors of a given node. To overcome this

restriction, centrality can also be estimated through different non-

local quantities, such as closeness, betweenness, and eigenvector

centrality [33]. Among them, we have chosen the eigenvector and

betweenness centrality, since they are related to population

dynamical processes that may occur on the neutral networks.

Eigenvector centrality is a particularly interesting measure in

our kind of networks, since it coincides with the fraction of

population (number of genotypes of each sequence) at stationarity

under replication and mutation on the network [37,38]. In

addition, the largest eigenvalue l1 of the adjacency matrix A gives

the average degree of the population (see the last subsection of the

Methods for more details). The relation between l1, the

Figure 7. Average shortest path SSdTT. Dependence of the average shortest path on the subnetwork size N for all folded neutral networks (colored
circles), equivalent random networks (black squares) and theoretical predictions with a classical random model (SdT* ln N= ln SkT, green stars).
Circle colors correspond to the number of base pairs of each subnetwork (see caption of Fig. 3). The numerical fitting is plotted as a solid black line,
while the analytical approximations correspond to the long-dashed black lines (for values of a and AS numerically obtained from the folding of all 12-
nt sequences). Inset (A): relation between the average shortest path SdT and the average Hamming distance SHT of the subnetworks. Inset (B):
relation between the longest distance between any pair of nodes of the network dmax and the maximum number of different bases between
sequences Hmax (maximum Hamming distance). In the insets, the dashed lines are SdT~SHT and dmax~Hmax, which correspond to the lower
bounds of SdT and dmax, respectively.
doi:10.1371/journal.pone.0026324.g007
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subnetwork size N and the average degree SkT of the subnetwork

is shown in Fig. 8. l1 depends logarithmically on N, due to the fact

that the network average degree SkT and l1 are linearly correlated

(inset), always fulfilling that l1§SkT [38]. In other words, the

population concentrates in regions of the network with a

connectivity above average, thus increasing its robustness to

mutations.

The betweenness of a node B(i)B(i) quantifies the probability

that node i represents an intermediate step in the evolution of the

population from one sequence to another. Figure 9 shows the

relation between the degree of the sequences ki (i~1,:::,N) and (A)

the corresponding component of the eigenvector vi, and (B) the

betweenness centrality B(i) for the largest subnetwork (N = 57481).

In Fig. 9(B), we observe a positive correlation with the degree,

which confirms the intuitive idea that sequences with higher

degree are those with higher betweenness: the larger the number

of neighbors of a given sequence, the higher the probability of

being in the mutational path between two other sequences.

Deviations from this correlation would indicate an ‘‘anomalous’’

distribution of hubs (e.g., hubs placed at the corner of a network).

While we have found that for this network the eigenvector

centrality is approximately proportional to the betweenness, in this

case the former quantity is more informative than the latter.

Already at first sight [Fig. 9(A)], we observe a division of the

subnetwork into three well-defined communities, each of them

corresponding to a certain base pair present (AU, GU, or GC), in

addition to a GC pair which is always found. From left to right, the

communities increase their size (number of nodes in the

community) and also the population per node. Inside each

community, the eigenvector centrality shows a correlation with the

sequence degree, revealing that high degree nodes are those with

higher centrality. Nevertheless, since the division in communities is

a consequence of almost one order of magnitude difference in the

eigenvector centrality, it is not only the degree of the sequence, but

also the community where the sequence belongs to, what

determines the population of a node in the subnetwork. It is

worth comparing the division into communities given by the first

eigenvector with that obtained with classical community division

algorithms [35], which split a network by optimizing the

modularity Q and only taking into account the topological

information (disregarding, e.g., that certain base pairs are

conserved within the same subnetwork). We obtain a value of

Q = 0.177 for the eigenvector partition and Q = 0.626 for an

optimal partition given by the extremal optimization algorithm

[36]. Nevertheless, the latter topological division, which splits the

network into m = 19 communities, contains sequences with

different base pair composition within the same community,

which hinders the biological interpretation. Further work

analyzing the interplay between the partitions obtained by

modularity optimization and those given by the base pair

composition should be addressed in the future.

Percolation transitions
A random counterpart of RNA neutral networks is represented

by random geometric graphs (RGG) [48,49], whose nodes sit in a

space embedded with a measure of distance. Two nodes are

connected if their distance is below a given threshold. There exists

a value of this distance (related to the average degree of the nodes)

where initially isolated graphs coalesce to form a unique giant

component in a percolation transition. Below this transition, the

degree distribution is peaked at a well-defined average value with a

finite variance, similar to the distribution observed for Erdös-

Renyi (ER) random graphs (where, however, no measure of

distance is defined). RNA neutral networks present a comparable

distribution of degrees (Fig. 3). The geometrical nature of RGG,

where nodes are connected depending on their distance, gives rise

to structures with much larger clustering coefficients and average

path lengths (the latter due to the absence of shortcuts between

distant nodes) than those of typical Erdös-Renyi random graphs

[50]. The exponentially decaying rank-ordering of network sizes

shown in Fig. 2 resembles that of random graphs that are well

above or below the percolation threshold [41] or that of random

geometric graphs (RGG) below the critical connectivity [48].

These percolation transitions are ubiquitous in systems where an

ensemble of nodes is linked through a variable number of

Figure 8. Eigenvector centrality. Largest eigenvalue l1 of the adjacency matrix A as a function of the network size N. The inset shows the linear
relationship between l1 and the network average degree SkT. Solid line in the inset is l1~SkT.
doi:10.1371/journal.pone.0026324.g008
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connections. Actually, the transition has been studied in RNA

neutral networks and has been shown to depend on the size of the

alphabet of nucleotides and on the length of the sequences [4,7,8].

The case we are studying in this contribution is on average below

the percolation threshold, which in turn implies an exponentially

decaying distribution of (sub)network sizes. However, the transi-

tion to percolation also depends on the average degree SkT of a

graph, and we have observed that our largest networks (which

have the largest average degree by virtue of the positive correlation

between the two variables) experience a sort of coalescing

transition. This is observed in the insets of Fig. 2, where there is

a ‘‘critical’’ connectivity above which the subnetworks become

connected (except for symmetry properties that prevent accessi-

bility). This critical connectivity is related to the values of �uu and �pp
of those particular structures, which may put them above the

percolation threshold [4].

It might be of interest to compare the present results with an

extended (though not exhaustive) study carried out for l = 35.

Figure 10 shows a comparison between the l = 12 case and a

sample of 108 sequences of l = 35 studied in [13]. We have plotted

the size ranking for the 57 secondary structures with l = 12,

Fig. 10(A), and for the 5163323 structures detected with l = 35,

Fig. 10(B). In the first case, and despite the fact that we have added

up all subnetworks corresponding to the same structure into a

unique (fragmented) network, we still see an exponential decay. In

the l = 35 case this curve has a much longer and fat tail (see [13]

for a detailed explanation of its nature and the differences with a

power-law curve). It is remarkable that in both cases the most

abundant structures are of the stem-loop type, that is, they are

formed by a loop, a unique stack, and perhaps one or two dangling

ends (the black arrows in Fig. 10 point out the first structure that is

not of the stem-loop type). Figures 10(C) and (D) show the

cumulative abundance of the networks depending on their size. In

the case of l = 12, the decay is again exponential while for l = 35

the decay is logarithmic (with exponent c,22 in the non-

cumulative curve) and shows a sharp decay for high sizes, just as it

happens for random geometric graphs around the critical

connectivity [48].

Discussion

RNA neutral networks are strongly constrained by energetic

and structural restrictions inherent to folding. As a consequence,

the topological structure of these networks significantly deviates

from those of regular or random graphs, and also from the

structure observed in other biological networks. With the aim of

characterizing the topological signatures of RNA neutral networks,

we have analyzed the connected (sub)networks obtained from the

folding of the full space of sequences of l = 12. We have obtained

57 different secondary structures (i.e., 57 neutral networks), but as

most networks are fragmented, our analysis has been directed to

the 645 different neutral subnetworks. Although the numerical

folding of the RNA sequences is very complex and takes into

account many experimentally measured parameters, simple

assumptions about how the neighborhood of single structures is

conditioned by its structural elements have allowed us to obtain

precise analytical approximations for the functional relations

between the main topological properties of the networks. Our

analytical results do not depend on the length of the sequence, so

they should hold generically for all RNA secondary structure

neutral networks.

An important feature that distinguishes RNA neutral networks

from their random counterparts (Erdös-Renyi random networks

and random geometric graphs) is the dependence of the average

Figure 9. Sequence centrality. Evaluation of the sequence centrality for the largest subnetwork N = 57481, whose secondary structure is ((....))..... In
(A), degree ki versus eigenvector centrality v1(i). In (B), degree ki versus betweenness centrality B(i). Colors and shapes denote the type of base pairs
the sequences have (see Figure’s legend). Note the community division created by the eigenvector centrality, which is related to the type of
nucleotides participating in the base pair: GC+UA and AU+CG for low eigenvector centrality, GU+CG and GC+UG and for intermediate v1(i) and
GC+CG for high v1(i).
doi:10.1371/journal.pone.0026324.g009
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degree SkT on the size of the subnetworks: k* ln N . Neutral

networks also present the two characteristics that define small-

world networks: they have a high clustering coefficient

(C*( ln N){1), just as typical RGG, but a very low average

shortest path between nodes (SdT* ln N), contrary to the

expectation in RGG. Note that neither RGG nor neutral networks

have bona fide short-cuts as it occurs in ER random networks,

where no distance can be defined. Nevertheless, the largest

distance between two sequences in a neutral network is larger than

but close to its Hamming distance, which, in turn, is bounded by

the alphabet size b and the sequence length l as Hmax~(b{1)l.
This upper bound for the Hamming distance, which does not exist

in RGG, permits a low average shortest path even for large

network sizes.

It might be clarifying to comment on the structural differences

between RNA neutral networks and other well-known networks.

In Table 3 we summarize the differences with two classical

network models and in Table 4 we do the same with other

biological networks. Neither the classical random model, given by

Erdös and Renyi, nor the scale-free model, introduced by Barabási

and Albert, reproduce the topological structure of neutral

networks. The main discrepancy arises in the logarithmic relation

between the average degree SkT and the size of the subnetwork.

This dependence affects the clustering coefficient, which shows a

slow decay with the network size, C(N)*( ln N){1. Other folding

constraints are reflected in an average shortest path that verifies

SdT* ln N and is above that obtained in both theoretical models,

as a result of geometrical constraints imposed by the underlying

lattice structure. Finally, neither the classical random model nor

the scale-free model can describe the assortative configuration of

the nodes.

The comparison between neutral networks and other biological

networks (Table 4) is more difficult since studies where a group of

networks of different sizes have been analyzed are rare. Therefore,

we are bound to compare network properties that do not depend

on network size. At odds with what is found in metabolic, protein

or brain functional networks, the degree distribution is not a power

law, but has a well defined average, with a maximum value kmax.

Concerning the clustering coefficient, we obtain a power-law

decay with SkT and exponent c = 21 as in metabolic and protein

Figure 10. Comparison between l = 12 and l = 35 neutral networks. Rank ordering of network sizes for l = 12 (A) and l = 35 (B). Black arrows
signal the first non-stem-loop structure. Network size abundance for l = 12 (C) and l = 35 (D). The solid lines correspond to exponential fits, while the
dashed line corresponds to a logarithmic decay. Data for l = 35 after [13].
doi:10.1371/journal.pone.0026324.g010

Table 3. Comparison of neutral networks of l = 12 with classical random and scale-free networks.

Neutral Networks (l = 12) Random (Erdös-Renyi) Scale-Free (Barabási-Albert)

p(k) single-peaked Poisson distribution power law (,k23)

SkT(N) * ln N constant constant

C(k) ,k21

constant (
SkT
N

)
constant (,N20.75)

C(N) *( ln N){1 ,N21 ,N20.75

SdT(N) * ln N * ln N= ln SkT * ln N= ln ln N

knn(k) ,k0.75
constant (Sk2T=SkT) non trivial [51]

Assortativity assortative (r.0) not assortative (rR0) not assortative (rR0)

doi:10.1371/journal.pone.0026324.t003
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networks. Nevertheless, the origin of this scaling is again a

consequence of folding constraints and does not rely on

hierarchical modularity, as it occurs in metabolic networks [40].

As it happened with the theoretical models, the assortative nature

of neutral networks does not fit with the general assumption that

biological networks are dissortative. Nevertheless, we have

explained how the dependence of the probability of mutation on

the position of the sequence makes high degree nodes to be

connected between them. This property, which does not apply for

protein, metabolic or genetic networks, is the origin of assortativity

in neutral networks, and together with the other topological and

statistical properties discussed make of RNA neutral networks a

new kind of natural networks.

Community structures in RNA neutral subnetworks can be

extracted by the inspection of the first eigenvector of the adjacency

matrix, which, in turn, is associated with the final distribution of

the population after an evolutionary process [37]. This way,

networks present moderate modularity Q, being each community

characterized by the base pair combinations present in the stacks.

Taking into account that the most stable pairs are GC (or CG),

followed by AU (or UA) and finally GU (or UG), we have seen that

sequences with the most stable stacks will be the most abundant

and the most populated in each subnetwork, as their robustness

will permit more mutations in the unpaired bases. Further studies

on the community structure of these networks and its relevance in

dynamical processes are left for the future.

The topological properties of RNA neutral networks have

important consequences for the evolution of sequence populations

across the space of genomes. Our results give an additional reason

to explain the observation that common RNA structures seem to

be the ones present in natural, functional RNA molecules [5,14].

Certainly, as it has been argued, the fact that they are more

abundant is a first straight reason for their preeminence [10,11]

though, at equal abundance, networks can still have very different

attainabilities [12]. Here we have shown an additional fact, that is,

that more abundant structures are those with the highest average

connectivity. As a consequence, abundant structures are embed-

ded with a larger-than-average neutrality, such that large neutral

networks also offer a robustness to mutations above that of

neighboring (but less abundant) structures. For all other param-

eters being identical, a high average connectivity diminishes the

fragmentation of the neutral network and thus facilitates the

navigation of the space of genomes and the finding of RNA

structures with new functions.
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