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1Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa, Spain
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We study the effect of a randomly modulated harmonic driving on the phase behavior of a nonlinear

oscillator. A multiple-scale analysis shows that the system is formally equivalent to a rocked oscillator, in

which a modulated harmonic driving locks the system at one of two phases, both of which are in

quadrature with that of the driving. This theoretically predicted noise-induced bistable phase locking is

reproduced with numerical simulations of a stochastic Stuart-Landau model, and verified experimentally

in a nonlinear electronic circuit.
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Introduction.—The interaction of noise with nonlineari-
ties is known to lead in a counterintuitive way to the
emergence of order in dynamical systems [1]. A particular
example is that of noise-induced transitions [2], which in
many cases result in bistable regimes created by fluctua-
tions. Such noise-induced bistability has been reported in
many systems, including lasers [3], superfluid helium [4],
surface waves [5], and enzyme dynamics [6]. In those
situations, for a large enough noise intensity the stationary
probability density of the relevant variable changes from
monomodal to bimodal, indicating the appearance of new,
coexisting stationary states induced by noise.

Multistable steady states have also been found to be
enhanced by noise in coupled nonlinear oscillators [7].
However, in most situations in nature nonlinear oscillators
are not quenched but free running, and therefore the inter-
est lies not in the phase becoming fixed at a particular
steady value, but on it becoming locked with a reference
signal. Since the phase of a nonlinear oscillator is margin-
ally stable, it is not at all clear that constructive phase
dynamics in the form of locking can arise from noise.
Here we propose a mechanism that does induce bistable
phase locking by noise.

A nonlinear oscillator can be phase locked by applying
to it a coherent resonant modulation with sufficient ampli-
tude. Such an injection locks the phase of the oscillator
�ðtÞ to a single value, i.e., that of the input�inðtÞ, or at least
limits the phase shift to a certain range (j�ðiÞ ��inðtÞj<
C). Recently, however, a driving protocol has been pro-
posed that leads to bistable phase locking. The method,
termed rocking, consists of modulating the harmonic driv-
ing while being applied resonantly to the nonlinear oscil-
lator [8]. Such modulation amounts to, basically, changing
the phase of the driving back and forth between two
opposite values, so that the oscillator cannot stably lock
to any of the two switching phases, and ends up instead
locking its phase to a value that is ��=2 shifted with

respect to the input. Rocking has been reported experimen-
tally in lasers [9] and in electronic circuits [10] for the case
of a deterministic driving; here we consider the case of a
stochastic driving.
Many oscillators in nature are affected by both periodic

driving and fluctuations. An example is the circadian clock
of mammals, which is subject to fluctuation-prone periodic
driving by the light-dark illumination cycle. Bistable phase
locking in this system can be related to the experimentally
observed switching between diurnal and nocturnal regimes
of activity within the same animal, depending on environ-
mental conditions [11]. The results presented here might
represent a minimal mechanism that could explain the
above-mentioned switchings in a noisy environment.
Another natural situation where spontaneous switching
occurs is in the phenomenon of bistable perception in
neurodynamics [12]. Given the importance of phase dy-
namics in the brain, and the ubiquity of noise in brain
tissue, one could expect that effects similar to those de-
scribed in this Letter might be relevant in that context as
well. From a physical perspective, this phenomenon is
closely related with the emergence of random-field in-
duced order in two-component Bose-Einstein condensates
[13]. In a quantum optics context, the type of fluctuations
considered here could be provided by a squeezed noise
[14,15].
Theoretical analysis.—In order to establish that noise

can also have a constructive influence in the phase dynam-
ics of nonlinear oscillators, we show in what follows that
the modulation of the resonant harmonic driving character-
istic of the rocking effect does not need to be periodic, but
it can be random. To that end, we consider a minimal
model of a limit-cycle oscillator, namely, the Stuart-
Landau model, which corresponds to the normal form of
a supercritical Hopf bifurcation:

dA

dt
¼ ð1þ i�ÞA� ð1þ i�ÞjAj2Aþ �ðtÞ: (1)
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AðtÞ is the slowly varying amplitude of the oscillator,
whose state is given by xðtÞ ¼ A expði!exttÞ þ c:c:, where
!ext is the external driving frequency, chosen here as a
reference. The oscillator is placed under the influence of a
randomly modulated input signal with amplitude �ðtÞ,
which is considered to be a zero-mean Gaussian noise
with correlation function to be defined later. Assuming
that the driving is strong and fast, one can write �ðtÞ ¼
"�1HðTÞ, where " � 1 is a smallness parameter, and T ¼
"�1t is the fast time scale. Under this assumption, one
can postulate an asymptotic solution to the Stuart-
Landau equation as AðtÞ ¼ A0ðt; TÞ þ "A1ðt; TÞ þOð"2Þ.
Substituting this expansion into Eq. (1), writing �ðtÞ in
terms of HðtÞ, and comparing the different orders in " one
finds, at Oð"�1Þ, that A0 obeys the evolution equation
@TA0ðt; TÞ ¼ HðTÞ, while at Oð"0Þ one obtains the evolu-
tion equation for A1:

@TA1ðt; TÞ ¼ ð1þ i�ÞA0 � ð1þ i�ÞjA0j2A0 � @tA0: (2)

One can formally integrate the equation obeyed by A0 to
obtain A0ðt; TÞ ¼ GðTÞ þ aðtÞ, where GðTÞ ¼ R

HðtÞdt,
and aðtÞ is a function to be determined that does not depend
on the fast time scale T. Taking this expression into ac-
count, and examining Eq. (2), one finds that in order for A1

to be bounded, the following solvability condition must
hold:

@taðtÞ ¼ ½ð1� 2�0Þ þ ið�� 2��0Þ�a
� ð1þ i�Þ�a� � ð1þ i�Þjaj2a: (3)

To obtain this equation one must assume that limT!1½1T �R
T
0 GðtÞdt� ¼ limT!1½1T

R
T
0 jGðtÞj2GðtÞdt� ¼ 0, and define

� ¼ limT!1½1T
R
T
0 GðtÞ2dt� and �0 ¼ limT!1½1T �R

T
0 jGðtÞj2dt�. In what follows we assume GðtÞ real, so

that � ¼ �0. Equation (3) is identical to the parametrically
driven complex Ginzburg-Landau equation that describes
the behavior of deterministically rocked systems [8,10]; in
the case of harmonic modulation of the driving, for in-
stance [i.e., �ðtÞ ¼ F cosð!tÞ, where ! is the rocking
frequency], the oscillator becomes locked to one of two
stable phases, symmetrical with respect to the driving
phase (i.e., rocking arises), provided �min <�< �max,
with � ¼ ð1=2ÞðF=!Þ2. For � ¼ 0, which we assume in
what follows without loss of generality, the boundaries are

given by �min � j�j and �max � ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3�2

p Þ=3. The
boundary � ¼ �min corresponds to a saddle-node bifurca-
tion, whereas the one at � ¼ �max is determined by a
supercritical pitchfork bifurcation.

The previous conclusion does not require the driving to
be periodic. Rocking occurs even if the driving is stochas-
tic (which is the case we are interested in here), provided �
exists and is bounded by the values given above. We now
address the issue of how to generate a noise that obeys
these conditions.

Numerical simulations.—The values of � and �0 diverge
if �ðtÞ is chosen to be white, since GðTÞ is then a Wiener

process, whose square grows linearly with T. This problem
would not arise, for instance, if GðTÞ itself is a white noise,
or a correlated noise with small correlation time. We can
thus construct the noise �ðtÞ in discrete time by generating
a Gaussian white noise with zero mean and intensity unity
(which in fact corresponds to a colored noise with a small
correlation time equal to the finite time step �t), and
numerically differentiating this noise. This results in a
noise whose power spectrum increases as Sð!Þ �!2 [vio-
let noise, see Fig. 1(d)], for which � is well defined and is
approximately equal to F2, where F is the intensity of the
original noise �ðtÞ.
We simulated the evolution of xðtÞ ¼ A expði!exttÞ þ

c:c:, with AðtÞ obeying the Stuart-Landau Eq. (1) for the
noise described above, for which � ¼ F2. The dynamics of
the system in phase space is shown in the upper panels of
Fig. 1 for two cases: inside and outside the rocking range
limited by �min and �max. Figure 1(a) clearly reveals the
existence of rocking for a value of the noise intensity F
inside the rocking range: the phase of the oscillator is
locked at a value �=2 with respect to that of the driving
(used here as a reference). Outside of the rocking range, on
the other hand, the oscillator is free running [Fig. 1(b)].
Figure 1(c) depicts the phase diagram of the system in

the plane formed by the noise intensity F and the detuning
�. The numerically obtained rocking range (bounded by
symbols in the figure) agrees reasonably well with that
predicted theoretically above, namely �min < �< �max

with � ¼ F2. Below the rocking region, random modula-
tion of the driving is not intense enough to produce rock-
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FIG. 1. Theoretical and numerical analysis of noise-induced
rocking. The upper plots show phase space trajectories of xðtÞ for
values of the noise intensity F inside (a) and outside (b) of the
rocking range. Panel (c) shows the phase diagram of the system.
Symbols correspond to numerical simulations and lines to the
theoretical rocking boundaries limited by �min and �max. The
power spectrum of the driving signal is shown in the unfiltered
case (d) and after the application of a double Lorentzian filter
with cutoff frequency� ¼ 10 (e). Parameters are F2 ¼ 0:2, with
� ¼ 0:1 for the rocking case (a) and � ¼ 0:3 for the free-running
case (b). The simulations shown in (a)–(c) correspond to the
unfiltered driving of plot (d).
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ing; above the upper region, on the other hand, the system
operates in an adiabatic regime, following closely the
modulation.

We next checked the robustness of the rocking phe-
nomenon with respect to the statistics of the driving signal.
To that end, we truncated the driving signal at high fre-
quencies by using a Lorentzian transform function Lð!Þ ¼
�2=ð�2 þ!2Þ, with frequency cutoff �. If applied once
to our violet noise, the resulting power spectrum is Sð!Þ ¼
�2!2=ð�2 þ!2Þ; i.e., the filtered noise has the same
asymptotic behavior at low frequencies, Sð!Þ �!2, and
it saturates at high frequencies, Sð!Þ �!0. If applied
twice to the noise, it results in a power spectrum Sð!Þ ¼
�4!2=ð�2 þ!2Þ2; i.e., the filtered noise again has the
same asymptotics at low frequencies, but it decays at high
frequencies, Sð!Þ �!�2. The latter case corresponds
more closely with the experiment [compare Fig. 1(e)
with the inset of Fig. 4]. In both cases, the rocking was
observed in a particular region, depending on the cutoff
frequency �.

Experimental demonstration.—In order to verify experi-
mentally that noise can induce rocking, and thus bistable
phase locking, we use a nonlinear Chua circuit operating in
a periodic regime. This circuit is made of standard electric
components plus a nonlinear resistor built from operational
amplifiers, which leads to rich dynamical behavior includ-
ing bistability, excitability, and chaos. The circuit and its
internal parameters are given in Ref. [10] except for L ¼
18 mH, Rexc ¼ 1:954 k�, and Rcoup ¼ 21:8 k� (see

Fig. 1 of Ref. [10] for details). Under these conditions
the circuit has a (natural) frequency f0 ¼ 2827:1 Hz.
The external driving is generated by multiplying a pure
sinusoidal voltage signal (with frequency fext) by a
Gaussian white noise. The compound signal is then filtered
with a bandpass fourth-order Butterworth filter. Next, we
introduce the external signal into the Chua circuit through a
voltage follower and a coupling resistor (see Ref. [10] for
details). The spectrum of the external signal, shown in the
inset of Fig. 4 below, exhibits a dip centered at the funda-
mental frequency !ext of the external signal.

According to the theoretical analysis presented above,
rocking should arise for intermediate noise levels. An
example of the phenomenon is shown in Fig. 2. In panels
(a),(d) we show the periodic component of the external
perturbation shifted by �=2, which can be used as a
reference to observe the two possible locked states.
Panels (b),(e) show the complete external perturbation,
whose spectrum is shown in the inset of Fig. 4 [cf.
Fig. 1(e)]. Finally, panels (c),(f) display the output of the
system (voltage of one of the capacitors, see Ref. [10]), for
two different realizations of the experiment. A comparison
with the reference signal shows that the output signal is
(nearly) in phase (c) or in antiphase (f) with the reference
signal, and the phase relation is constant in time. The noisy
driving signals (middle plots), on the other hand, are
shifted with respect to the output (and reference), and

furthermore their phase drifts in time (compare the two
pairs of dashed lines). A comparison between plots (c) and
(f) of Fig. 2 shows the bistable nature of the rocking phase.
To obtain the results of panel (f), we decrease the voltage
of the external input until rocking is lost. Then, we increase
the input again until we enter once more the rocking
region, keeping the reference phase constant. In this case,
the output signal is shifted by (nearly)�with respect to the
reference signal (which is in turn shifted, we recall, by�=2
with respect the sinusoidal signal included in the external
perturbation).
Figure 3 shows a comparison of the phase in the two

situations of plots 2(c) and 2(f). The x axis corresponds to
the reference signal and the output is assigned to the y axis.
There is a phase shift between the reference signal and the
output (already corrected in the figures), introduced by the
impedance of the circuit, which can be estimated from the
circuit parameters. After correcting the phase shift and
normalizing both signals, Fig. 3 shows that the differences
of both phases with respect to the reference signal are
constant in time and shifted by � with respect to each
other.
It is difficult to estimate the region where rocking ap-

pears, since it depends on the shape of the spectrum of the
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FIG. 2 (color online). Rocking in a nonlinear electronic oscil-
lator. The two columns (a)–(c) and (d)–(f) represent two differ-
ent realizations of the experiment, leading to two different
locking states with respect to a common reference signal. In
each column, from top to bottom: periodic component of the
external signal (shifted by �=2), total external signal, and
oscillator voltage.
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FIG. 3 (color online). Phase relation between the reference
signal and the output of the system. Red (or gray) and black
lines correspond to the two possible phase relations of Figs. 2(c)
and 2(f), respectively.
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input signal and also on its fundamental frequency.
Figure 4 shows the range of driving amplitudes where
rocking exists, when the fundamental frequency of the
driving signal is modified, keeping the shape of the spec-
trum constant. To obtain the results of Fig. 4, we filter the
input signal with a bandpass filter of cutoff frequencies
flow ¼ 100 Hz and fhigh ¼ 2000 Hz, leading to the spec-

trum shown in the inset. By modifying the fundamental
frequency of the external signal we shift the position of the
minimum voltage that guarantees rocking, keeping the
shape of the spectrum envelope constant. This leads to
the phase diagram of Fig. 4, where a rocking region exists
for a certain range of input frequencies and amplitudes.
The rocking region begins at the natural frequency of the
circuit, f0 ¼ 2827:1 Hz, and extends to higher frequen-

cies. Furthermore, we can see that rocking is only obtained
for moderate amplitudes of the external perturbation: when
the amplitude becomes large enough (i.e., in the case of
strong noise), the oscillator is taken to a region of chaotic
behavior. We note also that the phenomenon is robust
against phase slips when the circuit operates away from
the rocking boundaries.
We also analyzed how the rocking phenomenon changes

as a function of the shape of the spectrum, keeping the
fundamental frequency fext of the driving signal fixed. To
that end we modified the high cutoff frequency fhigh of the

bandpass filter. Figure 5 shows the rocking region for
different spectrum shapes. We can see that rocking is lost
when the spectrum is wide enough [Fig. 5(e)], although
before reaching that limit, the phenomenon holds for a
wide frequency region.
Discussion.—Our results show that bistable phase lock-

ing can be induced by noise. The effect works not only with
a purely real-valued modulation, as shown here, but also
with a ‘‘slightly’’ complex-valued (but phase-squeezed)
signal whose amplitude-noise component is much larger
than the phase-noise one (a strong enough phase noise
destroys the rocking effect). Given the ubiquity of driven
nonlinear oscillators in nature, we expect the results re-
ported here to be widely applicable to situations in which
the driving signal is randomly modulated.
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