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A collection of connected phase oscillators, initially unsynchronised, are subjected to a growing process. In such
a process, pacemaker oscillators attach to the original network following an exclusively dynamical criterion
oriented to entrain the network. Under these conditions, we show that successful entrainment always corresponds
to the generation of a scale-free topology in the original graph.
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1. Introduction

A great amount of natural and technological systems
can be optimally modelled by a growing network of
dynamical units (Boccaletti, Latora, Moreno, Chavez,
and Hwang 2006b). The observation of these real
networks reveals the reiterated presence of specific
structural features, in particular the so-called scale-free
property (Barabási and Albert 1999), consisting of the
fact that the node connectivity degree k shows
a power-law distribution P(k)� k��. Additionally, it
is known that the functionality and emerging
properties of these complex ensembles is often con-
nected to the total or partial synchronisation of the
units in a collective dynamics, as the case of neurons in
the neural tissue.

Then, a very relevant question is to understand how
the intimate relationship between dynamics and
structure can shape the network and generate the
collective behaviours observed in it. Different aspects
of how the topology influences the dynamics have been
previously studied. Good examples are the attention
concentrated to issues such as how the network
structure can enhance synchronisation (Chavez,
Hwang, Amann, Hentschel, and Boccaletti 2005a, b;
Motter, Zhou, and Kurths 2005) or how proper
topological mechanisms of network reshaping can
improve or worsen the arousal of a synchronised
behaviour (Yin, Wang, Chen, and Wang 2006), or even
how a dynamical evolution of the topology eventually
leads to stabilise a synchronous motion in cases in
which static graph configurations would instead
prevent synchronisation (Boccaletti et al. 2006a;
Stilwell, Bollt, and Roberson 2006).

On the other hand, the reverse problem, i.e. how
dynamics can drive the structure of a network, has not
yet been fully addressed, and studies have been so far
limited to the field of game theory (Ebel and Bornholdt
2002; Zimmermann, Eguı́luz, and Miguel 2004), where
it has been shown that a not growing network of players
can be shaped by means of a decision game. We have
recently approached the question in Ref. (Sendiña-
Nadal, Buldú, Leyva, and Boccaletti 2008), where we
demonstrated that dynamical criteria oriented to
entrain an original set of networking oscillators are
able to fully reshape the structure of the original graph,
and that the entrainment process induces a scale-free
degree distribution in the pristine network. This process
can be considered as a representation of phenomena
occurring in social science as the emergence of
consensus driven by an opinion leader (media, press,
fashion, publicity, etc.), or in biological systems as the
entrainment of circadian clocks.

In the present work, we report a deeper insight on
the interrelation mechanisms between topology and
dynamics in a network of phase oscillators. In
particular, we carefully study the time evolution of
the topological changes along the growing process.
The dependences on a wider range of parameters are
also considered, obtaining a broader scope of the
generality of the results. This article is organised as
follows: in Section 2 we present the model, and
study the dynamical conditions for which the
growing process succeeds in entraining the network.
In Section 3, we study the topological changes induced
by the growth of the network, both in the synchronised
and unsynchronised cases. Finally, in Section 4
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we present some discussion about the results and derive

the relevant conclusions.

2. The model and numerical results

For the sake of exemplification, we here consider an

initial (t¼ 0) graph G0 of n0 bi-directionally coupled

Kuramoto phase oscillators (Kuramoto 1984), mod-

elled by

_�i ¼ !0i þ
d0

kiðt ¼ 0Þ

Xn0
j¼1

aij sinð�j � �iÞ

where i runs from 1 to n0, ki(t¼ 0) is the initial number

of incoming links to the i-th oscillator (known as the

in-degree), and d0 is a coupling constant. The natural

frequencies of the phase oscillators {!0i} are uniformly

distributed within the range �!ðt ¼ 0Þ ¼ 0:5� 0:25. {aij}
are the n0� n0 elements of the adjacency matrix

A¼ (aij), describing the structure of the network of

connections in G0, being aij¼ 1 if there is a link

from the oscillator j to i and aij¼ 0 otherwise. Time

integration is performed here by means of a Heun

algorithm with an integration step �tin¼ 0.1.
Initially, we generate the original structure of G0

from a ring lattice of n0 sites, each one bidirectionally

linked to its k0i¼ 2m0 nearest neighbours. Then, links

are randomly rewired with probability p¼ ln(n0)/n0
(chosen to assure the generation of a giant connected

component) to obtain a structure that exhibits the

small-world property (i.e. the average shortest path

length L/ log n0 (Strogatz 2000)), and an exponen-

tially decaying degree distribution P0(k) with

a maximum around the mean value hki¼ 2m0.

3. The growing process

Once the structure is defined, nodes in G0 are

bidirectionally coupled with coupling strength d0,

which is selected so that the initial graph does not

display a phase synchronised motion. Then, the

pristine network is left to evolve in its unsynchronised

motion from t¼ 0 to t¼ t0¼ 30 time units. At this

point, a growing process starts, consisting in

a progressive adding of pacemaker oscillators on top

of the G0. Specifically, at regular time intervals

tl¼ t0þ l�t, a pacemaker node is added to form m

unidirectional connections with nodes on G0.

The newly added nodes are identical phase oscillators

that follow the instantaneous phase dynamics of an

external pacemaker _�p ¼ !p. New links are introduced

unidirectionally to preserve the pacemaker character of

the added nodes, and therefore they constitute

a driving force for G0.

Notice that such a process is fully equivalent to

consider a unique external driving node that forms
successive (and possibly multiple) connections with
nodes in G0 in the attempt to entrain their dynamics.
Our choice, in terms of multiple identical pacemakers,
allows us to compare the results with the vast majority
of existing literature on graphs, since the other
equivalent possibility would correspond to generate
a multigraph in which a single node in G0 could be
multiply connected to a single pacemaker.

The key point is how to fix the criterion through
which the added nodes are linked to G0. We here
consider a dynamical criterion fully oriented to
enhance phase entrainment. When the l-th new node

attaches to G0, it forms m connections preferentially
with those nodes in G0 whose instantaneous phases at
time tl, �j(tl), are closer to a given phase condition.
Specifically, we consider a generic parameter �2 (0, 2�)
and establish the first of the m connections with that
node j whose actual value of the phase fulfills the
condition

min
j¼1,..., n0

����j
�� ��mod 2�
� �

,

where

��j ¼ �jðtlÞ � �pðtlÞ:

When m4 1,we repeat the above condition excluding
those nodes that already received a link at the same
time step. We initially set the value of this parameter
as m¼ 1.

Additionally, we will show that the specific choice
of the parameter � does not affect qualitatively the

reported scenario. The only constrain is that � cannot
be taken equal to 0 nor to 2�, as these values
correspond to the stable fixed point emerging during
the phase locking of a single oscillator, and therefore
these settings would determine a situation in which the
first node of G0 that becomes entrained would attract
the rest of the connections.

Each new connection is unidirectional, and it goes
from the added node to the selected node in G0, having
a coupling strength of dp. The dynamics is now
described by (Sendiña-Nadal et al. 2008)

_�i ¼ !0i þ
d0
kiðtÞ

Xn0
j¼1

aij sinð�j � �iÞ

þ
dp

kiðtÞ

XlðtÞ
r¼1

bir sinð�p � �iÞ, ð1Þ

where ki(t) is the time evolving in-degree of the i-th
node (which accounts for the new connections received
from the added nodes), the matrix B¼ (bir) is a size

evolving matrix of n0� l(t) elements (with l(t)� n1,
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being n1 the total number of added pacemakers) whose

entries bir are equal to 1 if there is a link from the r-th

added node to the i-th node in G0 and zero otherwise.
Figure 1 reports the behaviour of several useful

measures for quantifying the entrainment process.

The panels (a) and (b) in Figure 1 show, respectively,

the final G0 mean frequency h �!ðtÞit and its standard

deviation h� �!ðtÞit versus dp, for n0¼ 1000, d0¼ 0.2,

n1¼ 10,000, �t¼�tin, and �¼� (anti-phase coupling

condition), and three values of the entrainment

frequency, where h. . .it denotes an average over time

(performed after the growing process is finished). Here
�!ðtÞ ¼ 1

n0

Pn0
i¼1

_�iðtÞ is the ensemble average frequency

at each time step, with a standard deviation given by

� �!ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0

Xn0
i¼1

_�iðtÞ � �!ðtÞ
� �2s

:

It can be seen that the final state corresponds to

full synchronisation to the pacemaker frequency.

In Figure 1(c) we show the value of R¼hR(t)it versus

dp, where R(t) stands for the phase synchronisation

order parameter (Kuramoto 1984)

RðtÞ ¼
1

n0

Xn0
j¼1

ei�jðtÞ

�����
�����:

From Figure 1(b) it is evident that the threshold for

the setting of the phase entrainment of G0 (R’ 1)

depends on the frequency of the external pacemaker

!p. Specifically, as far as !p is close to �! ¼ 0:5 (the

initial average frequency of the oscillators in G0), the

phase entrainment process occurs already for

a relatively small value of dp. On the contrary, when

!p deviates significantly from �!, the value of dp
producing phase entrainment becomes larger and

larger.
A more quantitative description of the entrainment

process can be gathered by inspection of Figure 2.

There, we report the time evolution of the mean

frequency of the oscillators in the ensemble G0, �!ðtÞ, its
frequency dispersion � �!ðtÞ and R(t), for three pace-

maker frequencies (!p¼ 0.3, 0.5 and 0.7) and three

different pacemaker coupling strengths (dp¼ 0.2, 0.5

and 1.5). It is seen that, while the low coupling regime

is not associated to a phase entrainment of G0 with the

pacemaker, in the high coupling regime �!ðtÞ converges
(after the growing process has ended) to the external

forcing frequency and, at the same time R(t) converges

to unity and � �!ðtÞ vanishes.
Notice, furthermore, the non-monotonous beha-

viour characterising the evolution of � �!ðtÞ (in the

second and third columns) as soon as nodes start to be

added to G0. For the three external frequencies

reported in Figure 2, indeed, � �!ðtÞ starts from its

initial value, increases during the first stage of the

growing process, up to reaching a maximum value, and

then decreases during the second stage of the growing
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σ

Figure 1. Time averaged phase synchronisation parameters
(a) �! ¼ h �!ðtÞit, (b) � �! ¼ h� �!ðtÞit and (c) R¼hR(t)it, as
a function of the coupling strength dp, for a network
with n0¼ 1000, n1¼ 10,000, �¼�, and three values of the
entrainment frequency: !p¼ 0.7 (orange-solid line), !p¼ 0.5
(black-dotted line) and !p¼ 0.3 (blue-dashed line).
Each point is an average over 10 different realisations of
the growing process.
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Figure 2. Time evolution of the mean frequency (upper row), frequency dispersion (middle row) and phase synchronisation
order parameter (lower row) for three pacemaker frequencies (!p¼ 0.7 orange-solid line, !p¼ 0.5, black-dotted line and !p¼ 0.3
blue-dashed line) and coupling strengths dp¼ 0.2, 0.5 and 1.5. See text for the definition of all reported quantities. Remaining
parameters are as in the caption of Figure 1.
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process, eventually saturating to its final value at the

end of the growth of the forcing network.

4. The rising of the scale-free network

Once we have showed that the network can be forced
by the proposed growing method, let us now focus on

the main goal of this study, which is how the degree

distribution in G0 evolves as a result of the phase
entrainment process.

As an example, in Figure 3 we show the final

graphs obtained for n0¼ 100 and n1¼ 1000, with the
nodes of the original graph (the added nodes) depicted

in black (blue). In these plots the very different final
structures we obtain can be seen.

The left and right networks correspond to two

different outcomes of the growth process: the left
network corresponds to the case in which the growing

process is unable to entrain G0 to the pacemaker
frequency, and a simple eye inspection shows how the

distribution of blue attachments is rather homoge-

neous. On the other hand, the right graph presents
the final structure for a successful entrainment of G0.

Here, one can appreciate the high heterogeneity of the
blue attachments, with the simultaneous presence of

few nodes with very high degree (hubs), coexisting
with a vast majority of nodes featuring comparatively

low degrees.
In order to quantify such a difference, we

performed extensive simulations of large networks

with n0¼ 1000, n1¼ 10,000 and d0¼ 0.2, monitoring

the time evolution of the degree distribution Pt(k) of
the G0 nodes during the growing process. As we have

chosen a small-world topology for G0, the initial
degree distribution P0(k) peaks around the mean

value hki¼ k0i¼ 2m0 and has exponentially decaying
tails. We here report the cumulative degree distribution

Pc
t ðkÞ, given by Pc

t ðkÞ ¼
Pkmax

k0¼k Ptðk
0Þ, since the sum-

ming process of the Pc(k) smooths the fluctuations
often observed in the probability of higher degrees.

As a generic property, it is important to remark
that if a power-law is observed in the behaviour of
Pc(k) (i.e. if Pc(k)� k��c), this also implies that the
degree distribution P(k) is characterised by a power-
law P(k)� k��, with �� 1þ �c.

In Figure 4 we show how Pc
t ðkÞ evolves in the two

different situations presented in Figure 3. Figure 4(left)
depicts the evolution of Pc

t ðkÞ for a failed entrainment.
Here it can be seen how the final state of Pc

t ðkÞ deviates
significantly from Pc

0ðkÞ, but it never approximates to
a power-law shape. On the other hand, Figure 4(right)
shows the process for a successful entrainment of G0 to
the frequency of the pacemaker. Here, the control
process is accompanied by the progressive convergence
of Pc

t ðkÞ to a power-law shape.
The difference in the final distributions for the non-

entrained and entrained networks, and the convergence
in this latter case of Pc

t ðkÞ to a scale-free distribution
Pc
endðkÞ is a generic feature in the parameter space, as

can be seen in Figure 5. There, we report log–log plots
of Pc

endðkÞ obtained as the average over 50 different
realisations of the growing process for n0¼ 1000,
n1¼ 10,000, d0¼ 0.2, two different values of � (�¼�
in Figure 5(a),(b) and �¼�/4 in Figure 5(c),(d)), two
different entrainment frequencies (!p¼ 0.5 in
Figure 5(a),(c) and !p¼ 0.7 in Figure 5(b),(d)) and
two values of dp. In all cases, solid (dashed) lines
correspond to the entrained (non-entrained) regime,
obtained for high (low) values of dp, and solid red lines
indicate the best fits.

Whenever the forcing nodes eventually induce the
entrainment of G0 to the pacemaker frequency, the
final degree distribution displays a power-law (scale-
free) behaviour Pc(k)� k��c. The specific slope �c of
the power-law depends on the specific choice of the

Figure 3. Sketches of two networks constructed for n0¼ 100, n1¼ 1000 and �¼�. The nodes of the original graph are depicted in
black, the forcing nodes are depicted in blue. The left(right) network corresponds to a case in which the forcing nodes are unable
(able) to entrain G0 to the pacemaker frequency.
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external frequency !p. However, in our trials, we
always observed values of �c in the range (1, 2), in
accordance to the values measured for most of the real
world networks (Boccaletti et al. 2006b). This is an
interesting fact since it is known that the average
degree of the network diverges in that case, these
values only being possible because the number of
connections in the network rapidly increases as it
grows.

In order to assure the robustness of the process,
we study the possible dependence on diverse changes

on the parameters and the initial conditions. In
Figure 6 we plot the cumulative degree distribution
Pc
endðkÞ for several choices of the specific initial

structure of the pristine network G0. Here it can be
seen that in all cases the growing process leads to the
same qualitative scenario, showing a power-law
distribution with the same �c. Additionally, although
they are not shown here for avoiding repetition, the
results reported have also been checked to be
qualitatively independent on both the system size and
the value of �2 (0, 2�). We have also considered the

1 10 100 1000

0.01

0.1

1

k

P
tc (k

)

1 10 100 1000

0.01

0.1

1

k

P
tc (k

)

Figure 4. Time evolution of the cumulative degree distribution Pc
t ðkÞ (see text for definition) for a particular realisation of the

network growth. !p¼ 0.5 and dp¼ 0.2 (upper panel, non-entrained graph) and dp¼ 0.5 (lower panel entrained graph). The time
instants at which the distributions are taken are: t¼ 0 (*); t¼ 200 (þ); t¼ 500 (s); t¼ 800 (*); t¼ 1000 (h). Notice that, in the
entrained case, Pc

t ðkÞ converges to an asymptotic distribution Pc
finðkÞ (h) which features a power-law shape (best fit sketched with

black dashed line).
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Figure 5. Log-log plots of Pc
endðkÞ (see text for definition) vs. k, averaged over 50 different realisations of the growing process,

for: (a)–(b) !p¼ 0.5, 0.7 and �¼�, (c)–(d) !¼ 0.5, 0.7 and �¼�/4. In all cases, solid (dashed) lines correspond to the entrained
(non-entrained) regime, obtained for high (low) values of dp, and solid red lines indicate the best power-law fits. Remaining
parameters n0¼ 1000, n1¼ 10,000, d0¼ 0.2.
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case in which each new added node has m4 1 links.
In this condition, as expected, the process becomes
faster, in the sense that the number of new nodes
needed to entrain the network reduces, but the final
topology has the same properties as that for the
previously studied case m¼ 1. Therefore, we conclude
that the observed scenario is generic for a wide range of
conditions.

5. Discussion and conclusions

The relationship between the entrainment process and
the rising of a scale-free degree distribution can be
interpreted as follows. Each oscillator in the original
graph G0 can be found in two different states with
respect to the pacemaker: the phase locked state, and
the phase untrained state. When an oscillator is in the
phase untrained state, its phase difference with respect
to that of the pacemaker can be represented as a point
in the unit circle that is circulating clockwise or
counterclockwise, depending on whether the difference
between the frequency of the oscillator and that of the
pacemaker is positive or negative. When, instead, the
oscillator is in the phase locked state, the dynamics of
the phase difference �� is locked around the value
��¼ 0, as this latter represents the fixed point
corresponding to phase entrainment.

In practice, this means that, during the growing
process, if a given node entrains its phase to that of the
pacemaker at a given time, it is prevented from
receiving further attachments coming from future
nodes. This is because we explicitly select the phase
condition to be different from zero, and therefore the
entrained node (whose phase difference will henceforth
stay around the fixed point) will never again satisfy
the condition needed to get further attachments.
All the other untrained nodes will continue rotating

and therefore at least one of them will always better

satisfy the required phase difference condition with the

attachment.
Let us try to describe the entire scenario that is

actually observed by starting from a network G0
composed of n0 unsynchronised nodes. As initially all

the nodes are unsynchronised, the very first connection

just selects the network element whose phase is

occasionally the closest to the given � at that given

moment of time. Therefore, each of the nodes will have

1/n0 probability of acquiring the first connection. If the

value of dp associated to each connection is low,

insufficient to produce phase entrainment of the nodes,

only the very few nodes whose original frequency was

close to that of the pacemaker will be able to entrain

their phases at that value of dp, but the vast majority of

nodes, though perturbed in their phase dynamics, will

never be able to entrain their phases. As a result, apart

from those very few nodes, there will be always a set of

Nuntrained� n0 nodes that can acquire further connec-

tions with equal probability, and therefore the process

is effectively resembling a random shooting. This is the

reason why the observed variation in the degree

distribution never leads to a scale-free behaviour (it is

well known that any random attachment assuming

uniform probability gives degree distributions with

exponential, and not power-law, tails), as in the

example in the left panel of Figure 4 .
Instead, large values of dp are able to entrain all

nodes to the frequency of the pacemaker, indepen-

dently on their initial frequency. Here again, initially,

all nodes will have 1/n0 probability of acquiring the

first connection. However, as soon as the first node is

trained, the remaining nodes have 1/(n0� 1) probabil-

ity of acquiring a further connection. Then, in general,

any state has S nodes already trained and n0�S nodes

still untrained; these last ones have 1/(n0�S ) prob-

ability of acquiring a further connection. Therefore,

the issue is now which nodes are the first ones to

get the trained state. Here again, as initially all nodes

have the same probability of getting a connection, it is

reasonable to assume that the first nodes to get the

trained state will be those with original frequency

closer to the pacemaker (those, e.g. for which the

needed perturbation to be entrained is smaller, and

therefore those for which just a few added connections

are yet able to determine their phase entrainment).

As a result, it should be expected that the nodes

originally displaying a larger frequency mismatch will

increase (in course of time) their probability of getting

further connections during the growing process. This is

equivalent to saying that the present process gives rise

to a sort of preferential attachment where the final

hubs will be those nodes for which the absolute value

Figure 6. Cumulative degree distribution Pc
endðkÞ for several

choices of the original wiring of the pristine network G0:
small-world with rewiring (SW-rew), small-world with
adding (SW-add), ring and scale-free (sf).
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of the frequency mismatch is higher, as is the case of
the right panel in Figure 4.

This qualitative scenario is confirmed in Figure 7,
where we report the final number of acquired connec-
tions ki(tfin) for each node as a function of the original
frequency !0i for a frequency of the pacemaker
!p¼ 0.5 and for two values of dp. It can be noted
that ki(tfin) is nothing but proportional to the prob-
ability of the i-th node to acquire a connection during
the entire growing process, as this latter quantity can
be obviously written as the total number of connec-
tions received by the i-th node divided by the total
number of shootings. Figure 7 shows that in the
untrained case (dp¼ 0.2), the distribution is almost
uniform, reflecting a random shooting which gives rise
to a non-scale-free degree distribution, while in the
trained case (dp¼ 0.5), the nodes whose original
frequency mismatch was higher have a clearly higher
probability to get connections as a result of the
growing process.

We point out that the situation is slightly compli-
cated by the fact that the growing mechanism starts
(as detailed in the text) after a first evolution of G0,
where the distribution of frequencies of the oscillators
is slightly rearranged. This results in the presence of
some nodes of high degree near to the frequency of the
pacemaker, see lower plot of Figure 7. Those points
correspond to oscillators whose initial frequencies
were, indeed, close to that of the pacemaker, but
whose instantaneous frequencies at the instant at
which the growing process starts were moved away
from that of the pacemaker by the initial
rearrangement.

Additional questions can be considered for future
research. It will be important to know how robust is
the system to the presence of noise, which
perhaps could affect the final topology. In addition,
other node dynamics and criteria should be

considered, as synchronisation for excitable nodes.
The extension of the study to stochastic systems or the
inclusion of time delays should also be explored
(Wang, Shu, Fang, and Liu 2006a; Wang, Liu, Li,
and Liu 2006b).

In summary, we have shown how a phase-entrain-
ment growing process entirely guided by dynamical
criteria is able to fully reshape the topology of the
original network, and that the entrainment process is
associated with the emergence of a scale-free degree
distribution in the graph connectivity. This fact can
therefore give new hints on the fundamental processes
that rule the growth of some of the real world
networks, which ubiquitously feature such kind of
connectivity distributions.
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