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1.- INTRODUCTION TO COMPLEX NETWORKS

1.1.- What is a (complex) network?




1.1.- WHAT IS A (COMPLEX) NETWORK?

[J A Network is a set of elements with connections between them

%
O O

A network (graph) G=(N,L) consists of a
4 5 set of N={n,, n,, ... ,n\} nodes and a set of

1 . L={l1, lz, ’lM} links.

'\
]

2 9 A graph is the mathematical abstraction
of a network. Despite it is not rigorous,

6 we will use both terms, graph and
network, as synonyms.

From this viewpoint, each element is represented by a site (physics), node (computer
science), actor (sociology) or vertex (graph theory) and the interaction between two
elements corresponds to a bond (physics), link (computer science), tie (sociology) or
edge (graph theory).
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1.1.- WHAT IS A (COMPLEX) NETWORK?

[ Nodes and links may arise from completely different contexts:
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Schematic representation of a network of hosts and routers.
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1.1.- WHAT IS A (COMPLEX) NETWORK?
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From P.S. Bearman et al., AJS, 110, 44 (2004) Simplified representation of the Arctic food web
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1.1.- WHAT IS A (COMPLEX) NETWORK?

UDP-N=acetyl-D=glucosamine

- Glycan biosynthesis & metabolism
@ 1etabolism of cofactors & vitamins
- Biosynthesis of secondary metabclites
@ ~minc-acic metabolism

D Carbohydrate metabolism

@D nucleotide metabolsm

D Lipid metabolism

D Energy metabolism

D Biodegradation of xenobiotics

LA N-carbamoyl L-aspartate

L) L-glutamate

/\ Non=hub connector
© Connector hub
M Provincial hub

—— Module=module
—— Module-node D=ribose S=phosphate

— Node-node

Metabolic network of the E. Coli.
From Guimera et al., Nature, 433, 895, 2005 Network of neurons
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1.1.- WHAT IS A (COMPLEX) NETWORK?

O A Complex Network is a network with non-trivial topological features, with
patterns of connection between their elements that are neither purely regular nor
purely random.
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1.2.- Types of networks
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1.2.- TYPES OF NETWORKS

[ There exist different classifications of networks:

According to the direction of the links: directed or undirected.
According to the kind of interaction: weighted or unweighted.
According to the differences between nodes: bipartite or not.

According to the evolution of their topology: static or evolving.

According to the dynamics of the nodes: with/without dynamics.

L 0o O O O O

...
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1 . 2 - TYP ES OF N ETWO RKS more at: M.E.J. Newman, Networks: An Introduction

S. Boccaletti et al., Phys. Rep., 424, 175 (2006)

1 Directed and undirected networks:

The relationship between nodes may be symmetric (undirected networks) or
asymmetric (directed networks).

Undirected network Directed network (digraph)

Examples: router network, power grids. Examples: WWW, food webs,
collaboration networks, etc... e-mail/telephone networks, etc...

The direction of the links is crucial in dynamical processes ocurring in the
network, such as information spreading, synchronization or network

robustness.
B == €3 O e
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1.2.- TYPES OF NETWORKS

O Weighted and unweighted networks:

The capacity or intensity of the relationship between nodes may be
heterogeneous (weighted networks).

Unweighted network Weighted network

Examples: citation network, Internet, etc... Examples: e-mail/telephone networks, food
webs, power grid, colaboration networks, etc...

Again, the weight of the links is crucial in dynamical processes ocurring in the
network, such as information spreading, synchronization or network

robustness.
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1.2.- TYPES OF NETWORKS

O Bipartite networks:

Networks with two (or more) kind of nodes and links joining ONLY nodes of
unlike type.

Network Projection

@ @ c@ r@ F@ ‘

X XL/

1@ 2@ 3@ +@ @ =m)

Examples: recommendation networks, user-
item based networks, etc...

Despite being bipartite, it is possible to project the network.

E .;.
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1.2.- TYPES OF NETWORKS

O Static or evolving networks:

Networks do not appear suddenly. We have to know if the network that we
are studying is static (its structure is stationary) or if it is still evolving

t=0

Two fundamental questions are addressed when working with evolving
networks: what are the rules governing the evolution? What consequences

have the rules on the final topology?
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1.2.- TYPES OF NETWORKS

O Networks of dynamical systems:

Nodes are dynamical systems whose dynamics is influenced through the matrix
of connections.

Nodes are (coupled) dynamical systems
(periodic oscilators, excitable systems,
’ chaotic oscilators, bistable systems, ...)

; { w; + ﬁll\,) SYaisin(g; — &)
=

+ dyk,

(l\'i;‘kzv) Sin(¢p,» - ¢i),

In this case, we have to study the influence of the topology in the dynamical
processes occurring in the network (synchronization, stochastic processes,
etc..) ... ... and vice-versal

E .;.
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1.2.- TYPES OF NETWORKS

O Despite the different types of networks, which in turn are obtained
from completely different interacting systems (people, neurons, proteins,
routers,...) we will see that they share some universal properties

Is it a social network?
A technological network?
~ A biological network?

.;O
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1.3.- Basic concepts about networks
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

0 Adjacency, Weights and Laplacian Matrix:

All the former networks can be described using a matricial formalism.
Given a set of N nodes with M conections between them:

Weights Matrix (W): Adjacency Matrix (A): Laplacian Matrix (L):
Entries of the matrix are the a;=1 if there exists a link The Laplacian matrix is
weights w;; (i,j=1, ..., N) between i and j, and a;=0 defined as L=K-A, where K
4.1 of the connections otherwise is a diagonal matrix of
)3 7.1 elements kﬁ=2aij. Thus, it
0.0 2.3 4.1 0.0 0110 has a zero-row sum.
1.0 2.3 0.0 1.0 0.0 1010
4.1 1.0 0.0 7.1 110 1
2 -1 -1 0
0.0 0.0 7.1 0.0 0010 42 4 0o
-1 -1 3 -1
0O 0 -1 1

Matrices will be symmetric if networks are undirected.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Shortest path, average path length and diameter:

Shortest path (d;;):

What happens if the network is
broken into several components?

The shortest path d;; between nodes i and j corresponds to the minimal distance (or weight) between all

paths that connect i and j
Average path length (/):
The average path length [ is the average shortest path between all nodes
in the network: 1
0= (dij) = m;%

when the network is not connected it is usefull to define the “harmonic

mean” . . . 1
(" —= = _—
(d-1) (N(N —1) 2 dij>

i i

Diameter(D):
The maximum between all shortest paths D=max(d;;)
Component:

The set of nodes reachable from a given node.

{TB
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Is the node with the highest degree,
the one with highest strength?

and, which node has the
highest betweennes?

1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Degree, strength and betweenness:

Degree (k;):

The degree k; of a node i is the number of connections of the node

Strength (s;):

The strength s; of a node i is the sum of the weigths of the connections to that node s;= ») Wi

Betweenness (b;):

The betweeennes of a node i (or a link) accounts for the number of
shortest paths passing through that node (or link).

by = Z njk.(l')

n
ket i Ik

where n;, is the number of shortest paths connecting j and k, and n(i)

are those shortest paths between j and k that pass through i.
.;.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Network Motifs:

Network Nodes  Edges | Nreal MNrand=SD  Zscore
Gene regulation X Feed-
Network motifs are patterns (sub-graphs) that occur (transeription) \\l,/ fj;‘l:'““‘
within a network much more often than expected \Z
Z
at random' E. coli 424 519 40 73 10
S. cerevisiae® 685 1.052 70 114 14
Neurons X Feed-
Example: all 13 types of three-node connected v/ forward
subgraphs: v loop
Z

C. eleganst 252 509 125 90 =10 3.7
Electronic circuits X Three-
1 5 3 4 5 6 7 (digital fractional multipliers) ﬂ \ node
feedback
8 9 10 11 12 13 s208

loop

122 189 10 11 9
s420 252 399 20 1+1 18
s838% 512 819 40 1£1 38
World Wide Web )®< Feedback
Each network motif can carry out specific :;:‘t‘u:;“
information-processing functions ; dyads
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3 =le2 800

Figures from: Milo et al., Science, 298, 824 (2002)

E .;.
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Are my friends, friends of my friends?

1.3.- BASIC CONCEPTS ABOUT NETWORKS

QA Clustering coefficient:

The clustering coefficient C accounts for the number of triangles in the network.
Specifically, C; is the ratio between the number of links E connecting the nearest
neighbors of i and the total number of possible links between these neighbors.

2F The clustering coefficient of the network C is the
i (b — 1) average of C; over all nodes.

4 N

,=£1,0,1,1/3}

2,3,
7/12 /
E .;.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

A Local and Global Efficiency:
The efficiency overcomes the divergence of the shortest paths if the graph is
disconnected
Global Efficency (E):
The global efficiency is the harmonic mean of the geodesic paths between all nodes of the network:

1 |
E:N(N—l), 2. T

d
ijeti#j

Local Efficency (E;):

The local efficiency E; of a node i, measures the inverse of the shortest path length between the subset G;

of neighbors of the node i, when i is not present. K \
| O O
Eie = 2 E(GY) 3
ie ‘
The local efficiency is related, somehow, with Q .\(
the clustering cofficient \ J

.;.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Graph Spectrum:

The spectrum of a graph is the set of eigenvalues of its adjacency (or Laplacian) matrix
A. A graph Gy, has N eigenvalues w=(u; w,.., uy) and N associated eigenvectors
V,'=(V1,V2,..., VN)'

The eigenvalues and associated eigenvectors of a graph are intimately related to
important topological features such as the diameter, the number of cycles, information
transmission and the connectivity properties of the graph.

12

Spectral density:

N
1 .
Pl == E o(p — 1)

i=l

Rescaled spectral density of three random graphs having p=0.05 and
size N=100, N=300, and N=1000.The isolated peak corresponds to the
principal eigenvalue.
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What happens if communities are
overlapping?

1.3.- BASIC CONCEPTS ABOUT NETWORKS

0 Community Structure (l):

Given a graph Gy 4, @ community is a subgraph G'.,,» whose nodes are thightly connected
(or at least, more connected than in a random equivalent network).

Zachary Karate Club

Figure from: Guimera et al., Nature, 433, 895(2005)

Figure from: M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (20(

E .;.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

0 Community Structure (ll):

Several algorithms have been proposed in order to split a sparse network into
communities:

—_

o
0

N
'S

Fraction of nodes correctly identified
o
(o2}

o
o

Figure from: L. Danon et al., World
Scientific, 93-113 (2007)

Modularity M is and objective measure in order to evaluate community division:

Na [} g2 where N,, is the number of modules, L is the number of links in
M= Z [—5 - (—5> ] the network, ([, is the number of links between nodes in module
= |L 2L s, and d, is the sum of the degrees of the nodes in module s.

E .;.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Degree Distribution (l):

The [cumulative] degree distribution [P (k)] p(k) accounts for the fraction of nodes in the
network with a degree [higher than] equal to k.

10o =TT T T 11

102 \

\

4 \\
10 (a) collaborations | o
in mathematics (b) citations
llllII 11 IIIIIII 11 I My

1 10 100 1 10 100 1000

Pc(k)

10 E L lg
1 _ I ]
_ 10 E E E
X E 3
o 107 E I i
o E E 3
3 A 7 F () protein \ ]

10 (e) power grid % 10°E interactions

R R B R R R E vl
0 10 20 1 10

degree k
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Degree Distribution (ll):

Two types of degree distribution appear more frequently in real networks :

Exponential decay: P (k) ~ e Power-law decay: P (k) ~ k
]_00 = 100 URRRILL IR RLL IR AL I
-1 B -1 n
10" E 107 g E
= F = B ]
a’ 2 i o’ -2
107 1o g 5
s[ 107 3
107 E (e) power grid = (d) Internet =
C | | | | | | | | | 10-4 i | IIIIIII| 1 | IIIIII| 1 1 IIIIII| ]
0 10 20 1 10 100 1000
degree k degree k
Typical in random networks Networks with power-law decay are called

scale-free networks.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Degree Distribution (lll):

Other related distributions are:

In/out degree distributions
(directed networks)

10 @ T T

107 b %% @ { ¢

107 * e : g—
% % =
* 10° : B ! 4

] ) E
10" f ! 3
10_12 [ 1 sam L L
107 10° 10° 10* 10° 102 10° 10° 10 10°
K K

In/out degree distributions of WWW (from two

different samples: 325.729 and 200.000.000 nodes).
From R. Albert et al., Rev. Mod. Phys. 74, 47 (2002).

What is the relation between
degree and strength?

Strength distribution
(weighted networks)

7 e v
k <w> Pt
- : = Randomized weights E
E | —
& i ¢ Real data
— .,
10 SO il
E U’Lrv"c.oo..'
,? ’_,cf' ..o
A S
w i ° :
e 2
10 £ 2 g sacass e & ez :
10° 10' 10°

k (non-stop connections)

Strength distribution of the International Air
Transportation Network (www.iata.org). From A.
Barrat et al., PNAS, 101, 3747 (2004).
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Clustering Distribution C(k):

The clustering distribution has been related with the modularity and hierarchy of the
network:

10°
# Escherichia coll

Figure: Clustering distribution in three
organisms: Aquidex aeolicus (archaea) (C),
Escherichia coli (bacterium) (D), and
Saccharomyces cerevisiae (eukaryote) (E). (F)
The C(k) curves averaged over all 43 organisms
is shown, and the inset displays all 43 species
together. Lines correspond to C(k)-k', and
diamonds represent the C(k) value expected for
an equivalent scale-free network, indicating the
absence of scaling

I R
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=
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From E. Ravasz et al., Science, 297, 1551 (2002).
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

O Nearest neighbor degree k (k) and assortativity

The k., (k) distribution measures the degree of the nearest neighbors. It is an indicator of
the assortativity of the network.

Music collaboration network Music similarity network
40 1 I T T [ I rrrm 30 1 I T TTTTH I T T T
! I | m 0 | [ S
20 - ] : 3550( “““““““
2 - 1 20 — =
VE — = ] S
s 20 g 4 |
10 - 3 10 ~ diss".;t'é}}f{,' ........
II | IIIIIIII | IIIIIIII L1 i I| | | IIIIIII 1 1 IIIIIII €
1 10 100 1000 1 10 100
degree k degree k degree k

Colaboration and similarity network obtained from a music database (AllMusic Guide).
From J. Park et al., 1JBC, 17, 2281 (2007).
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1.4.- Brief historical background

cccccc de . .
T B tecnologia i} Universidad
biomedica  CSG Rey Juan Carlos




1.4.- BRIEF HISTORICAL BRACKGROUND

O Leonard Euler (Basel 1707 - St. Petersburg 1783)

Some revealing data about Leo:

U Euler worked in almost all areas of mathematics: geometry,
calculus, trigonometry, algebra, and number theory, as well as
continuum physics, lunar theory and other areas of physics.

O Large number of topics of physics and mathematics are
named in his honour (e.g., Eulers’s function, Euler’s Equation or
Euler’s formula).

O All his work is collected in Opera Omnia, which consists of
886 books.

O With one eye from 1738 and completely blind from 1766!

U And the most atonishing data: all of that with 13 children!

.‘.
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1.4.- BRIEF HISTORICAL BRACKGROUND

Q Euler, the father of graph theory:

The seven bridges of Konigsberg and the origin of graph theory:
Is it possible to cross the seven bridges only once?

Euler’ s Solution:

KN = Number of\

=
nodes with odd
degree
1.- If Nyp>2, no
solution.

2.- If Ny=2, only
one solution
starting from
one of the odd

A r‘ "’Y;" R ‘ "
RUSTF Ve D) () & Reks]

B e R . \ nodes.

i -4

p D 1o If Ny < 2,
there are
solutions starting
from any node.
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That’s nice!, but...
...what about real networks?

1.4.- BRIEF HISTORICAL BRACKGROUND

O Regular Graphs

O After the death of Euler, graph theory received many contributions from
mathematicians such as Hamilton, Kirchhoff or Cayley.

O The core of graph theory focused on the study of regular graphs:

Regular graph: a graph where all nodes have the same degree.

Lattice: a regular network where all nodes are coupled to
their nearest neighbors.

]
V%
IIRIRIRISIS X Y
N = number of nodes 1870767778776 % % V’A‘\ X
K = degree “‘%‘:\‘?

C = clustering coefficient

d = dimension of the lattice

[ = average path length 3(K — 2d)
STy gy

(if K <2N/3)
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1.4.- BRIEF HISTORICAL BRACKGROUND

O Paul Erdos (Budapest 1913 - Warsaw 1996)

Some revealing data about Paul:

U Seminal contributions in combinatorics, graph theory,
number theory, classical analysis, approximation theory, set
theory, and probability theory.

U Paul wrote 1475 papers and collaborated with 511 scientists.

U Excentric person, he had an special vocabulary
(children=“epsilons”, women=“bosses”, U.S.=“samland”, etc...)

U Paul offered small prizes for solutions to unresolved problems
(from 25$ to some thousands), and there are still open
problems!

4 "You don't have to believe in God, but you should believe in
The Book.” (he recognized that he took amphetamines)
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1.4.- BRIEF HISTORICAL BRACKGROUND

O Paul Erdos and Alfred Rényi

They worked on the analysis of social networks by finding analogies with the so-called
random graphs, in which the existence of a link between a pair of nodes has a probability p.

.' ------- '. / N = number of nodes \

<k> = mean degree
<L> = number of random connections
p = probability of connection between two nodes

Mean degree of the network > <k> = p(N-1) = pN

.\‘\‘

/d ’w-‘;‘,«‘ww;‘\\g

X O '«‘,‘,".\‘z»

\ Number of random connections > <L> = %2 pN(N-1) = 2 <k>N/

.;.
centro de - . .
T B tecnologia i} Universidad
biomédica csG Rey Juan Carlos




That’s a really short path!!,
What if social networks are ra

1.4.- BRIEF HISTORICAL BRACKGROUND

O Emergence of a giant component

When propability p crosses a critical value p., there emerge a giant component that contains

and extensive fraction of the nodes in the network
ﬁritical probability (N> «): \
In N

e ~ =
= N

Critical mean degree:

(k). ~ In N
Clustering coefficient:
. (k) N=1000
) C=p= \T <1 <k>=2
p increases s . C ~ 0.002
Average shortest path:
In N N=1000000

{ ~ — <k>=5
\ e - 8'6/
ada
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1.4.- BRIEF HISTORICAL BRACKGROUND

O Stanley Milgram (New York 1933 - New York 1984)

Stanley Milgram was an American social psychologist most notable for his controversial
studies on the obedience to authority.

Some Stanley’s famous experiments:

O The Milgram experiment 18 l
/!

U The lost-letter experiment

O The small-world experiment
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1.4.- BRIEF HISTORICAL BRACKGROUND

d The small-world experiment

A group of people from Omaha (Nebraska) and Wichita (Kansas) was asked to send a letter to
an unknown person in Boston (Massachussetts).

Basic Rule of the experiment:

U People should forward the letter to a person that they
consider closer to the target person

Results of one experiment (in fact, there where several!):

O 232 out of 296 letters never reached the target

O 64 letters reached the target (with paths from 2 to 10) ‘ ’
O The average path length was .... 5.2 (steps) N% %"

...
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1.4.- BRIEF HISTORICAL BRACKGROUND

QO It’s a small world!

<[This is a small world}

or in other words:

dij << N

...
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1.4.- BRIEF HISTORICAL BRACKGROUND

OU Home | Ask OU | Add This To...| SAIL | Print  [SEEYeIkell] Go |

Future Students | Current Students | Alumni | Visitors & Friends | Faculty & Staff

Oakland University.

The Erdés Number
Project

The Erdés Number Project

O Let’s go back to Erdos:

This is the website for the Erdés Number Project, which studies
research tion among ici;

This site is by Jerry at Oakland Uni ity, with
the of Patrick lon (i org) at i

Reviews and Rodrigo De Castro

icas.unal.edu.co) at the Uni i Nacional de
Colombia, Bogota. Please address all comments, additions, and
corrections to Jerry at grossman@oakland.edu.

You can measure the distance with Paul Erdos.
(http://www.oakland.edu/enp/)

Erdds numbers have been a part of the folklore of mathematicians
throughout the world for many years. For an introduction to our project, a
description of what Erdos numbers are, what they can be used for, who
cares, and so on, choose the “What's It All About?” link below. To find out

who Paul Erdés is, look at this biography at the MacTutor History of
Mathematics Archive, or choose the “Information about Paul Erdos” link
below. Some useful information can also be found in this Wikipedia
article, which may or may not be totally accurate.

O Mean Erdos number: ~5

WHAT'S INSIDE:

Max von Laue 1914

.. Albert Einstein 1921

O Largest Erdos number: ~13 P 1922
Louis de Broglie 1929

Werner Heisenberg 1932

Paul A. Dirac 1933

Erwin Schrédinger 1933

Enrico Fermi 1938

Ernest O. Lawrence 1939

Otto Stern 1943
Isidor I. Rabi 1944
Wolfgang Pauli 1945
Frits Zernike 1953
Max Born 1954
Willis E. Lamb 1955

E .;.
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Are real networks a mixture between
lattices and random networks?

1.4.- BRIEF HISTORICAL BRACKGROUND

Q It’s a small world everywhere!

The small-world property has been reported in a large humber of real networks of different

origin.
NETWORK SIZE (k) ( lna C Cind
1. Movie actors 225226 61.0 3.65 299 0.79 0.00027
2. Power grid 4941 2.67 18.7 124 0.08 0.00054
3. WWW site level (undir.) 153127 35.2 3.10 3.35 0.11 0.00023
4. Words (co-ocurrence) 460902  70.1 2.67 3.03 0.44 0.00015
5. LANL co-authorship 52909  9.70 5.90 4.79 0.43 0.00018
6. MEDLINE co-authorship 1520251 18.1 4.60 4.91 0.07 0.00001
7. Math. co—authorship 70975 3.90 9.50 8.21 0.59 0.00005

Average path length and clustering coefficient of some real networks. We compare the values
in the real network with those of equivalent random networks

The average path length is similar in random networks (where [ ~ (n N) but the clustering
coefficient is some orders of magnitude higher (and closer to the clustering coefficient of a

lattice!).
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Watts-Strogatz model (1)

Watts and Strogatz (PRL 1998) proposed a network model that conciliated the high clustering
and short average path length of real networks

Starting from a regular ring, a certain (random) rewiring is introduced with a probability p

p increases

v
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Watts-Strogatz model (ll)

Small-world networks are characterized by a low average shortest path and high clustering

0o oo 57

. *e c(p)
08t ™ ® c(0)
|
0.6 sl ¢ A low number of “shortcuts” reduces
- networks the distance between nodes without
o modifying the local properties
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Watts-Strogatz model (ll)

The larger the network, the higher probability to be small-wolrd.

LW | WY L RN \
. N \ b\ "
\ LY L |'| N\ ‘I" \ .I. 'u' A
(| T ALY AR A\
\ Y A\ 'cl \ AN \ N"m
T —
A\ L/

0.6 SRR >
\ % A W
|'|‘ ||‘ I|| ll" ,I| '|'|:|I.
—= _.v‘. l\ \ ||I .I|‘ "." 5
0.4 N=20000 0 WA N .
".‘ , | LR .
"II A\ \ o, = |
0.2 ‘._"'. L - -.“"- ‘n‘.\'.‘ .‘ . | -
:'_.-ﬁ_';._-b_:___;:-..-‘i = -
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The rewiring of the links in
order to enter the small world-

region goes with:

p~1/N
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1.4.- BRIEF HISTORICAL BRACKGROUND

O Scale-free networks (I)

_

P.(k

Unfortunatelly (or luckily!) many real networks are not exponential. On the contrary, they
have a power-law decay (i.e., P(k) ~ k7).

100 E TT |||||| T T TTTTIT T IE 100 ETT ||||||| T TTTTT T TTTTT TT |||= 100 E||||||||| ||||||||| ||||||||| ||||||||| |||||||| |||||E
2 = 3 E SF 3
E 3 E E 10" =
10’ F E U E = >
3 E 4 I :
N R E 1 -
107 E" (a) collaborations E 10°E 3 10° 3 ) E
i in mathematics 7 L (b) citations _ £ (c) World Wide Web 3
; 111 |||||| L1l |II||| L1 E E 11 II|III| 1 |II|I||| 1 |II|I||| 11 ||IE 10-8 E||||I|||| ||||||||| I|||I|||| IIIIIIIII IIIIIIII L
1 10 100 1 10 100 1000 10° 10> 10} 108

degree k
O Scale-free networks have power law decays P(k) ~ k¥

O Power laws are relatively slow decreasing functions (the probability of having highly
connected nodes is much higher than in exponential networks).

O A power-law distribution has no peak at its average value (no characteristic scale).

.;.
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1.4.- BRIEF HISTORICAL BRACKGROUND

O Scale-free networks (ll)

NETWORK SIZE Yin/ Yout
1. Movie actors [57] 212250 2.3
2. WWW [59] 2108 2.7/2.1
3. Internet, router [60] 260000  —/1.94
4. Words (co-ocurrence) [13] | 460902 2.7
5. Neuro. co-authorship [61] | 209293 2.1
6. SPIRES co-authorship [48] | 56627 1.2
7. E-mail messages [62] 59912 1.5/2.0
8. Metabollic network [63] 778 2.2

Real networks with scale-free structure. From Almendral, PhD. Thesis

Interestingly, the exponent of the power laws range from 1.2 to 3, with the majority
between 2 and 3.

.;.
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Barabasi-Albert model (I)

They introduce a model in order to explain the origin of the power-law distributions of real
networks. A network is constructed from scratch following two fundamental rules:

O Growth. From an initial number of nodes N,, new nodes are attached to the
existing ones at discrete time steps. Thus, the number of nodes increases with time
N(t)= Ny+t and also the number of links L(t)= mt (being m the number of links of each

new node)

Q Preferential attachment. The nodes to which the new node is attached are chosen
following a preference function:

lﬂi
N(t
SX Ok

Pi =
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Barabasi-Albert model (Il)

The BA model shows a power law decay independent of the number of links or the system

size (with an exponent y=3)
10° - - 10°
\ &
N 10° | %
° : ooa ! ooo
L o¢al o 5
E
° JOOAA:‘\\ §10 . %
o BN F07 10 %
2 e DDO:“:\ °°o
10 ° ’i-é%“A‘ 10'9 - S %
© DQ:A\\ AN °°° .
o BN 0" e 1ot e %, Evolution of the degree
K 5 of two nodes

P(k)

° \
oo
% e 10
o oo k 4 °o
o 098\ 10 + -3
R 3 o,
CRE- LA 10
% 0 & %
3 Y

HUBS!
g e %
6 X ’
10 10’ oc,/ Xﬂ%
10°  10° 10
i 10-0 ! )
) 10° 10° 10° 10' K 10° 10

10° 10
(Left) Degree distribution of the B-A model, with N=m,+t=300000 and m,=1,3,5,7. The dashed lines
correspond to P(k)=k%2°. (Right) P(k) for my;=5 and different systems size: m=100000, 150000 and
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Barabasi-Albert model (lll)

Are networks obtained with the BA
model small world networks?

OOO

As in random networks, the clustering coefficient obtained with the BA model is low

107 c
10°
© 10 L
10" ¢
10° - o

O

© BA model
—— random graph

Clustering coefficient C of the network as a function of
the system size N. From R. Albert et al., Rev. Mod. Phys.

74, 47(2002)

10°

network type n m | C l
film actors undirected 449913 25516 482 78 348
company directors undirected 7673 55392 | 0.88 4.60
math coauthorship undirected 253339 496489 | 0.34 7.57
physics coauthorship | undirected 52009 245300 | 0.56 6.19
:g biology coanthorship | undirected 1520251 11803064 | 0.60 4.92
2 | telephone call graph undirected 47000000 80000000
email messages directed 59012 86300 | 0.16 4.95
email address books directed 16 881 57029 | 0.13 5.22
student relationships | undirected 573 477 | 0.001 (16.01
sexual contacts undirected 2810
Internet undirected 10697 31992 | 0.39 3.31
= | power grid undirected 4941 6594 | 0.080 |18.99
:§j train routes undirected 587 19603 | 0.69 2.16
9 | software packages directed 1439 1723 | 0.082 | 242
'§ software classes directed 1377 2213 | 0.012 | 1.51
“ | electronic circuits undirected 24007 53248 | 0.030 [11.05
peer-to-peer network | undirected 880 1206 | 0.011 | 4.28
metabolic network undirected 765 3686 | 0.67 2.56
E protein interactions undirected 2115 2240 | 0.071 | 6.80
_EJ marine food web directed 135 508 | 0.23 2.05
:_'g freshwater food web directed 92 997 | 0.087 | 1.90

Clustering coefficient C and average path length of some real
networks. From Newman, SIAM Rev, 45, 167 (2003)
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1.4.- BRIEF HISTORICAL BRACKGROUND

O The Barabasi-Albert model (IV)

Attractiveness, aging, capacity, ... can modify the scale free behaviour of the BA model.

The Dorogovtsev-Mendes The Kaprivsky et al. model The Dorogovtsev-Mendes model
-Samukhin model

Probability of linking depends on 1
(being T the age of the node)

k¥
l_[ k, + I\O 1_[ — 1 0
= } k* At
hiy > 1k + ko) j>i 2_iKj
-2
ko= initial attractiveness a < 1 : streched exponential decay < 3
(-m < ko< ) a > 1 : a single node dominates a 15
m= number of new links 8 4
Krapivsky et al.,
PRL, 4629 85 (2000 ST
v =3+ ko/m (2000) )
2<y< o -7
( v ) 0 1 2 3
log k
gg[oggg\;tzgg fzto?)l(.); Probability distribution for serveral aging exponents:

1) 0.2, 2) 0.25, 3) 0.5 and 4) 0.75. a>1 exponential decay.
From PRE62, 1842 (2000)
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1.4.- BRIEF HISTORICAL BRACKGROUND

d Complex Networks time line:

1960

1951

1736 1941 1956

Erdos-Renyi

Euler Solomon-Rappaport

Flory-Stockmayer
Simon

Birth of Graph theory

7 bridges graph theory

Word analysis
(power-law)

Polymers

Schoolo‘
8-19 July 20

Social Networks

1967 1999
Watts-Strogatz
Barabasi-Albert
Milgram
Small-world Scalef
Bollobas cale-iree
model
Faloutsos-Faloutsos-Faloutsos

Power law
Internet

More complex g
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2000....

Lots of physicists
enter in the game

Real Networks:
Biology
Internet
WWW
Economy
etc...

(from J.F.F. Mendes presentation)
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2.- Applications To Biological Networks

2.1.-
2.2.-
2.3.-
2.4.-

Genetic, protein and metabolic networks
Neuron and brain networks

Networks in ecology
Disease spreading
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2.0 Introduction to Biological Networks

O Biological Networks:

network type n m z 4 o C r
metabolic network undirected 765 3686 9.64 2.56 2.2 0.67 —0.240
—:_f protein interactions undirected 2115 2240 2.12 6.80 2.4 0.071 —0.156
2 | marine food web directed 135 598 443 | 205 023 | —0.263
'f:'_' freshwater food web directed 92 997 10.84 1.90 — 0.087 —0.326
neural network directed 307 2359 7.68 3.97 - 0.28 —0.226

Network parameters of several biological networks: n, number of nodes; m, number of links; z,

mean degree,; | average shortest path; a, power-law exponent; C, clustering coefficient, and r,
assortativity. From Newman, SIAM, 45, 167 (2003).

'..
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2.0 Introduction to Biological Networks

O How are Biological Networks?:
O Biological networks are small-world.

O It is common to observe dissortative mixing (i.e., most connected nodes are not
preferentially connected with each other).

O They are (typically) organized in sub-modules and, as a consequence, they have
high modularity and community structures.

Nevertheless, each network deserves its own interpretation

.;.
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2.0 Introduction to Biological Networks

d Complex networks in biology:

One of the first contributions of the Complex Network Theory to biological systems
is the seminal paper of Watts and Strogatz

Lactual L random Cactual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

The small-world of C. Elegans neural network , with an edge joining
two neurons if they are connected by either a synapse or a gap junction
(n= 282, <k>= 14.). Table from Watts et al., 393, 440 (1998)
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2.0 Introduction to Biological Networks

O Biological networks comprise a wide set of different networks:

O Metabolic, protein and genetic networks
0 Networks of neurons

O Functional and anatomical brain networks
0 Food webs in ecosystems

O Animal grouping and swarm movement

O and many others ...
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2.1.- Genetic, protein and metabolic networks
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2.1.- Genetic, protein and metabolic networks

[ Genetic networks:

Interaction between genes (through transcription factors) lead to a nework of promotor/

repressor interactions

MRNA
RNA polymerase TRANSLATION
- —
TRANSCRIPTIO
promoter  gene
Activator Repressor

I - [
‘= |
LTB== € 4
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2.1.- Genetic, protein and metabolic networks

] Genetic networks:

Again, genetic transcription networks are directed (digraphs) with positive/negative regulations:

° transcription factor
o protein

5 negative regulation

—> positive regulation

Yeast (S. Cerevisiae) network of transcriptional
regulation (N=682 proteins and M=1289 interactions).
From Maslov et al., Large-Scale Topological Properties
of Molecular Networks (Springer 2003)
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2.1.- Genetic, protein and metabolic networks

[ Genetic networks:

The P,,(k) distribution is limited by the
system (due to the finite space of the
promoter). P (k) is not limited and, as a
consequence, has a heavy tail.

Figure: (a) The histogram N(K; ) of nodes’ in-
degrees K, in transcription regulatory networks of
yeast (diamonds, dashed line), and E. coli (circles,
solid line). (b) the same as (a) but considering the
N(K, - )- From Maslov et al., (2003).

Read more at:
Maslov et al., Large-scale topologicd
properties of molecular
networks (2003)
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2.1.- Genetic, protein and metabolic networks

1 Metabolic networks:

Metabolic networks are obtained from the biochemical reactions involving the transformation
of energy and matter in the cell. The participating substrates are called metabolites and are
catalyzed and regulated by enzymes.

D-erythrose D-sedoheptulose D-xylulose
{ 4—phrgtsphate 2212 7- phosp%ate @ 5—phgsphate j'
D-fructose cheraldehydﬁ D-ribose
6-phosphate P osphat 5-phosphate
5-phospho-
alphg—D—ﬁbose
2211 . 1-diphosphate
AMP | 276D [ A

A portion of the WIT database for E. coli. Each substrate can be represented as a node of the graph, linked through temporary
educt-educt complexes (black boxes) from which the products emerge as new nodes (substrates). The enzymes, which provide
the catalytic scaffolds for the reactions, are shown by their EC numbers. From Jeong et al., Nature, 407.651 (2000).

E .;.
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2.1.- Genetic, protein and metabolic networks

1 Metabolic networks:

Metabolic networks have scale-free degree distribution.

10°

IIII”“' IIII””' IIIII“: IIII“”' IIII”“l IIIII”: 10_6 T T TTTTI0 T T TTTTT T TTTITH T T 11T T T TTTIT T TTTTTH
: n—o— ] In —o— ] b Nmo— ] By In—oe— ]
107 Out —=— = = = 101 F Out —g— - —
102 4 F E 102F 1 F E
< 109 - 1 g o - —;
Ry [ 1 I 1z [ 1 I ]
107 1 F = 104F 1 F 3
0+ a I I ke - :
~ ! |||||||| ||||||||I |||||||_| ~ . |||||||I ||||||||| |||||||_|' _6_ 1 IIIIIIII ll||I|||| L Ll C 1 ||||||l| |||||l||| |||||||_|
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k k Kk Kk

Connectivity distributions P(k) for: (a) Archacoglobus fulgidus (archae); (b) E. coli (bacterium); (c¢) Caenorhabditis
elegans (eukaryote), counting separately the incoming (In) and outgoing links (Out) for each substrate. k;, (k)
corresponds to the number of reactions in which a substrate participates as a product (educt). (d) The connectivity
distribution averaged over all 43 organisms. From Jeong et al., Nature, 407.651 (2000).
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2.1.- Genetic, protein and metabolic networks

1 Metabolic networks:

They also have the small-world property and the resilience to failures of scale-free networks:

N
o
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T
L

A Hub
0 Random

—
o)
|
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O
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I
|

Average path length
w
—&—
——
==
——
Average path length
=

500 400 600 0010 20 30 40 50 60
N M

Average path length of the metabolic network of The effect of substrate removal on the metabolic

43 organisms. From Jeong et al., Nature, 407, 651 network of E. coli. M=60 corresponds to the ~8%

(2000). of the network metabolites. From Jeong et al.,
Nature, 407, 651 (2000).
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Read more at:
Protein-Protein Interactions

. . . P. Uetz and C.S. Vollert
2.1.- Genetic, protein and metabolic networks

d Protein networks:

They reflect physical or chemical interactions between proteins. It is estimated that even
simple single-celled organisms such as yeast have their roughly 6000 proteins interacting by at least 3
interactions per protein, i.e. a total of 20,000 interactions or more. By extrapolation, there may be on the
order of ~100,000 interactions in the human body.

Figure from Thanos, et al.,
Science, 283, 833 (1999)
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2.1.- Genetic, protein and metabolic networks

O Protein networks:

The protein-protein (bidirectional)
interactions are an example of a
complex network.

. 4wl
74 7 ;‘ZI"\Q“’J\\W
Protein-protein interaction in the yeast o xe / ; 7 i\\‘ |
S. cerevisiae, (N=1870 and M=2240). . !
From Jeong et al., Nature, 411, 41 # /- ) 1
(2001). 4 Y
{ T B centro de
tecnologia
biomédica
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2.1.- Genetic, protein and metabolic networks

O Protein networks:

Protein-protein interaction networks are typically
scale-free with an exponential cut-off:

: (b) -

D -
9
_x - —
Ry
Lo -
v n .
e
o
% 6F -
2

Figure: Probability distribution of the protein-protein interaction - —
in the yeast S. cerevisiae, (N=1870 and M=2240). The
distribtuion is scale-free with an exponential cut-off (around -8 m
k ~20). From Jeong et al., Nature, 411, 41 (2001).
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2.1.- Genetic, protein and metabolic networks

O Protein networks:

Dissortative structure has been also reported.

Interestingly, dissortative structures are robust against
failures of the hubs due to the reduced propagation to
the neighbors.

O—M—0 oqipo

Figure: Distribution of the average neighbor connectivity
for the yeast protein-protein interaction network. Here,
N=3278 and M= 4549. From Maslov et al., Science., 296,
910 (2002).

10°

Average connectivity of a neighbor
o

10

10

-
T

Read more at:
Maslov et al.,
Science., 296, 910 (2002).

3

10' 10° 10
Connectivity of a node

E .;.
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2.2.- Neuron and brain networks

O Networks of neurons:

C. Elegans: It is the only living system
that has been fully mapped. It has 302
neurons and average degree <k>=29.

It has low shortest path and high
clustering: it is a small-world network.

Existence of network motifs.

The tail of the distribution of degrees
p(k) is power-law.

Gap juntions connections and chemical synapses of C. Elegans
neurons. From Varshney, PLoS Comp. Biol, 7, 1001066 (2011)
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2.2.- Neuron and brain networks

O Are anatomical networks efficient in transmitting information?

OPEN @ ACCESS Freely available online PLOS compurarionaL sioLoGY

Nonoptimal Component Placement, but Short
Processing Paths, due to Long-Distance
Projections in Neural Systems

Marcus Kaiser' 2", Claus C. Hilg«atagz'4

1 Schaal of Camputing Science, University of Newcastle, Newcastle upan Tyne, United Kingdam, 2 Institute of Neurascience, University of Newcastle, Newcastle upan Tyne,
United Kingdam, 3 International University Bremen, Schaal of Engineering and Science, Bremen, Germany, 4 Bastan University, Sargent Callege, Department af Health
Sciences, Bastan, Massachusetts, United States of America

It has been suggested that neural systems across several scales of organization show optimal component placement, in
which any spatial rearrangement of the compoenents would lead to an increase of total wiring. Using extensive
connectivity datasets for diverse neural netwoerks combined with spatial coordinates for netwoerk nodes, we applied an
optimization algorithm to the network layouts, in order to search for wire-saving compoenent rearrangements. We
found that optimized component rearrangements could substantially reduce total wiring length in all tested neural
networks. Specifically, total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and wiring
of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by
49% for neurens within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance
projections in neural networks. We explored the role of these projections by comparing the original networks with
minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally
rewired networks, the number of processing steps along the shortest paths between components was significantly
increased compared to the original networks. Additional benchmark comparisons alse indicated that neural networks
are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These
findings suggest that neural systems are not exclusively optimized for minimal glebal wiring, but for a variety of

factors including the minimization of processing steps.
.;.
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2.2.- Neuron and brain networks

O Are anatomical networks efficient in transmitting information?

Macaque cortex: W original [ optimized
e x103
E 60 - 500
£ 48} 400}
g 300
5 361
2 24 200}
5 A2t 100+
© 0
§ Macaque C. elegans
M original [ ] minimal
a7k
= 3 ¥ g
5 101 /
= /]
real 120 pm £ o al. Y
g 1t 4t
E ol
. . 120 um .
optimized 0

Macaque C. elegans
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Read more at:
Bullmore et al.,
Nature Rev. 10,186 (2009)

2.2.- Neuron and brain networks

Functional Networks

Anatomical parcellation 1 ‘ Recording sites

Histological or \2 Time series data
imaging data “
- Cross-correlation
- Wavelet coherence
’W‘"WW’WM - Sync. likelihood

- Generalized Sync.

- Phase Sync.
pm | WMI M M Mﬁr - Mutual Info.
- Granger Causality
- Histological Analysis Structural brain network Functional brain network
- DTI (MRI) Sensorimotor

Premotor

Temporal pole

Graph theoretical analysis
From Bullmore & Sporns, Nature Rev. 10, 186 (2009)
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2.2.- Neuron and brain networks
From Sporns et al., Neuroinformatics, 2, 145 (2004)

 Anatomical networks in animals :

U Macaque cortex: O Cat cortex:
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N=71 Brain Areas and L=746 N= 52 Brain Areas and L=820
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2.2.- Neuron and brain networks

(J The anatomical structure of Human Brain:

d Exponential (not scale-free)
degree distribution (note that
there are 66 subregions and
998 ROIs).

O Small-world attributes.

O Multiple modules interlinked
by hub regions.

O Positive assortativity.

Hagmann et al. (2008) PLoS Biol. 6, e159
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2.2.- Neuron and brain networks

L How to obtain functional brain networks:

STEP 1 STEP 2 STEP 3
“J\r%yvv\fbeﬁﬁF@wamM&wnmam¢ e s Sensorimotor
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Temporal pole

Measurement of brain activity Time series analysis Network Analysis
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2.2.- Neuron and brain networks

O Complex networks methods give useful information at 3 different levels:

v Characterize the topology of brain functional networks and its influence in
the processes occurring in them:
O Small-world topology -> High efficiency in information transmission.
O High clustering -> Good local resilience.
O Modularity -> Segregation & integration of information.

> ldentify differences between healthy brains and those with a certain
pathology:

O Quantify evolution towards random topologies.

O Evaluate the loss of modularity in the networks.

O Quantify the increase of energy expenses.

> Develop models in order to explain the changes found in impaired
functional networks:
Q Identify what are the rules that determine the network distortion.
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2.3.- Networks in Ecology

L Food Webs = Trophic interactions

Montoya, J, S L Pimm, R V Sole (2006) Ecological Networks and their fragility. Nature, 442
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2.3.- Networks in Ecology

(1]

log Pc(k)

An exponential
P(k) — e-k/3.998

PI truncated power law
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Montoya, J, S L Pimm, R V Sole Nature, 442 (2006)

A power law

P(k) — k—1.512

PI truncated power law
P(k) — k—0.2822e—k/42.55

=
100 T VIIIHI T T IIITH] T 3 100

E * Animals é

oo « Plants -
101 ! ER
102f | o : 107

10° 10' 107
k
h

Pollinator-plant

{TB

exponential
P(k) — e-k/8.861

& IIIII T T IIIIIII:

1 llllllll 1 IllllHl:

—_
o

o

168

10'

El Verde rainforest

centro de
tecnologia
biomédica

csaG

(} Universidad

Rey Juan Carlos



2.3.- Networks in Ecology
J. Aguirre, D. Papo, JM Buldu, Nature Physics,(2013)

Dolphin network of Doubtful Sound (2=0.7)
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O How did real networks play their cards?

i
““"’Lyw g | | 50%
O We define a competition parameter that : o
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2.4.- Disease spreading

O Networks of social contacts are not homogeneous

] IIIIIIII l IIlIlIII L1111l

1 10 100 1000

Collaboration network between musical artists.
From Park, 1JBC, 17, 2281 (2007).

Cumulative distribution, P(k)
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Network of sexual contacts. (a) Partners during the last year and (b)
number of partners during the entire lifetime. Sample: 4781 Swedes.
From Liljeros, Nature, 411, 907 (2001)

Wilt Chamberlain (NBA basketball player) wrote that he had had sex with
approximately 20,000 women. (that means having sex with 1.2 women a
day, every day since he was fifteen years old.) (no comments)
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Read more at:
Pastor-Satorras et al.,
PRE, 65, 36104 (2002)

2.4.- Disease spreading

O How can | fight the disease in scale-free networks?

Targeted immunization: We select the most connected nodes as the candidates for
immunization.

P,/ Po = Reduced prevalence 1.0 - . : : _ I
g= ratio of immune individuals 6—6 Uniform Immunization

&—=& Targeted Immunization

0.4

03 r

0.8

Density of infected nodes in a random network (solid) and BA
network (dashed). From Pastor-Satorras, PRE 63, 066117 (2001).
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Summary and conclusions

1) The structure of connections between
biological units (genes, proteins, neurons,
individuals) plays a fundamental role in
any biological process.

2) It seems | am going to enjoy the School!
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Thanks for your attention

Come to visit us in Madrid (great city, great people)

Contact: javier.buldu@urjc.es
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