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1.- INTRODUCTION TO COMPLEX NETWORKS 
 

1.1.- What is a (complex) network? 
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1.1.- WHAT IS A (COMPLEX) NETWORK? 

q   A Network is a set of elements with connections between them 

 
 
 
 
 
 
 
 
 
 
From this viewpoint, each element is represented by a site (physics), node (computer 
science), actor (sociology) or vertex (graph theory) and the interaction between two 
elements corresponds to a bond (physics), link (computer science), tie (sociology) or 
edge (graph theory). 
 

A network (graph) G=(N,L) consists of a 
set of N={n1, n2, … ,nN} nodes and a set of 
L={l1, l2, … ,lM} links. 

N=9 
L=9 

1 

3 

2 

4 5 

8 7 

6 

9 A graph is the mathematical abstraction 
of a network. Despite it is not rigorous, 
we will use both terms, graph and 
network, as synonyms. 
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1.1.- WHAT IS A (COMPLEX) NETWORK? 

q   Nodes and links may arise from completely different contexts: 

 
 
 
 
 
 
 
 
 
 
 
 
  

Schematic representation of a network of  hosts and routers. Madrid Power Grid.  From http://www.ree.es 
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1.1.- WHAT IS A (COMPLEX) NETWORK? 

Structure of romantic and sexual contact at Jefferson High School 
From P.S. Bearman et al., AJS, 110, 44 (2004) Simplified representation of the Arctic  food web 
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1.1.- WHAT IS A (COMPLEX) NETWORK? 

Network of neurons 
Metabolic network of the E. Coli. 
From Guimerà et al., Nature, 433, 895, 2005 
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1.1.- WHAT IS A (COMPLEX) NETWORK? 

q   A Complex Network is a network with non-trivial topological features, with 
patterns of connection between their elements that are neither purely regular nor 
purely random. 

 
 
 
 
 
 
 
 
 

From: R.V. Solé and S. Valverde,  
Lecture Notes in Physics, 650, 189, 2004 
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1.2.- Types of networks 
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1.2.- TYPES OF NETWORKS 

q   There exist different classifications of networks: 
 

 
q   According to the direction of the links: directed or undirected. 

q   According to the kind of interaction: weighted or unweighted. 

q   According to the differences between nodes: bipartite or not. 

q   According to the evolution of their topology: static or evolving. 

q   According to the dynamics of the nodes: with/without dynamics. 

q   ...  
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1.2.- TYPES OF NETWORKS   

q   Directed and undirected networks: 
 

The relationship between nodes may be symmetric (undirected networks) or 
asymmetric (directed networks). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Undirected network Directed network (digraph) 

The direction of the links is crucial in dynamical processes ocurring in the 
network, such as information spreading, synchronization or network 
robustness. 

Examples: router network, power grids. 
collaboration networks, etc... 

Examples: WWW, food webs,  
e-mail/telephone networks, etc... 

 more at:  M.E.J. Newman, Networks: An Introduction 
                    S. Boccaletti et al., Phys. Rep., 424, 175 (2006) 
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q   Weighted and unweighted networks: 
 

The capacity or intensity of the relationship between nodes may be 
heterogeneous (weighted networks). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unweighted network Weighted network 

Again, the weight of the links is crucial in dynamical processes ocurring in the 
network, such as information spreading, synchronization or network 
robustness. 

Examples: citation network, Internet, etc... Examples:  e-mail/telephone networks, food 
webs, power grid, colaboration networks, etc... 

1.0 

2.3 

4.1 

1.7 

0.5 
2.5 

9.9 3.1 
7.1 

1.2.- TYPES OF NETWORKS 
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q   Bipartite networks: 
 

Networks with two (or more) kind of nodes and links joining ONLY nodes of 
unlike type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Despite being bipartite, it is possible to project the network. 

Examples:  recommendation networks, user-
item based networks, etc... 

A 

1 

C B D F 

2 3 4 5 

A: (0,1,1,0,0) 
B: (1,1,0,0,0) 
... 

 

1: (0,1,0,0,0) 
2: (1,1,1,0,0) 
... 

 

Network Projection 

1.2.- TYPES OF NETWORKS 
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q   Static or evolving networks: 
 

Networks do not appear suddenly. We have to know if the network that we 
are studying is static (its structure is stationary) or if it is still evolving  
 
 
 
 
 
 
 
 
 
 
 
 
 

t=0 

Two fundamental questions are addressed when working with evolving 
networks: what are the rules governing the evolution? What consequences 
have the rules on the final topology? 

t=1 
t=2 

t=3 

1.2.- TYPES OF NETWORKS 
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q   Networks of dynamical systems: 
 

Nodes are dynamical systems whose dynamics is influenced through the matrix 
of connections. 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this case, we have to study the influence of the topology in the dynamical 
processes occurring in the network (synchronization, stochastic processes, 
etc..) ...  ... and vice-versa! 

Nodes are (coupled) dynamical systems 
(periodic oscilators, excitable systems,  
chaotic oscilators, bistable systems, ...) 

1.2.- TYPES OF NETWORKS 
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q   Despite the different types of networks, which in turn are obtained 
from completely different interacting systems (people, neurons, proteins, 
routers,...) we will see that they share some universal properties 

 
 
 
 
 
 
 

Is it a social network? 
A technological network? 
A biological network? 

1.2.- TYPES OF NETWORKS 
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1.3.- Basic concepts about networks 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Adjacency, Weights and Laplacian Matrix: 
 

 All the former networks can be described using a matricial formalism. 
 Given a set of N nodes with M conections between them: 

 
 
 
 
 
 
 
 
 
 
 

Weights Matrix (W): 
 
Entries of the matrix are the 
weights wij (i,j=1, ..., N) 
of the connections 

1.0 

2.3 

4.1 1 
7.1 

2 

3 4 
0.0   2.3   4.1   0.0 
2.3   0.0   1.0   0.0 
4.1   1.0   0.0   7.1 
0.0   0.0   7.1   0.0 

Adjacency Matrix (A): 
 
aij=1 if there exists a link 
between i and j, and aij=0 
otherwise 
 

0   1   1   0 
1   0   1   0 
1   1   0   1 
0   0   1   0 

Laplacian Matrix (L): 
 
The Laplacian matrix is 
defined as L=K-A, where K 
is a diagonal matrix of 

elements kii=Σaij. Thus, it 
has a zero-row sum. 

2   - 1   -1    0 
-1    2   -1    0 
-1   -1   3   -1 
0     0   -1   1 

Matrices will be symmetric if networks are undirected. 
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Average path length (l): 
 
The average path length l is the average shortest path between all nodes 
in the network: 
 
 
when the network is not connected it is usefull to define the “harmonic 
mean”  

1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Shortest path, average path length and diameter: 
 

  
 

 
 
 
 
 
 
 
 
 
 
 

Shortest path (dij): 
 
The shortest path dij between nodes i and j corresponds to the minimal distance (or weight) between all 
paths that connect i and j 

1 

12 

Diameter(D): 
 
The maximum between all shortest paths D=max(dij) 

What happens if the network is 
broken into several components? 

Component: 
 
The set of nodes reachable from a given node. 

13 

 d1,12=4 

 d12,13=∞ 
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Betweenness (bi): 
 
The betweeennes of a node i (or a link) accounts for the number of 
shortest paths passing through that node (or link). 

1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Degree, strength and betweenness: 
 

  
 

 
 
 
 
 
 
 
 
 
 
 

Degree (ki): 
 
The degree ki of a node i is the number of connections of the node 

Strength (si): 
 

The strength si of a node i is the sum of the weigths of the connections to that node  si= Σ wij  

Is the node with the highest degree,  
the one with highest strength? 

and, which node has the 
highest betweennes? 

where njk is the number of shortest paths connecting j and k, and njk(i) 
are those shortest paths between j and k that pass through i. 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Network Motifs: 
 

Network motifs are patterns (sub-graphs) that occur  
within a network much more often than expected 
at random. 

 
 
 
 
 
 
 
 
 
 
 

Each network motif can carry out specific 
information-processing functions 

Example: all 13 types of three-node connected 
subgraphs: 

Figures from: Milo et al., Science, 298, 824 (2002)  



School on Complex Biological Networks 
8-19 July 2013, IIP, Natal (Brazil) 

1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Clustering coefficient: 
 

The clustering coefficient C accounts for the number of triangles in the network. 
Specifically, Ci is the ratio between the number of links E connecting the nearest 
neighbors of i and the total number of possible links between these neighbors.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Are my friends, friends of my friends? 

The clustering coefficient of the network C is the 
average of Ci over all nodes. 

1 

2 3 

4 

1 

2 3 

4 

1 

2 3 

4 

C1,2,3,4 = {0,0,0,0} 
C=0  

C1,2,3,4 = {1,1,1,1} 
C=1  

C1,2,3,4 = {1,0,1,1/3} 
C=7/12  
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Local and Global Efficiency: 
 

The efficiency overcomes the divergence of the shortest paths if the graph is 
disconnected 

 
 
 
 
 
 
 
 
 
 
 
 
 

Local Efficency (Ei): 
 
The local efficiency Ei of a node i, measures the inverse of the shortest path length between the subset Gi 
of neighbors of the node i, when i is not present.  

Global Efficency (E): 
 
The global efficiency is the harmonic mean of the geodesic paths between all nodes of the network: 

The local efficiency is related, somehow, with 
the clustering cofficient 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Graph Spectrum: 
 

The spectrum of a graph is the set of eigenvalues of its adjacency (or Laplacian) matrix 
A. A graph GN,M, has N eigenvalues µi=(µ1, µ2,..., µN) and N associated eigenvectors 
vi=(v1,v2,..., vN). 
 
The eigenvalues and associated eigenvectors of a graph are intimately related to 
important topological features such as the diameter, the number of cycles, information 
transmission and the connectivity properties of the graph. 
 

       Spectral density: 
 
 
 
 
 
 Rescaled spectral density of three random graphs having p=0.05 and 

size N=100, N=300, and N=1000.The isolated peak corresponds to the 
principal eigenvalue. 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Community Structure (I): 
 

Given a graph GN,M, a community is a subgraph G’N’,M’  whose nodes are thightly connected 
(or at least, more connected than in a random equivalent network).  
 
 

 
 
 
 
 
 
 
 

What happens if communities are 
overlapping? 

Figure from: Guimerà et al., Nature, 433, 895(2005) 

Figure from: M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006) 

Zachary Karate Club 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Community Structure (II): 
 
Several algorithms have been proposed in order to split a sparse network into 
communities: 
 
 
 
 
 
 
 
 
 
 
 
 
Modularity M is and objective measure in order to evaluate community division: 

where NM is the number of modules, L is the number of links in 
the network, ls is the number of links between nodes in module 
s, and ds is the sum of the degrees of the nodes in module s. 

Figure from: L. Danon et al., World 
Scientific, 93-113 (2007) 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Degree Distribution (I): 
 

The [cumulative] degree distribution [Pc(k)] p(k) accounts for the fraction of nodes in the 
network with a degree [higher than] equal to k.  

 
 
 
 
 
 
 
 
 
 
 
 
 degree k 

P c
(k

) 
P c

(k
) 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Degree Distribution (II): 
 

Two types of degree distribution appear more frequently in real networks : 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exponential decay: Pc(k) ∼ e–αk Power-law decay: Pc(k) ∼ k–γ 

degree k 

P c
(k

) 

degree k 

P c
(k

) 

Typical in random networks Networks with power-law decay are called 
scale-free networks. 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Degree Distribution (III): 
 

Other related distributions are: 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is the relation between  
degree and strength? 

In/out degree distributions 
(directed networks) 

Strength distribution 
(weighted networks) 

In/out degree distributions of WWW (from two 
different samples: 325.729 and 200.000.000 nodes). 
From R. Albert et al., Rev.  Mod. Phys. 74, 47 (2002).  

Strength distribution of the International Air 
Transportation Network (www.iata.org). From A. 
Barrat et al., PNAS, 101, 3747 (2004).  
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Clustering Distribution C(k): 
 

The clustering distribution has been related with the modularity and hierarchy of the 
network: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Clustering distribution in three 
organisms: Aquidex aeolicus (archaea) (C), 
Escherichia col i (bacterium) (D), and 
Saccharomyces cerevisiae (eukaryote) (E). (F) 
The C(k) curves averaged over all 43 organisms 
is shown, and the inset displays all 43 species 
together. Lines correspond to C(k)~k-1, and 
diamonds represent the C(k) value expected for 
an equivalent scale-free network, indicating the 
absence of scaling 

From E. Ravasz et al., Science, 297, 1551 (2002).  
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1.3.- BASIC CONCEPTS ABOUT NETWORKS 

q   Nearest neighbor degree knn(k) and assortativity 

The knn(k) distribution measures the degree of the nearest neighbors. It is an indicator of 
the assortativity of the network.  

 
 
 
 
 
 
 
 
 
 
 
 Colaboration and similarity network obtained from a music database (AllMusic Guide).  

From J. Park et al., IJBC, 17, 2281 (2007).  

Music collaboration network Music similarity network 

degree k 

k n
n(

k)
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1.4.- Brief historical background 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Leonard Euler (Basel 1707 – St. Petersburg 1783) 

Some revealing data about Leo: 
 
q   Euler worked in almost all areas of mathematics: geometry, 
calculus, trigonometry, algebra, and number theory, as well as 
continuum physics, lunar theory and other areas of physics. 
 
q   Large number of topics of physics and mathematics are 
named in his honour (e.g., Eulers’s function, Euler’s Equation or 
Euler’s formula). 

q   All his work is collected in Opera Omnia, which consists of 
886 books. 

q   With one eye from 1738 and completely blind from 1766! 

 
q   And the most atonishing data: all of that with 13 children! 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Euler, the father of graph theory: 

  The seven bridges of Konïgsberg and the origin of graph theory: 
  Is it possible to cross the seven bridges only once? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N0 = Number of 
nodes with odd 
degree 

1.- If N0>2, no 
solution. 
 
2.- If N0=2, only 
o n e s o l u t i o n 
s ta r t ing f rom 
one of the odd 
nodes. 
 
1.- If N0 < 2, 
t h e r e a r e 
solutions starting 
from any node. 
 
 

Euler’s Solution: 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Regular Graphs 

q   After the death of Euler, graph theory received many contributions from 
mathematicians such as Hamilton, Kirchhoff or Cayley. 
 
q   The core of graph theory focused on the study of regular graphs: 
 

 
 
 
 
 
 
 
 
 
 
 
 

Regular graph: a graph where all nodes have the same degree. 
 
Lattice: a regular network where all nodes are coupled to 
their nearest neighbors. 
 
 
 
N = number of nodes 
K =  degree 
C = clustering coefficient 
d = dimension of the lattice 
l = average path length 

(if                ) 

That’s nice!, but...  
...what about real networks? 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Paul Erdös (Budapest 1913 – Warsaw 1996) 

Some revealing data about Paul: 
 
q  Seminal contributions in combinatorics, graph theory, 
number theory, classical analysis, approximation theory, set 
theory, and probability theory. 
 
q  Paul wrote 1475 papers and collaborated with 511 scientists. 

q  Excentric person, he had an special vocabulary 
(children=“epsilons”, women=“bosses”, U.S.=“samland”, etc...) 

q  Paul offered small prizes for solutions to unresolved problems 
(from 25$ to some thousands), and there are still open 
problems! 
 
q  "You don't have to believe in God, but you should believe in 
The Book.” (he recognized that he took amphetamines) 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Paul Erdös and Alfred Rényi 

They worked on the analysis of social networks by finding analogies with the so-called 
random graphs, in which the existence of a link between a pair of nodes has a probability p.  
 
 
 
 
 
 
 
 

 
 
 

N = number of nodes 
<k> =  mean degree 
<L> = number of random connections 
p = probability of connection between two nodes 
 
 
Mean degree of the network à <k> = p(N-1) ≅ pN 
 
Number of random connections à <L> = ½ pN(N-1) ≅ ½ <k>N 
 
 
 

p 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Emergence of a giant component 

When propability p crosses a critical value pc, there emerge a giant component that contains 
and extensive fraction of the nodes in the network 
 
 
 
 
 
 
 
 

 
 
 

Critical probability (Nà ∞): 
 
 
 
 

p increases 

Critical mean degree: 
 
 
 
 Clustering coefficient: 
 
 
 
 Average shortest path: 
 
 
 
 

N=1000 
<k>=2 
C ~ 0.002 

N=1000000 
<k>=5 
l ~ 8.6 

That’s a really short path!!, 
What if social networks are random? 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Stanley Milgram (New York 1933 – New York 1984) 

Stanley Milgram was an American social psychologist most notable for his controversial 
studies on the obedience to authority. 
 
 
 
 
 
 
 

 
 
 

Some Stanley’s famous experiments: 
 
q   The Milgram experiment 18 
 
 
 
q   The lost-letter experiment 

 
 
q   The small-world experiment  
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The small-world experiment 

A group of people from Omaha (Nebraska) and Wichita (Kansas) was asked to send a letter to 
an unknown person in Boston (Massachussetts). 
 
 
 
 
 
 
 

 
 
 

Basic Rule of the experiment: 
 
q   People should forward the letter to a person that they 
consider closer to the target person  

Results of one experiment (in fact, there where several!): 
 
q   232 out of 296 letters never reached the target 

q   64 letters reached the target (with paths from 2 to 10) 

q  The average path length was …. 5.2 (steps) 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   It’s a small world! 
 
 
 
 
 
 
 
 

 
 
 

This is a big world This is a small world 

or in other words: 
 

dij << N 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Let’s go back to Erdös: 

You can measure the distance with Paul Erdös. 
(http://www.oakland.edu/enp/) 
 
 
 
 
 
 
 

 
 
 

 
q   Mean Erdös number: ~5 
 
  
q   Largest Erdös number: ~13 

  
 

 
Max von Laue                 1914     4 
Albert Einstein             1921     2 
Niels Bohr                   1922     5 
Louis de Broglie             1929     5 
Werner Heisenberg            1932     4 
Paul A. Dirac                1933     4 
Erwin Schrödinger            1933     8 
Enrico Fermi                 1938     3 
Ernest O. Lawrence           1939     6 
Otto Stern                   1943     3 
Isidor I. Rabi               1944     4 
Wolfgang Pauli               1945     3 
Frits Zernike                1953     6  
Max Born                     1954     3  
Willis E. Lamb               1955     3 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   It’s a small world everywhere! 

The small-world property has been reported in a large number of real networks of different 
origin. 
 
 
 
 
 
 
 

 
 
 

The average path length is similar in random networks (where l ~ ln N) but the clustering 
coefficient is some orders of magnitude higher (and closer to the clustering coefficient of a 
lattice!). 

Average path length and clustering coefficient of some real networks. We compare the values 
in the real network with those of equivalent random networks 

Are real networks a mixture between 
lattices and random networks? 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Watts-Strogatz model (I) 

Watts and Strogatz (PRL 1998) proposed a network model that conciliated the high clustering 
and short average path length of real networks 
 
Starting from a regular ring, a certain (random) rewiring is introduced with a probability p 
 
 
 
 
 
 
 

 
 
 p increases 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Watts-Strogatz model (II) 

Small-world networks are characterized by a low average shortest path and high clustering 
 
 
 
 
 
 
 
 

 
 
 

small-world 
networks 

A low number of “shortcuts” reduces 
the distance between nodes without 
modifying the local properties 



School on Complex Biological Networks 
8-19 July 2013, IIP, Natal (Brazil) 

1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Watts-Strogatz model (II) 

The larger the network, the higher probability to be small-wolrd. 
 
 
 
 
 
 
 
 

 
 
 

N 

The rewiring of the links in 
order to enter the small world- 
region goes with: 
 

 p ~ 1/N 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Scale-free networks (I) 

Unfortunatelly (or luckily!) many real networks are not exponential. On the contrary, they 
have a power-law decay (i.e., P(k) ~ k-γ).  
 
 
 
 
 
 
 
 

 
 
 

q   Scale-free networks have power law decays P(k) ~ k-γ 
degree k 

P c
(k

) 

q  Power laws are relatively slow decreasing functions (the probability of having highly 
connected nodes is much higher than in exponential networks). 

q   A power-law distribution has no peak at its average value (no characteristic scale). 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Scale-free networks (II) 

 
 
 
 
 
 
 
 

 
 
 

Interestingly, the exponent of the power laws range from 1.2 to 3, with the majority 
between 2 and 3. 

Real networks with scale-free structure. From Almendral, PhD. Thesis 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Barabási-Albert model (I) 

They introduce a model in order to explain the origin of the power-law distributions of real 
networks. A network is constructed from scratch following two fundamental rules: 
 
 
 
 
 
 
 
 

 
 
 

q   Growth. From an initial number of nodes N0, new nodes are attached to the 
existing ones at discrete time steps. Thus, the number of nodes increases with time 
N(t)= N0+t and also the number of links L(t)= mt (being m the number of links of each 
new node) 

q   Preferential attachment. The nodes to which the new node is attached are chosen 
following a preference function:  
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Barabási-Albert model (II) 

The BA model shows a power law decay independent of the number of links or the system 
size (with an exponent γ=3) 
 
 
 
 
 
 
 
 

 
 
 

(Left) Degree distribution of the B-A model, with N=m0+t=300000 and m0=1,3,5,7. The dashed lines 
correspond to P(k)=k-2.9. (Right) P(k) for m0=5 and different systems size: m=100000, 150000 and 
200000. From R. Albert et al., Rev. Mod. Phys. 74, 47(2002). 

Evolution of the degree 
of two nodes 

HUBS! 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Barabási-Albert model (III) 

As in random networks, the clustering coefficient obtained with the BA model is low 
 
 
 
 
 
 
 
 

 
 
 

Clustering coefficient C of the network as a function of 
the system size N. From R. Albert et al., Rev. Mod. Phys. 
74, 47(2002) Clustering coefficient C and average path length of some real 

networks. From Newman, SIAM Rev, 45, 167 (2003) 

Are networks obtained with the BA 
model small world networks? 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   The Barabási-Albert model (IV) 

Attractiveness, aging, capacity, … can modify the scale free behaviour of the BA model. 
 
 
 
 
 
 
 
 

 
 
 

The Dorogovtsev–Mendes 
–Samukhin  model 

k0= initial attractiveness 
(-m < k0 < ∞) 
m= number of new links 

(2 < γ < ∞) 

The Kaprivsky et al. model 

α < 1 : streched exponential decay 
α > 1 : a single node dominates 
 

Dorogovtsev et al.,  
PRL 85 4633 (2000) 

Krapivsky et al.,  
PRL, 4629 85 (2000) 

Probability distribution for serveral aging exponents:  
1) 0.2, 2) 0.25, 3) 0.5 and 4) 0.75. α>1 exponential decay. 
From PRE62, 1842 (2000) 
 

The Dorogovtsev–Mendes model 

Probability of linking depends on τ-α 

(being τ the age of the node) 
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1.4.- BRIEF HISTORICAL BRACKGROUND 

q   Complex Networks time line: 

 
 
 
 
 
 
 
 

 
 
 

(from J.F.F. Mendes presentation) 
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2.- Applications To Biological Networks 
 

 2.1.- Genetic, protein and metabolic networks 
 2.2.- Neuron and brain networks 
 2.3.- Networks in ecology 
 2.4.- Disease spreading 
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q   Biological Networks: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Network parameters of several biological networks: n, number of nodes; m, number of links; z, 
mean degree,; l average shortest path; α, power-law exponent; C, clustering coefficient, and r, 
assortativity. From Newman, SIAM, 45, 167 (2003). 

2.0 Introduction to Biological Networks 
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q   How are Biological Networks?: 
 
q   Biological networks are small-world. 
 
q   It is common to observe dissortative mixing (i.e., most connected nodes are not 
preferentially connected with each other). 

q   They are (typically) organized in sub-modules and, as a consequence, they have 
high modularity and community structures.  
 

 
 
 Nevertheless, each network deserves its own interpretation 

2.0 Introduction to Biological Networks 
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q   Complex networks in biology: 
 
One of the first contributions of the Complex Network Theory to biological systems 
is the seminal paper of Watts and Strogatz 
 
 
 
 
 
 
 
 
 

 
 
 

The small-world of C. Elegans neural network , with an edge joining    
two neurons if they are connected  by either a synapse or a gap junction  
( n= 282, <k>= 14.). Table from Watts et al., 393, 440 (1998) 

2.0 Introduction to Biological Networks 
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q   Biological networks comprise a wide set of different networks: 
 
 
q   Metabolic, protein and genetic networks 

q   Networks of neurons 
 
q   Functional and anatomical brain networks 
 
q   Food webs in ecosystems  

q   Animal grouping and swarm movement 

q  and many others … 
 
 

 
 
 

2.0 Introduction to Biological Networks 
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2.1.- Genetic, protein and metabolic networks 
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q  Genetic networks: 
 
Interaction between genes (through transcription factors) lead to a nework of promotor/
repressor interactions 
 
 
 
 
 
 
 
 

 
 
 

2.1.- Genetic, protein and metabolic networks 
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q  Genetic networks: 
 
Again, genetic transcription networks are directed (digraphs) with positive/negative regulations: 
 
 
 
 
 
 
 
 

 
 
 Yeast (S. Cerevisiae) network of transcriptional 

regulation (N=682 proteins and M=1289 interactions). 
From Maslov et al., Large-Scale Topological Properties 
of Molecular Networks (Springer 2003) 

transcription factor  
protein 
negative regulation 
positive regulation 

2.1.- Genetic, protein and metabolic networks 
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q  Genetic networks: 
 
The Pin(k) distribution is limited by the 
system (due to the finite space of the 
promoter). Pout(k) is not limited and, as a 
consequence, has a heavy tail. 
 
 
 
 
 
 
 
 

 
 
 

Figure: (a) The histogram N(Kin) of nodes’ in-
degrees Kin in transcription regulatory networks of 
yeast (diamonds, dashed line), and E. coli (circles, 
solid line). (b) the same as (a) but considering the 
N(Kout. ). From Maslov et al., (2003). 

Read more at: 
Maslov et al., Large-scale topological 
properties of molecular  
networks (2003) 2.1.- Genetic, protein and metabolic networks 
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q   Metabolic networks: 
 
Metabolic networks are obtained from the biochemical reactions involving the transformation 
of energy and matter in the cell. The participating substrates are called metabolites and are 
catalyzed and regulated by enzymes. 
 
 
 
 
 
 
 
 
 

 
 
 

A portion of the WIT database for E. coli. Each substrate can be represented as a node of the graph, linked through temporary 
educt-educt complexes (black boxes) from which the products emerge as new nodes (substrates). The enzymes, which provide 
the catalytic scaffolds for the reactions, are shown by their EC numbers. From Jeong et al., Nature, 407.651 (2000). 

2.1.- Genetic, protein and metabolic networks 
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q   Metabolic networks: 
 
Metabolic networks have scale-free degree distribution. 
 
 
 
 
 
 
 
 
 

 
 
 

Connectivity distributions P(k) for: (a) Archaeoglobus fulgidus (archae); (b) E. coli (bacterium); (c) Caenorhabditis 
elegans (eukaryote), counting separately the incoming (In) and outgoing links (Out) for each substrate. kin (kout) 
corresponds to the number of reactions in which a substrate participates as a product (educt). (d) The connectivity 
distribution averaged over all 43 organisms. From Jeong et al., Nature, 407.651 (2000). 

k k 

2.1.- Genetic, protein and metabolic networks 
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q   Metabolic networks: 
 
They also have the small-world property and the resilience to failures of scale-free networks:  
 
 
 
 
 
 
 
 

 
 
 Average path length of  the metabolic network of 

43 organisms.  From Jeong et al., Nature, 407, 651 
(2000). 

The effect of substrate removal on the metabolic 
network of E. coli. M=60 corresponds to the ~8% 
of the network metabolites. From Jeong et al., 
Nature, 407, 651 (2000). 
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2.1.- Genetic, protein and metabolic networks 
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q   Protein networks: 
 
They reflect physical or chemical interactions between proteins. It is estimated that even 
simple single-celled organisms such as yeast have their roughly 6000 proteins interacting by at least 3 
interactions per protein, i.e. a total of 20,000 interactions or more. By extrapolation, there may be on the 
order of ~100,000 interactions in the human body. 
 
 
 
 
 
 
 
 

 
 
 

Figure from Thanos, et al., 
Science, 283, 833 (1999) 

Read more at: 
Protein-Protein Interactions 
P. Uetz and C.S. Vollert 2.1.- Genetic, protein and metabolic networks 
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q  Protein networks: 
 
The protein-protein (bidirectional) 
interactions are an example of a  
complex network. 
 
 
 
 
 
 
 
 

 
 
 

Protein-protein interaction in the yeast 
S. cerevisiae, (N=1870 and M=2240). 
From Jeong et al., Nature, 411, 41 
(2001). 

2.1.- Genetic, protein and metabolic networks 
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q  Protein networks: 
 
Protein-protein interaction networks are typically  
scale-free with an exponential cut-off: 
 
 
 
 
 
 
 
 

 
 
 

Figure: Probability distribution of the protein-protein interaction 
in the yeast S. cerevisiae, (N=1870 and M=2240). The 
distribtuion is scale-free with an exponential cut-off (around 
kc~20). From Jeong et al., Nature, 411, 41 (2001). 

2.1.- Genetic, protein and metabolic networks 
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q  Protein networks: 
 
Dissortative structure has been also reported. 
 
Interestingly, dissortative structures are robust against  
failures of the hubs due to the reduced propagation to  
the neighbors. 
 

 
 
 
 
 
 

 
 
 

Figure: Distribution of the average neighbor connectivity 
for the yeast protein-protein interaction network. Here, 
N=3278 and M= 4549. From Maslov et al., Science., 296, 
910 (2002). 

Read more at: 
Maslov et al.,  
Science., 296, 910 (2002). 

2.1.- Genetic, protein and metabolic networks 



School on Complex Biological Networks 
8-19 July 2013, IIP, Natal (Brazil) 

 
 
q   Networks of neurons: 
 
C. Elegans: It is the only living system 
that has been fully mapped. It has 302 
neurons and average degree <k>≈29. 
 
It has low shortest path and high 
clustering: it is a small-world network. 
 
Existence of network motifs. 
 
The tail of the distribution of degrees 
p(k) is power-law. 

Gap juntions connections and chemical synapses of C. Elegans 
neurons. From Varshney, PLoS Comp. Biol, 7, 1001066 (2011) 

2.2.- Neuron and brain networks 
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q  Are anatomical networks efficient in transmitting information?  

 
 

2.2.- Neuron and brain networks 
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q  Are anatomical networks efficient in transmitting information?  

 
 Macaque  cortex: 

C. Elegans: 
real 

real 

optimized 

optimized 

2.2.- Neuron and brain networks 
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-  Cross-correlation 
-  Wavelet coherence 
- Sync. likelihood 
- Generalized  Sync. 
-  Phase Sync. 
-  Mutual Info. 
-  Granger Causality 

-  EEG 
-  MEG 
-  fMRI 

-  Histological Analysis 
-  DTI (MRI) 

Anatomical Networks Functional Networks 

From Bullmore & Sporns, Nature Rev. 10, 186 (2009) 

Read more at: 
Bullmore et al.,  
Nature Rev. 10,186 (2009) 
 2.2.- Neuron and brain networks 
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q   Anatomical networks in animals : 
 

    

 From Sporns et al., Neuroinformatics, 2, 145 (2004) 

N=71 Brain Areas and L=746 
Small-world 
No power-law 

N= 52 Brain Areas and L=820 
Small-world 
No power-law 

q  Cat cortex: q  Macaque  cortex: 

2.2.- Neuron and brain networks 
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q   The anatomical structure of Human Brain: 

 
 
 
 

 
 
 

Hagmann et al. (2008) PLoS Biol. 6, e159 

q  Exponential (not scale-free) 
degree distribution (note that 
there are 66 subregions and 
998 ROIs). 
 
q  Small-world attributes. 
 
q  Multiple modules interlinked 
by hub regions. 
 
q  Positive assortativity. 
 

2.2.- Neuron and brain networks 
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Measurement of brain activity Time series analysis Network Analysis 

STEP 1 STEP 2 STEP 3 

 
 
q  How to obtain functional brain networks: 

 
 

2.2.- Neuron and brain networks 
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q    Complex networks methods give useful information at 3 different levels:  

ü  Characterize the topology of brain functional networks and its influence in 
the processes occurring in them: 

q  Small-world topology -> High efficiency in information transmission. 
q  High clustering -> Good local resilience. 
q  Modularity -> Segregation & integration of information. 

Ø   Identify differences between healthy brains and those with a certain 
pathology: 

q  Quantify evolution towards random topologies. 
q  Evaluate the loss of modularity in the networks. 
q  Quantify the increase of energy expenses. 

Ø   Develop models in order to explain the changes found in impaired 
functional networks: 

q  Identify what are the rules that determine the network distortion. 
 

 
 
 

 
 
 

2.2.- Neuron and brain networks 
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Montoya, J, S L Pimm, R V Sole (2006) Ecological Networks and their fragility. Nature, 442 

2.3.- Networks in Ecology 

 
 
q   Food Webs = Trophic interactions 
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2.3.- Networks in Ecology 
Montoya, J, S L Pimm, R V Sole Nature, 442 (2006) 

Frugivore-plant Pollinator-plant El Verde rainforest 
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q   How did real networks play their cards? 

Ω =
2 CA −CA

min( )
CA
max −CA

min −1

q  We define a competition parameter that 
indicates which network benefited from 
the structure of connections in real cases: 

Ω =1

Ω ≈ 0
Ω = −1

Strong network best case 

Weak network best case 

Dolphin network of Doubtful Sound (Ω=0.7) 

CA
max

CA
min

Trade-off solution 

2.3.- Networks in Ecology 
J. Aguirre, D. Papo, JM Buldú, Nature Physics,(2013) 
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q  Networks of social contacts are not homogeneous 
 

 
 
 
 

Collaboration network between musical artists. 
From Park, IJBC, 17, 2281 (2007). 

Network of sexual contacts. (a) Partners during the last year and (b) 
number of partners during the entire lifetime. Sample: 4781 Swedes. 
From Liljeros, Nature, 411, 907 (2001) 

Wilt Chamberlain (NBA basketball player) wrote that he had had sex with 
approximately 20,000 women. (that means having sex with 1.2 women a 
day, every day since he was fifteen years old.) (no comments) 

2.4.- Disease spreading 
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q  How can I fight the disease in scale-free networks? 
 
Targeted immunization: We select the most connected nodes as the candidates for 
immunization. 

         ρg/ρ0 = Reduced prevalence 
         g= ratio of immune individuals 

Read more at: 
Pastor-Satorras et al.,  
PRE, 65, 36104 (2002) 2.4.- Disease spreading 

Density of infected nodes in a random network (solid) and BA 
network (dashed).  From Pastor-Satorras, PRE 63, 066117 (2001).          
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Summary and conclusions 

1) The structure of connections between 
biological units (genes, proteins, neurons, 
individuals) plays a fundamental role in 
any biological process. 

2) It seems I am going to enjoy the School! 
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Thanks for your attention 

 
 
 
 
 
 
 
  

Come to visit us in Madrid (great city, great people) 
 

Contact: javier.buldu@urjc.es 
 
 
 
 
 
 
 
  


