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1.- INTRODUCTION TO COMPLEX NETWORKS

1.1.- What is a (complex) network?
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1.1.- WHAT IS A (COMPLEX) NETWORK?

Applications of Complex Networks

 A Network is a set of elements with connections between them

From this viewpoint, each element is represented by a site (physics), node (computer

science), actor (sociology) or vertex (graph theory) and the interaction between two

elements corresponds to a bond (physics), link (computer science), tie (sociology) or

edge (graph theory).

A network (graph) G=(N,M) consists of a

set of N={n1, n2, … ,nN} nodes and a set of

L={l1, l2, … ,lM} links.

N=9

L=9

1

3

2

4 5

8 7

6

9 A graph is the mathematical abstraction

of a network. Despite it is not rigorous,

we will use both terms, graph and

network, as synonyms.
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1.1.- WHAT IS A (COMPLEX) NETWORK?

Applications of Complex Networks

 Nodes and links may arise from completely different contexts:

Simplified representation of the Arctic  food webSchematic representation of a network of  hosts and routers.
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Metabolic network of the E. Coli.

From Guimerà et al., Nature, 433, 895, 2005
Madrid Power Grid. 

From http://www.ree.es
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1.1.- WHAT IS A (COMPLEX) NETWORK?
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Structure of romantic and sexual contact at Jefferson High School

From P.S. Bearman et al., AJS, 110, 44 (2004)

Neuron network
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1.1.- WHAT IS A (COMPLEX) NETWORK?

Applications of Complex Networks

 A Complex Network is a network with non-trivial topological features, with

patterns of connection between their elements that are neither purely regular nor

purely random.

From: R.V. Solé and S. Valverde, 

Lecture Notes in Physics, 650, 189, 2004
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1.2.- Types of networks
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1.2.- TYPES OF NETWORKS

Applications of Complex Networks

 There exist different classifications of networks:

 According to the direction of the links: directed or undirected.

 According to the kind of interaction: weighted or unweighted.

 According to the differences between nodes: bipartite or not.

 According to the evolution of their topology: static or evolving.

 According to the dynamics of the nodes: with/without dynamics.

 ... 



(14 de 58)

1.2.- TYPES OF NETWORKS

Applications of Complex Networks

 Directed and undirected networks:

The relationship between nodes may be symmetric (undirected networks) or

asymmetric (directed networks).

Undirected network Directed network (digraph)

The direction of the links is crucial in dynamical processes ocurring in the

network, such as information spreading, synchronization or network

robustness.

Examples: router network, power grid.

collaboration networks, etc...

Examples: internet, food webs,

e-mail/telephone networks, etc...

more at:  M.E.J. Newman,SIAM Reviews, 45, 167 (2003)

S. Boccaletti et al., Phys. Rep., 424, 175 (2006)
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 Weighted and unweighted networks:

The capacity or intensity of the relationship between nodes may be

heterogeneous (weighted networks).

Unweighted network Weighted network

Again, the weight of the links is crucial in dynamical processes ocurring in the

network, such as information spreading, synchronization or network

robustness.

Examples: citation network, internet, etc... Examples: e-mail/telephone networks, food

webs, power grid, colaboration network, etc...

1.0

2.3

4.1

1.7

0.5
2.5

9.93.1
7.1

1.2.- TYPES OF NETWORKS
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 Bipartite networks:

Networks with two (or more) kind of nodes and links joining ONLY nodes of

unlike type.

Despite being bipartite, it is possible to project the network.

Examples: recommendation networks, user-

item based networks, etc...

A

1

CB D F

2 3 4 5

A: (0,1,1,0,0)

B: (1,1,0,0,0)

...

1: (0,1,0,0,0)

2: (1,1,1,0,0)

...

Network Projection

1.2.- TYPES OF NETWORKS
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 Static or evolving networks:

Networks do not appear suddenly. We have to know if the network that we

are studying is static (its structure is stationary) or if it is still evolving

t=0

Two fundamental questions are addressed when working with evolving

networks: what are the rules governing the evolution? What consequences

have the rules on the final topology?

t=1

t=2

t=3

1.2.- TYPES OF NETWORKS
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Applications of Complex Networks

 Networks of dynamical systems:

Nodes are dynamical systems whose dynamics is influenced through the matrix

of connections.

In this case, we have to study the influence of the topology in the dynamical

processes occurring in the network (synchronization, stochastic processes,

etc..) ... ... and vice-versa!

Nodes are (coupled) dynamical systems
(periodic oscilators, excitable systems, 

chaotic oscilators, bistable systems, ...)

1.2.- TYPES OF NETWORKS
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 Despite the different types of networks, which in turn are obtained

from completely different interacting systems (people, neurons, proteins,

routers,...) we will see that they share some universal properties

Is it a social network?

A technological network?

A biological network?

1.2.- TYPES OF NETWORKS
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1.3.- Basic concepts about networks
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Adjacency, Weights and Laplacian Matrix:

All the former networks can be described using a matricial formalism. 

Given a set of N nodes with M conections between them:

Weights Matrix (W):

Entries of the matrix are

the weights wij (i,j=1, ..., N)

of the connections

1.0

2.3

4.11
7.1

2

3 4
0.0   2.3   4.1   0.0

2.3   0.0   1.0   0.0

4.1   1.0   0.0   7.1

0.0   0.0   7.1   0.0

Adjacency Matrix (A):

aij=1 if there exists a link

between i and j, and aij=0

otherwise

0   1   1   0

1   0   1   0

1   1   0   1

0   0   1   0

Laplacian Matrix (L):

The Laplacian matrix is

defined as L=K-A, where K

is a diagonal matrix of

elements kii=aij. Thus, it

has a zero-row sum.

-2    1    1    0

1   -2    1    0

1    1   -3    1

0    0    1   -1

Matrices will be symmetric if networks are undirected.
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Average path length (l):

The average path length l is the average shortest path between all nodes in

the network:

when the network is not connected it is usefull to define the “harmonic

mean”

1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Shortest path, average path length and diameter:

Shortest path (dij):

The shortest path dij between nodes i and j corresponds to the minimal distance (or weight) between all

paths that connect i and j

1

12

Diameter(D):

The maximum between all shortest paths D=max(dij)

What happens if the network is

broken into several components?

Component:

The set of nodes reachable from a given node.

13

d1,12=4

d12,13=
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Betweenness (bi):

The betweeennes of a node i (or a link) accounts for the number of

shortest paths passing through that node (or link).

1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Degree, strength and betweenness:

Degree (ki):

The degree ki of a node i is the number of connections of the node

Strength (si):

The strength si of a node i is the sum of the weigths of the connections to that node si= wij

Is the node with the highest degree,

the one with highest strength?

and, which node has the

highest betweennes?

where njk is the number of shortest paths connecting j and k, and njk(i)

are those shortest paths between j and k that pass through i.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS
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 Network Motifs:

Network motifs are patterns (sub-graphs) that recur

within a network much more often than expected

at random.

Each network motif can carry out specific 

information-processing functions

Example: all 13 types of three-node connected 

subgraphs:

Figures from: Milo et al., Science, 298, 824 (2002) 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Clustering coefficient:

The clustering coefficient C accounts for the number of triangles in the network.

Specifically, Ci is the ratio between the number of links E connecting the nearest

neighbors of i and the total number of possible links between these neighbors.

Are my friends, friends of my friends?

The clustering coefficient of the network C is the

average of Ci over all nodes.

1

2 3

4

1

2 3

4

1

2 3

4

C1,2,3,4 = {0,0,0,0}

C=0 

C1,2,3,4 = {1,1,1,1}

C=1 

C1,2,3,4 = {1,0,1,1/3}

C=7/12 
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Local and Global Efficiency:

The efficiency overcomes the divergence of the shortest paths if the graph is

disconnected

Local Efficency (Ei):

The local efficiency Ei of a node i, measures the shortest path length between the subset Gi of neighbors of

the node i, when i is not present.

Global Efficency (E):

The global efficiency is the harmonic mean of the geodesic paths between all nodes of the network:

The local efficiency is related, somehow, with

the clustering cofficient
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

 Graph Spectrum:

The spectrum of a graph is the set of eigenvalues of its adjacency (or Laplacian) matrix

A. A graph GN,M, has N eigenvalues i=(1, 2,..., N) and N associated eigenvectors

vi=(v1,v2,..., vN).

The eigenvalues and associated eigenvectors of a graph are intimately related to

important topological features such as the diameter, the number of cycles, information

transmission and the connectivity properties of the graph.

Spectral density:

Rescaled spectral density of three random graphs having p=0.05 and

size N=100, N=300, and N=1000.The isolated peak corresponds to the

principal eigenvalue.

Applications of Complex Networks
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

 Community Structure (I):

Given a graph GN,M, a community is a subgraph G’N’,M’ whose nodes are thightly connected

(or at least, more connected than in a random equivalent network).

What happens if communities are

overlapping?

Figure from: Guimerà et al., Nature, 433, 895(2005)

Figure from: M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

Zachary Karate Club

Applications of Complex Networks



(29 de 58)

1.3.- BASIC CONCEPTS ABOUT NETWORKS

 Community Structure (II):

Several algorithms have been proposed in order to split a sparse network into

communities:

Modularity M is and objective measure in order to evaluate community division:

where NM is the number of modules, L is the number of links in

the network, ls is the number of links between nodes in module

s, and ds is the sum of the degrees of the nodes in module s.

Figure from: L. Danon et al., World

Scientific, 93-113 (2007)

Applications of Complex Networks
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Degree Distribution (I):

The [cumulative] degree distribution [Pc(k)] p(k) accounts for the fraction of nodes in the

network with a degree [higher than] equal to k.

degree k

P
c
(k

)
P

c
(k

)
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Degree Distribution (II):

Two types of degree distribution appear more frequently in real networks :

Exponential decay: Pc(k)  e–k Power-law decay: Pc(k)  k–

degree k

P
c
(k

)

degree k

P
c
(k

)

Typical in random networks Networks with power-law decay are called

scale-free networks.
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Degree Distribution (III):

Other related distributions are:

What is the relation between

degree and strength?

In/out degree distributions

(directed networks)

Strength distribution

(weighted networks)

In/out degree distributions of WWW (from two

different samples: 325.729 and 200.000.000 nodes).

From R. Albert et al., Rev. Mod. Phys. 74, 47 (2002).

Strength distribution of the International Air

Transportation Network (www.iata.org). From A.

Barrat et al., PNAS, 101, 3747 (2004).
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1.3.- BASIC CONCEPTS ABOUT NETWORKS

Applications of Complex Networks

 Clustering Distribution C(k):

The clustering distribution has been related with the modularity and hierarchy of the

network:

Figure: Clustering distribution in three

organisms: Aquidex aeolicus (archaea) (C),

Escherichia coli (bacterium) (D), and

Saccharomyces cerevisiae (eukaryote) (E). (F)

The C(k) curves averaged over all 43 organisms

is shown, and the inset displays all 43 species

together. Lines correspond to C(k)~k-1, and

diamonds represent the C(k) value expected for

an equivalent scale-free network, indicating the

absence of scaling

From E. Ravasz et al., Science, 297, 1551 (2002).
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1.3.- BASIC CONCEPTS ABOUT NETWORKS
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 Nearest neighbor degree knn(k) and assortativity

The knn(k) distribution measures the degree of the nearest neighbors. It is an indicator of

the assortativity of the network.

Colaboration and similarity network obtained from a music database (AllMusic Guide).

From J. Park et al., IJBC, 17, 2281 (2007).

Music collaboration network Music similarity network

degree k

k
n
n
(k

)
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1.4.- Brief historical background
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 Leonard Euler (Basel 1707 – St. Petersburg 1783)

Some revealing data about Leo:

 Euler worked in almost all areas of mathematics: geometry,

calculus, trigonometry, algebra, and number theory, as well as

continuum physics, lunar theory and other areas of physics.

 Large number of topics of physics and mathematics are

named in his honour (e.g., Eulers’s function, Euler’s Equation or

Euler’s formula).

 All his work is collected in Opera Omnia, which consists of

886 books.

 With one eye from 1738 and completely blind from 1766!

 And the most atonishing data: all of that with 13 children!
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 Euler, the father of graph theory:

The seven bridges of Konïgsberg and the origin of graph theory:

Is it possible to cross the seven bridges only once?

N0 = Number of

nodes with odd

degree

1.- If N0>2, no

solution.

2.- If N0=2, only

one solution

starting from

one of the odd

nodes.

1.- If N0 < 2,

there are

solutions starting

from any node.

Euler’s Solution:
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 Regular Graphs

 After the death of Euler, graph theory received many contributions from

mathematicians such as Hamilton, Kirchhoff or Cayley.

 The core of graph theory focused on the study of regular graphs:

Regular graph: a graph where all nodes have the same degree.

Lattice: a regular network where all nodes are coupled to its

nearest neighbor.

N = number of nodes

K = degree

C = clustering coefficient

d = dimension of the lattice

l = average path length

(if )

That’s nice!, but...

...what about real networks?
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 Paul Erdös (Budapest 1913 – Warsaw 1996)

Some revealing data about Paul:

 Seminal contributions in combinatorics, graph theory,

number theory, classical analysis, approximation theory, set

theory, and probability theory.

 Paul wrote 1475 papers and collaborated with 511 scientists.

 Excentric person, he had an special vocabulary

(children=“epsilons”, women=“bosses”, U.S=“samland”, etc...)

 Paul offered small prizes for solutions to unresolved

problems (from 25$ to some thousands), and there are still

open problems!

 "You don't have to believe in God, but you should believe in

The Book.” (he recognized that he took amphetamines)
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 Paul Erdös and Alfred Rényi

They worked on the analysis of social networks by finding analogies with the so-called

random graphs, in which the existence of a link between a pair of nodes has a probability p.

N = number of nodes

<k> = mean degree

<L> = number of random connections

p = probability of connection between two nodes

Mean degree of the network <k> = p(N-1)  pN

Number of random connections <L> = ½ pN(N-1)  ½ <k>N

p
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 Emergence of a giant component

When propability p crosses a critical value pc, there emerge a giant component that contains

and extensive fraction of the nodes in the network

Critical probability (N ):

p increases

Critical mean degree:

Clustering coefficient:

Average shortest path:

N=1000

<k>=2

C ~ 0.002

N=1000000

<k>=5

l ~ 8.6

That’s a really short path!!,

What if social networks are random?
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 Stanley Milgram (New York 1933 – New York 1984)

Stanley Milgram was an American social psychologist most notable for his controversial

studies on the obedience to authority.

Some Stanley’s famous experiments:

 The Milgram experiment 18

 The lost-letter experiment

 The small-world experiment
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 The small-world experiment

A group of people from Omaha (Nebraska) and Wichita (Kansas) was asked to send a letter to

an unknown person in Boston (Massachussetts).

Basic Rule of the experiment:

 People should forward the letter to a person that they

consider closer to the target person

Results of one experiment (in fact, there where several!):

 232 out of 296 letters never reached the target

 64 letters reached the target (with paths from 2 to 10)

 The average path length was …. 5.2 (steps)
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1.4.- BRIEF HISTORICAL BRACKGROUND
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 It’s a small world! (que pequeño es el mundo!)

This is a big world This is a small world

or in other words:

dij << N
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 Let’s go back to Erdös:

You can measure the distance with Paul Erdös.

(http://www.oakland.edu/enp/)

 Mean Erdös number: ~5

 Largest Erdös number: ~13

Max von Laue                 1914     4

Albert Einstein     1921     2

Niels Bohr                   1922     5

Louis de Broglie             1929     5

Werner Heisenberg            1932     4

Paul A. Dirac                1933     4

Erwin Schrödinger            1933     8

Enrico Fermi                 1938     3

Ernest O. Lawrence           1939     6

Otto Stern                   1943     3

Isidor I. Rabi               1944     4

Wolfgang Pauli               1945     3

Frits Zernike                1953     6 

Max Born                     1954     3 

Willis E. Lamb               1955     3
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 It’s a small world everywhere!

The small-world property has been reported in a large number of real networks of different

origin.

The average path length is similar in random networks (where l ~ ln N) but the clustering

coefficient is some orders of magnitude higher (and closer to the clustering coefficient of a

lattice!).

Average path length and clustering coefficient of some real networks. We compare the values

in the real network with those of equivalent random networks

Are real networks a mixture between

lattices and random networks?
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Watts-Strogatz model (I)

Watts and Strogatz (PRL 1998) proposed a network model that conciliated the high clustering

and short average path length of real networks

Starting from a regular ring, a certain (random) rewiring is introduced with a probability p

p increases

Applications of Complex Networks



(48 de 58)

1.4.- BRIEF HISTORICAL BRACKGROUND

 The Watts-Strogatz model (II)

Small-world networks are characterized by a low average shortest path and high clustering

small-world

networks

A low number of “shortcuts” reduces

the distance between nodes without

modifying the local properties

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Watts-Strogatz model (II)

The larger the network, the higher probability to be small-wolrd.

Figure from Barthelemy, PRL,

82,3180 (1999)

Applications of Complex Networks

N

The rewiring of the links in

order to entre the small world-

region goes with:

p ~ 1/N
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Watts-Strogatz model (III)

The probability degree distribution p(k) of WS small-world networks shows a pronounced

peak around <k> and exponential decay

Networks obtained with the WS

model are “exponential networks”

Degree distribution of the WS model for <k>=8 and

different rewiring probabilities

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 Scale-free networks (I)

Unfortunatelly (or luckily!) many real networks are not exponential. On the contrary, they

have a power-law decay (i.e., P(k) ~ k-).

 Scale-free networks have power law decays P(k) ~ k-

degree k

P
c
(k

)

 Power laws are relatively slow decreasing functions (the probability of having

highly connected nodes is much higher than in exponential networks).

 A power-law distribution has no peak at its average value (no characteristic scale).

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 Scale-free networks (II)

Interestingly, the exponent of the power laws range from 1.2 to 3, with the majority

between 2 and 3.

Real networks with scale-free structure. From Almendral, PhD. Thesis

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Barabási-Albert model (I)

They introduce a model in order to explain the origin of the power-law dstributions of real

networks. A network is constructed from scratch following two fundamental rules:

 Growth. From an initial number of nodes N0, new nodes are attached to the

existing ones at discrete time steps. Thus, the number of nodes increases with time

N(t)= N0+t and also the number of links L(t)= mt (being m the number of links of each

new node)

 Preferential attachment. The nodes to which the new node is attached are chosen

following a preference function:

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Barabási-Albert model (II)

The BA model shows a power law decay independent of the number of links or the system

size (with an exponent =3)

(Left) Degree distribution of the B-A model, with N=m0+t=300000 and m0=1,3,5,7. The dashed lines

correspond to P(k)=k-2.9. (Right) P(k) for m0=5 and different systems size: m=100000, 150000 and

200000. From R. Albert et al., Rev. Mod. Phys. 74, 47(2002).

Evolution of the degree

of two nodes

Applications of Complex Networks

HUBS!
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Barabási-Albert model (III)

As in random networks, the clustering coefficient obtained with the BA model is low

Clustering coefficient C of the network as a function of

the system size N. From R. Albert et al., Rev. Mod. Phys.

74, 47(2002)

Clustering coefficient C and average path length of some real

networks. From Newman, SIAM Rev, 45, 167 (2003)

Are networks obtained with the BA

model small world networks?

Applications of Complex Networks
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1.4.- BRIEF HISTORICAL BRACKGROUND

 The Barabási-Albert model (IV)

Attractiveness, aging, capacity, … can modify the scale free behaviour of the BA model.

The Dorogovtsev–Mendes

–Samukhin model

k0= initial attractiveness

(-m < k0 < )

m= number of new links

(2 <  < )

The Kaprivsky et al. model

α < 1 : streched exponential decay

α > 1 : a single node dominates

Dorogovtsev et al.,

PRL 85 4633 (2000)

Krapivsky et al.,

PRL, 4629 85 (2000)

Probability distribution for serveral aging exponents: 

1) 0.2, 2) 0.25, 3) 0.5 and 4) 0.75. α>1 exponential decay.

From PRE62, 1842 (2000)

The Dorogovtsev–Mendes model

Probability of linking depends on τ-α

(being τ the age of the node)
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 Complex Networks time line:

(from J.F.F. Mendes presentation)
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All of that is nice, but

does it have applications

in real networks?
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Thanks for your attention

Applications of Complex Networks

mañana más, pero no mejor!

Lagos de Moreno, México


