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 Biological Networks:

2.4.1.- Introduction

Network parameters of several biological networks: n, number of nodes; m, number of links; z, 

mean degree,; l average shortest path; α, power-law exponent; C, clustering coefficient, and r, 

assortativity. From Newman, SIAM, 45, 167 (2003).
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 Biological Networks:

General properties (if they exist!):

 Biological networks are small-world.

 It is common to observe dissortative mixing (i.e., most connected nodes are not

preferentially connected with each other).

 They are (typically) organized in sub-modules and, as a consequence, they have

high modularity and community structures.

2.4.1.- Introduction



(6 de 48)

Applications of Complex Networks

 Complex networks in biology:

One of the first contributions of the Complex Network Theory to biological systems

is the seminal paper of Watts and Strogatz

2.4.1.- Introduction

The small-world of C. Elegans neural network , with an edge joining

two neurons if they are connected by either a synapse or a gap junction

( n= 282, <k>= 14.). Table from Watts et al., 393, 440 (1998)
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 Biological Networks:

Biological networks are in fact a wide area of study:

 Metabolic, protein and genetic networks

 Neuron networks

 Mutation networks of virus

 Functional brain networks

 Food webs in ecosystems

 Animal grouping and swarm movement

 and many others …

2.4.1.- Introduction
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2.4.2.- Metabolic, protein and genetic networks
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 Metabolic networks:

Metabolic networks are obtained from the biochemical reactions involving the transformation

of energy and matter in the cell. The participating substrates are called metabolites and are

catalyzed and regulated by enzymes.

A portion of the WIT database for E. coli. Each substrate can be represented as a node of the graph, linked through temporary

educt-educt complexes (black boxes) from which the products emerge as new nodes (substrates). The enzymes, which provide

the catalytic scaffolds for the reactions, are shown by their EC numbers. From Jeong et al., Nature, 407.651 (2000).

2.4.2.- Metabolic, protein and genetic networks
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 Metabolic networks:

Metabolic networks have scale-free degree distribution.

Connectivity distributions P(k) for: (a) Archaeoglobus fulgidus (archae); (b) E. coli (bacterium); (c) Caenorhabditis

elegans (eukaryote), counting separately the incoming (In) and outgoing links (Out) for each substrate. kin (kout)

corresponds to the number of reactions in which a substrate participates as a product (educt). (d) The connectivity

distribution averaged over all 43 organisms. From Jeong et al., Nature, 407.651 (2000).

2.4.2.- Metabolic, protein and genetic networks

k k



(11 de 48)

Applications of Complex Networks

 Metabolic networks:

They also have the small-world property and the resilience to failures of scale-free networks:

Average path length of the metabolic network of

43 organisms. From Jeong et al., Nature, 407, 651

(2000).

2.4.2.- Metabolic, protein and genetic networks

The effect of substrate removal on the metabolic

network of E. coli. M=60 corresponds to the ~8%

of the network metabolites. From Jeong et al.,

Nature, 407, 651 (2000).
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 Protein networks:

They reflect physical or chemical interactions between proteins. It is estimated that even

simple single-celled organisms such as yeast have their roughly 6000 proteins interacting by at least 3

interactions per protein, i.e. a total of 20,000 interactions or more. By extrapolation, there may be on the

order of ~100,000 interactions in the human body.

2.4.2.- Metabolic, protein and genetic networks

Figure from Thanos, et al.,

Science, 283, 833 (1999)

Read more at:

Protein-Protein Interactions

P. Uetz and C.S. Vollert
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 Protein networks:

The protein-protein (bidirectional)

interactions are an example of a

complex network.

2.4.2.- Metabolic, protein and genetic networks

Protein-protein interaction in the yeast

S. cerevisiae, (N=1870 and M=2240).

From Jeong et al., Nature, 411, 41

(2001).
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 Protein networks:

Protein-protein interaction networks are typically

scale-free with an exponential cut-off:

2.4.2.- Metabolic, protein and genetic networks

Figure: Probability distribution of the protein-protein interaction

in the yeast S. cerevisiae, (N=1870 and M=2240). The

distribtuion is scale-free with an exponential cut-off (around

kc~20). From Jeong et al., Nature, 411, 41 (2001).
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 Protein networks:

Dissortative structure has been also reported.

Interestingly, dissortative structures are robust against

failures of the hubs due to the reduced propagation to

the neighbors.

2.4.2.- Metabolic, protein and genetic networks

Figure: Distribution of the average neighbor connectivity

for the yeast protein-protein interaction network. Here,

N=3278 and M= 4549. From Maslov et al., Science., 296,

910 (2002).

Read more at:

Maslov et al.,

Science., 296, 910 (2002).
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 Genetic networks:

Interaction between genes (through transcription factors) lead to a nework of

promotor/repressor interactions

2.4.2.- Metabolic, protein and genetic networks

Read more at:

Buldu et al.,

Revista Española de Física,

Noviembre (2007).
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 Genetic networks:

Again, genetic transcription networks are directed (digraphs) with positive/negative regulations:

2.4.2.- Metabolic, protein and genetic networks

Yeast (S. Cerevisiae) network of transcriptional

regulation (N=682 proteins and M=1289 interactions).

From Maslov et al., Large-Scale Topological Properties

of Molecular Networks (Springer 2003)

transcription factor 

protein

negative regulation

positive regulation
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 Genetic networks:

The Pin(k) distribution is limited by the

system (due to the finite space of the

promoter). Pout(k) is not limited and, as a

consequence, has a heavy tail.

Figure: (a) The histogram N(Kin) of nodes’ in-

degrees Kin in transcription regulatory networks of

yeast (diamonds, dashed line), and E. coli (circles,

solid line). (b) the same as (a) but considering the

N(Kout. ). From Maslov et al., (2003).

Read more at:

Maslov et al., Large-scale topological

properties of molecular

networks (2003)2.4.2.- Metabolic, protein and genetic networks

γ=-2

γ=-1
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2.4.3.- RNA neutral networks
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 RNA neutral networks:

An RNA virus is a virus that has RNA (ribonucleic acid) as its genetic material

The map between sequence and structure is degenerated: the same structure can

be attained with a very large number of different chains

2.4.3.- RNA neutral networks

AGCUAGUGCAAUAGCACCAAGGAUCGGAUCCAGCU    (((..((((....))))...((((...)))).)))  

AGCAAGUGCAGUUGCACAAAGGAUCUCAUCCAGCU    (((..((((....))))...((((...)))).)))   

GGCCCCCGUGACGACGGAGCGGAUAAGGUCCAGCC    (((..((((....))))...((((...)))).)))  

GGCAAUUGCUCAUGUAAACGGGAUCCGAUCCAGCU    (((..((((....))))...((((...)))).))) 

GGCGCCCGUGACGACGGAGCGGAGAAGCUCCAGCC    (((..((((....))))...((((...)))).))) 

S

A: adenina

C: citosina

G: guanina

U: uracilo (en lugar de tinina)
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 RNA neutral networks:

2.4.3.- RNA neutral networks

CONSTRUCTION OF THE NETWORK

• Fix a secondary structure S

• A node corresponds to a sequence that has S as a

secondary structure

• A link is drawn between two nodes if they are at a

Hamming distance of one

(A sequence of length n is linked to at most 3n other

nodes. The maximum size of such network is n4.)

GGCGCCCGUGACGA

GGCGCACGUGACGA

GGCGCUCGUGACGA

GGCGCUCGUGAAGA

S
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 How does the virus population evolve in the network?

RNA virus have high mutation rates μ

2.4.3.- RNA neutral networks

At the duplication process, each sequence mutates (at one base)

with a probability μ
n1

n2

n3

n4

If the mutation EXISTS (it

should be a neighbor), it

increases the population of

the neighbor sequence

If the mutation DOES NOT

EXIST, it dies.

The virus population is constant
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 How does the virus population evolve in the network?

2.4.3.- RNA neutral networks

i i

t t+1

The topology is contained in 

the adjacency matrix C

Knowledge of C permits to calculate the final state (population in each node i) and the time required

to attain equilibrium:

The final state only depends on C

Time to equilibrium depends on C and on the mutation rate

ni: population at node i

μ: mutation rate
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 How does the virus population evolve in the network?

2.4.3.- RNA neutral networks

M=Transition matrix

C=Adjacency matrix (topology)

)()1( tnMtn


λi=eigenvalues of M

γi=eigenvalues of C ii wu
 wi=eigenvalues of M

ui=eigenvalues of C
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 How does the virus population evolve in the network?

2.4.3.- RNA neutral networks

Figure: Average degree of the

population as a function of time for

a scale-free network. The final

value corresponds to the

spectral radius of the adjacency

matrix. Here =0.1 (N=200).
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 How does the virus population evolve in the network?

 The final distribution of the population (t  ∞) is given by (the eigenvector of the

largest eigenvalue). The topology tells us the final state!

 The mean degree of the population is <k>=γ1

indicating that the population evolves to the more connected regions of the network.

 The time to reach the equilibrium is approximated by

 For a fixed topology and initial conditions, the time to reach the equilibrium goes with μ-1

2.4.3.- RNA neutral networks

1u
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 How does the virus population evolve in the network?

No matter where the initial sequence is (in the network), if the virus has enough time, it will

evolve to the same final distribution

2.4.3.- RNA neutral networks

The population evolves to the more connected

areas, in this way is more robust to mutation. This

property is known as neutrality.
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 Energy versus topology

2.4.3.- RNA neutral networks

G C – 3 Kcal/mol

A=U – 2 Kcal/mol

G–U – 1 Kcal/mol

The probability to stay at node i is higher

the lower its energy

The parameter β quantifies the relative

importance of high connectivity versus 

low energy

β  0 the population evolves to the

most connected nodes (connectivity).

β  ∞ the population evolves to nodes

with lower energy (stability).
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 Energy versus topology in random networks

2.4.3.- RNA neutral networks

Dependence of the properties of the random mutation network on β and μ when

neutrality and energetic stability are negatively correlated (NS−). Each curve is plotted

for μ = 0.001 (•), 0.01 (solid line), and 0.05 ( ). (a) Average energy E, (b) Average degree

K, (c) Average dispersion D, (d) Dependence of the rescaled time to equilibrium
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 Energy versus topology in scale-free networks

2.4.3.- RNA neutral networks

Dependence of the properties of the preferential mutation network on β and μ when neutrality and energetic stability are

negatively correlated (NS−). Each curve is plotted for μ = 0.001 (•), 0.01 (solid line), and 0.05 ( ). (a) Average energy E, (b)

Average degree K, (c) Average dispersion D, (d) dependence of the rescaled time to equilibrium
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 Evolution of RNA virus

 Evolutionary dynamics on neutral networks leads populations to highly connected areas in

the space of genomes: neutrality (connectivity) is optimized, thus increasing robustness to

mutations

 When the energy of the folded state is taken into account, the population concentrates

around sequences of minimal energy, thus increasing robustness to perturbations

 Robustness arises as a compromise between minimizing the effect of mutations and

maximizing structural stability

 The time required to reach the asymptotic state has to be shorter than the time between

changes in the environment; diversity (related to adaptability) depends on the relation

between energy and connectivity of sequences

2.4.3.- RNA neutral networks

Read more at:

Aguirre et al.,

PRE, in press (2009)
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2.4.4.- Brain functional networks
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 What does the brain when it is working?

2.4.4.- Brain functional networks

Read more at:

Bullmore et al.,

Nature, 10, 186(2009)
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 How to obtain a network by measuring the brain activity

2.4.4.- Brain functional networks

Grupo de Sistemas Evolutivos (C.A.B.)

Complex

Network 

Analysis

fMRI, MEG, EEG

Correlation

Matrix

Adjacency

Matrix

Network 

Projection
Analysis
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 How to measure the brain activity

 Functional MRI (fMRI). The detection of changes in regional brain activity through their

effects on blood flow and blood oxygenation (which, in turn, affect magnetic susceptibility and

tissue contrast in magnetic resonance images). High spatial resolution (~mm3) but low

temporal resolution (~ seconds).

 Electroencephalography (EEG). A technique used to measure neural activity by monitoring

electrical signals from the brain, usually through scalp electrodes. EEG has good temporal

resolution but relatively poor spatial resolution.

 Magnetoencephalography (MEG). A method of measuring brain activity by detecting

perturbations in the extracranial magnetic field that are generated by the electrical activity of

neuronal populations.

2.4.4.- Brain functional networks

Read more at:

Bullmore et al.,

Nature, 10, 186(2009)
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 Scale-free brain functional networks

 Two activities: finger tapping and listening to music

 ~ 400 events every 2.5 seconds

 36 x 64 x 64 brain sites (147456 voxels)

 The linear cross-correlation is measured

 Several thresholds are considered in order

to obtain the adjacency matrix.

2.4.4.- Brain functional networks

Read more at:

Eguiluz et al.,

PRL, 94,018102 (2005)



(37 de 48)

Applications of Complex Networks

 Scale-free brain functional networks

fMRI functional networks are small-world, scale-free and assortative

2.4.4.- Brain functional networks

Read more at:

Eguiluz et al.,

PRL, 94,018102 (2005)
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 How to measure the brain activity

MEG (and EEG) allows the band decomposition of the signal into frequency bands

2.4.4.- Brain functional networks

Read more at:

Basset et al.,

PNAS, 103, 19518(2006)

Corr: average correlation of the whole brain network before thresholding;  τ: threshold applied to wavelet 

correlation matrices; k: average degree of the network; L: average path length; C: average clustering; σ: small-

world scalar value;  ζ, characteristic length scale in millimeters; S, synchronizability. (N=275)
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 Brain functional networks

 Comprehension of the structural properties of the networks. It is interesting to unveil

the functional structure of the brain and understand the implications on the cognitive

processes.

 Comprehension of brain diseases. The analysis of the functional networks of patients with

a certain pathology can help us to understand an localize malfunctions in the brain activity.

 Detection and treatment of brain disease. The final application of the analysis of brain

functional networks is the early detection of brain diseases (which will help in their

treatment).

2.4.4.- Brain functional networks
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 A practical application: Mild Cognitive Impairment (MCI)

 Mild Cognitive Impairment (MCI). A brain disorder in which thinking abilities are mildly

impaired. Individuals with mild cognitive impairment are able to function in everyday activities

but have difficulty with memory, trouble remembering the names of people they met recently,

remembering the flow of a conversation, and a tendency to misplace things.

 Experiment: We performed magnetoencephalograms (MEG) to a group of 11 MCI's patients

and 9 control subjects during a memory task. By means of the synchronization likelihood (SL)

we quantify the interaction between the 148 channels of the MEG system and we obtain a

weighted connectivity matrix between cortical areas.

2.4.4.- Brain functional networks
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 (weighted) Network parameters:

 Matrix normalization (P): We map the weights of the synchronization

matrix ωij into a continuous bijective map M:R → [0,1]. The obtained

matrix P {pij} can be interpreted as a matrix of probabilities that tell us

how probable the existence of a link between node i and j is.

 Mean Shortest path (L): it measures the shortest topological (not

Euclidean) distance lij between any pair of nodes in the network.

 Mean Clustering (C): it measures the probability that two neighbors

of a certain node are also connected with each other.

 Network outreach (O): The outreach Oi balances the distance of the

connections of a node i with their probability.

 Network modularity (Q): Takes into account the number of links

between the nodes of the same community and measures the statistical

deviation from a random assignment of nodes between communities

2.4.4.- Brain functional networks
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 MCI Network parameters:

There exist significant differences between the networks of both groups (control and MCI)

2.4.4.- Brain functional networks

Average network parameters for the Control and MCI group and the percentage of variation. The probability matrix

has been obtained for four frequency bands. Mean degree kp, average shortest path Lp, average clustering

coefficient Cp, average outreach Op and average modularity Qp. The symbol ^ indicates normalization over 100

realizations of a randomized version of the networks.
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 Modelling MCI Damage:

Instead of random failures, we

simulate random increases of the

synchronization between brain

regions

2.4.4.- Brain functional networks

Figure: Evolution of the network

parameters predicted by the model. Red

dashed lines indicate the value of the

parameter of the MCI average network. (a)

average degree of the network, (b) average

shortest path, (c), normalized average

shortest path, (d) clustering, (e) normalized

clustering, (f) outreach, (g) normalized

outreach, and (h) modularity.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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 Modelling MCI Damage:

2.4.4.- Brain functional networks

C
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Figure: Several parameter

distributions for the control

group (black circles), MCI group

(red squares) and random

model evolution (blue squares):

(a) probability distribution of

finding a node with a degree

higher than k, (b) clustering

coefficient C(k), (c) outreach

O(k) and (d) average neighbor

degree knn(k).
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 Complex Network analyses of brain diseases

 Alzeheimer.

 The overall synchronization of the network is decreased.

 The average path length increases (probably as a consequence of the reduction of the

synchronization).

 The clustering coefficient is significantly reduced (the network evolves to random

topologies).

 Mild Cognitive Impairment.

 The average synchronization increases.

 Network outreach increases as a consequence of an unbalanced increase of the

synchronization in the long-range connections.

 The network becomes more random.

2.4.4.- Brain functional networks
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 Complex Network analyses of brain diseases

 Schizophrenia.

 The small-world properties of the network are impaired (specially at low-frequency

bands).

 Clustering and average path length are shifted to random configurations.

 The hierarchical configuration of the network is also affected.

 Epilepsia.

 Synchronization increases during the epileptic episodes.

 As a consequence, clustering coefficient increases and average path length decreases.

 Changes are more significant at delta, theta and alpha bands.

2.4.4.- Brain functional networks

Read more at:

Stam et al.,

NBP, 1, 3 (2007)
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2.1.- SOCIAL NETWORKS

Structure matters, but we are

far from understanding its relation

with function
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Thanks for your attention

nos vemos en Madrid


